Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 38: 49-74, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512258

RESUMO

Cilia and mitotic spindles are microtubule (MT)-based, macromolecular machines that consecutively assemble and disassemble during interphase and M phase of the cell cycle, respectively, and play fundamental roles in how eukaryotic cells swim through a fluid, sense their environment, and divide to reproduce themselves. The formation and function of these structures depend on several types of cytoskeletal motors, notably MT-based kinesins and dyneins, supplemented by actin-based myosins, which may function independently or collaboratively during specific steps in the pathway of mitosis or ciliogenesis. System-specific differences in these pathways occur because, instead of conforming to a simple one motor-one function rule, ciliary and mitotic motors can be deployed differently by different cell types. This reflects the well-known influence of natural selection on basic molecular processes, creating diversity at subcellular scales. Here we review our current understanding of motor function and cooperation during the assembly-disassembly, maintenance, and functions of cilia and mitotic spindles.


Assuntos
Dineínas , Cinesinas , Actinas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Mitose , Miosinas/metabolismo , Fuso Acromático/metabolismo
2.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681454

RESUMO

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Família 4 do Citocromo P450/deficiência , Família 4 do Citocromo P450/genética , Descoberta de Drogas , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
3.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546045

RESUMO

The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice. Here, we show that the loss of Fuzzy in mice results in defects of primary cilia, accompanied by increased RhoA activity and excessive actin polymerization at the basal body. We discovered that, mechanistically, Fuzzy interacts with and recruits the negative actin regulator ARHGAP35 (also known as p190A RhoGAP) to the basal body. We identified genetic interactions between the two genes and found that a mutant ArhGAP35 allele increases the severity of phenotypic defects observed in Fuzzy-/- mice. Based on our findings, we propose that Fuzzy regulates ciliogenesis by recruiting ARHGAP35 to the basal body, where the latter likely restricts actin polymerization and modifies the actin network. Our study identifies a mechanism whereby CPLANE proteins control both actin polymerization and primary cilium formation.


Assuntos
Actinas , Ciliopatias , Proteínas Ativadoras de GTPase , Camundongos , Humanos , Animais , Actinas/metabolismo , Cílios/metabolismo , Polimerização
4.
Hum Mol Genet ; 33(13): 1142-1151, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38557732

RESUMO

Lowe syndrome, a rare X-linked multisystem disorder presenting with major abnormalities in the eyes, kidneys, and central nervous system, is caused by mutations in OCRL gene (NG_008638.1). Encoding an inositol polyphosphate 5-phosphatase, OCRL catalyzes the hydrolysis of PI(4,5)P2 into PI4P. There are no effective targeted treatments for Lowe syndrome. Here, we demonstrate a novel gene therapy for Lowe syndrome in patient fibroblasts using an adenine base editor (ABE) that can efficiently correct pathogenic point mutations. We show that ABE8e-NG-based correction of a disease-causing mutation in a Lowe patient-derived fibroblast line containing R844X mutation in OCRL gene, restores OCRL expression at mRNA and protein levels. It also restores cellular abnormalities that are hallmarks of OCRL dysfunction, including defects in ciliogenesis, microtubule anchoring, α-actinin distribution, and F-actin network. The study indicates that ABE-mediated gene therapy is a feasible treatment for Lowe syndrome, laying the foundation for therapeutic application of ABE in the currently incurable disease.


Assuntos
Fibroblastos , Edição de Genes , Terapia Genética , Síndrome Oculocerebrorrenal , Monoéster Fosfórico Hidrolases , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Humanos , Fibroblastos/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Terapia Genética/métodos , Edição de Genes/métodos , Mutação , Adenina/metabolismo
5.
EMBO J ; 41(21): e112107, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125182

RESUMO

Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular , Centríolos , Animais , Humanos , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
6.
J Cell Sci ; 137(10)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572631

RESUMO

Transition fibres and distal appendages surround the distal end of mature basal bodies and are essential for ciliogenesis, but only a few of the proteins involved have been identified and functionally characterised. Here, through genome-wide analysis, we have identified 30 transition fibre proteins (TFPs) and mapped their arrangement in the flagellated eukaryote Trypanosoma brucei. We discovered that TFPs are recruited to the mature basal body before and after basal body duplication, with differential expression of five TFPs observed at the assembling new flagellum compared to the existing fixed-length old flagellum. RNAi-mediated depletion of 17 TFPs revealed six TFPs that are necessary for ciliogenesis and a further three TFPs that are necessary for normal flagellum length. We identified nine TFPs that had a detectable orthologue in at least one basal body-forming eukaryotic organism outside of the kinetoplastid parasites. Our work has tripled the number of known transition fibre components, demonstrating that transition fibres are complex and dynamic in their composition throughout the cell cycle, which relates to their essential roles in ciliogenesis and flagellum length regulation.


Assuntos
Proteínas de Protozoários , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sequência Conservada , Corpos Basais/metabolismo , Transporte Proteico , Fatores de Tempo , Flagelos/genética , Flagelos/metabolismo , Regulação da Expressão Gênica , Cílios/genética , Cílios/metabolismo
7.
J Cell Sci ; 137(13)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853670

RESUMO

Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.


Assuntos
Chlamydomonas reinhardtii , Cílios , Dineínas , Flagelos , Cinesinas , Proteômica , Cílios/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Proteômica/métodos , Cinesinas/metabolismo , Cinesinas/genética , Dineínas/metabolismo , Flagelos/metabolismo , Transporte Biológico
8.
J Cell Sci ; 137(9)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661008

RESUMO

DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.


Assuntos
Cílios , Mitose , Fatores de Transcrição , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HeLa , Cinetocoros/metabolismo , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
9.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825984

RESUMO

Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;ß-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;ß-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.


Assuntos
Fissura Palatina , Via de Sinalização Wnt , Camundongos , Animais , Via de Sinalização Wnt/fisiologia , Palato , Fissura Palatina/genética , Diferenciação Celular , Palato Mole , Homeostase , Regulação da Expressão Gênica no Desenvolvimento
10.
Semin Cell Dev Biol ; 133: 20-31, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35351373

RESUMO

Ciliogenesis is a complex multistep process used to describe assembly of cilia and flagella. These organelles play essential roles in motility and signaling on the surface of cells. Cilia are built at the distal ends of centrioles through the formation of an axoneme that is surrounded by the ciliary membrane. As is the case in the biogenesis of other cellular organelles, regulators of membrane trafficking play essential roles in ciliogenesis, albeit with a unique feature that membranes are organized around microtubule-based structures. Membrane association with the distal end of the centriole is a critical initiating step for ciliogenesis. Studies of this process in different cell types suggests that a singular mechanism may not be utilized to initiate cilium assembly. In this review, we focus on recent insights into cilium biogenesis and the roles membrane trafficking regulators play in described ciliogenesis mechanisms with relevance to human disease.


Assuntos
Axonema , Centríolos , Humanos , Centríolos/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Microtúbulos/metabolismo , Flagelos
11.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727648

RESUMO

Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.


Assuntos
Centríolos , Mães , Humanos , Feminino , Centríolos/genética , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas/metabolismo
12.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095645

RESUMO

The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.


Assuntos
Cílios , Ciliopatias , Humanos , Cílios/metabolismo , Microtúbulos/metabolismo , Axonema/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-39033934

RESUMO

BACKGROUND: Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS: We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS: The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS: Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.

14.
Traffic ; 23(7): 360-373, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510564

RESUMO

The endocytic protein EHD1 controls primary ciliogenesis by facilitating fusion of the ciliary vesicle and by removal of CP110 from the mother centriole. EHD3, the closest EHD1 paralog, has a similar regulatory role, but initial evidence suggested that the other two more distal paralogs, EHD2 and EHD4 may be dispensable for ciliogenesis. Herein, we define a novel role for EHD4, but not EHD2, in regulating primary ciliogenesis. To better understand the mechanisms and differential functions of the EHD proteins in ciliogenesis, we first demonstrated a requirement for EHD1 ATP-binding to promote ciliogenesis. We then identified two sequence motifs that are entirely conserved between EH domains of EHD1, EHD3 and EHD4, but display key amino acid differences within the EHD2 EH domain. Substitution of either P446 or E470 in EHD1 with the aligning S451 or W475 residues from EHD2 was sufficient to prevent rescue of ciliogenesis in EHD1-depleted cells upon reintroduction of EHD1. Overall, our data enhance the current understanding of the EHD paralogs in ciliogenesis, demonstrate a need for ATP-binding and identify conserved sequences in the EH domains of EHD1, EHD3 and EHD4 that regulate EHD1 binding to proteins and its ability to rescue ciliogenesis in EHD1-depleted cells.


Assuntos
Proteínas de Transporte , Vesículas Citoplasmáticas , Trifosfato de Adenosina , Animais , Proteínas de Transporte/metabolismo , Vesículas Citoplasmáticas/metabolismo , Mamíferos/metabolismo
15.
Am J Hum Genet ; 108(7): 1318-1329, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077761

RESUMO

TP73 belongs to the TP53 family of transcription factors and has therefore been well studied in cancer research. Studies in mice, however, have revealed non-oncogenic activities related to multiciliogenesis. Utilizing whole-exome sequencing analysis in a cohort of individuals with a mucociliary clearance disorder and cortical malformation, we identified homozygous loss-of-function variants in TP73 in seven individuals from five unrelated families. All affected individuals exhibit a chronic airway disease as well as a brain malformation consistent with lissencephaly. We performed high-speed video microscopy, immunofluorescence analyses, and transmission electron microscopy in respiratory epithelial cells after spheroid or air liquid interface culture to analyze ciliary function, ciliary length, and number of multiciliated cells (MCCs). The respiratory epithelial cells studied display reduced ciliary length and basal bodies mislocalized within the cytoplasm. The number of MCCs is severely reduced, consistent with a reduced number of cells expressing the transcription factors crucial for multiciliogenesis (FOXJ1, RFX2). Our data demonstrate that autosomal-recessive deleterious variants in the TP53 family member TP73 cause a mucociliary clearance disorder due to a defect in MCC differentiation.


Assuntos
Lisencefalia/genética , Depuração Mucociliar/genética , Mucosa Respiratória/metabolismo , Proteína Tumoral p73/genética , Diferenciação Celular/genética , Células Cultivadas , Ciliopatias/genética , Genes Recessivos , Homozigoto , Humanos , Mutação com Perda de Função , Microscopia de Vídeo , Mucosa Respiratória/citologia , Mucosa Respiratória/ultraestrutura , Sequenciamento do Exoma
16.
J Cell Sci ; 135(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35510502

RESUMO

The mammalian retromer consists of subunits VPS26 (either VPS26A or VPS26B), VPS29 and VPS35, and a loosely associated sorting nexin (SNX) heterodimer or a variety of other SNX proteins. Despite involvement in yeast and mammalian cell trafficking, the role of retromer in development is poorly understood, and its impact on primary ciliogenesis remains unknown. Using CRISPR/Cas9 editing, we demonstrate that vps-26-knockout worms have reduced brood sizes, impaired vulval development and decreased body length, all of which have been linked to ciliogenesis defects. Although preliminary studies did not identify worm ciliary defects, and impaired development limited additional ciliogenesis studies, we turned to mammalian cells to investigate the role of retromer in ciliogenesis. VPS35 localized to the primary cilium of mammalian cells, and depletion of VPS26, VPS35, VPS29, SNX1, SNX2, SNX5 or SNX27 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the centriolar protein, CP110 (also known as CCP110), and was required for its removal from the mother centriole. Herein, we characterize new roles for retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, suggesting a novel role for retromer in CP110 removal from the mother centriole.


Assuntos
Endossomos , Proteínas de Transporte Vesicular , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Endossomos/metabolismo , Mamíferos/metabolismo , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
17.
Mod Pathol ; 37(5): 100475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508520

RESUMO

Pituitary neuroendocrine tumors (PitNETs) account for approximately 15% of all intracranial neoplasms. Although they usually appear to be benign, some tumors display worse behavior, displaying rapid growth, invasion, refractoriness to treatment, and recurrence. Increasing evidence supports the role of primary cilia (PC) in regulating cancer development. Here, we showed that PC are significantly increased in PitNETs and are associated with increased tumor invasion and recurrence. Serial electron micrographs of PITNETs demonstrated different ciliation phenotypes (dot-like versus normal-like cilia) that represented PC at different stages of ciliogenesis. Molecular findings demonstrated that 123 ciliary-associated genes (eg, doublecortin domain containing protein 2, Sintaxin-3, and centriolar coiled-coil protein 110) were dysregulated in PitNETs, representing the upregulation of markers at different stages of intracellular ciliogenesis. Our results demonstrate, for the first time, that ciliogenesis is increased in PitNETs, suggesting that this process might be used as a potential target for therapy in the future.


Assuntos
Biomarcadores Tumorais , Cílios , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Cílios/patologia , Cílios/ultraestrutura , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/genética , Feminino , Masculino , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/genética , Pessoa de Meia-Idade , Adulto , Idoso , Recidiva Local de Neoplasia/patologia , Invasividade Neoplásica , Imuno-Histoquímica
18.
Respir Res ; 25(1): 49, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245732

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS: The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS: 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION: Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.


Assuntos
Bronquite Crônica , Ciliopatias , Doença Pulmonar Obstrutiva Crônica , Humanos , Bronquite Crônica/induzido quimicamente , Bronquite Crônica/metabolismo , Fumaça/efeitos adversos , Madeira/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa , Produtos do Tabaco
19.
Cell Commun Signal ; 22(1): 348, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961488

RESUMO

BACKGROUND: Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS: TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS: We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS: This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.


Assuntos
Aurora Quinase A , Centríolos , Cílios , Cílios/metabolismo , Humanos , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Centríolos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
20.
EMBO Rep ; 23(5): e54090, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301795

RESUMO

Despite the importance of cilia in cell signaling and motility, the molecular mechanisms regulating cilium formation remain incompletely understood. Herein, we characterize enkurin domain-containing protein 1 (ENKD1) as a novel centrosomal protein that mediates the removal of centriolar coiled-coil protein 110 (CP110) from the mother centriole to promote ciliogenesis. We show that Enkd1 knockout mice possess ciliogenesis defects in multiple organs. Super-resolution microscopy reveals that ENKD1 is a stable component of the centrosome throughout the ciliogenesis process. Simultaneous knockdown of ENKD1 and CP110 significantly reverses the ciliogenesis defects induced by ENKD1 depletion. Protein interaction analysis shows that ENKD1 competes with centrosomal protein 97 (CEP97) in binding to CP110. Depletion of ENKD1 enhances the CP110-CEP97 interaction and detains CP110 at the mother centriole. These findings thus identify ENKD1 as a centrosomal protein and uncover a novel mechanism controlling CP110 removal from the mother centriole for the initiation of ciliogenesis.


Assuntos
Centríolos , Proteínas Associadas aos Microtúbulos , Animais , Camundongos , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Plasma Seminal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA