RESUMO
Resistance to docetaxel is a major problem to the success of docetaxel-based therapies for breast cancer. The present study was to identify the role of circABCB1 in altering the docetaxel resistance properties. Reverse transcription-quantitative PCR (qRT-PCR) was performed to quantify circABCB1 and miR-153-3p. The effects of circABCB1 on the viability, apoptosis and migration/invasion of docetaxel-resistant and -sensitive cells were investigated by cell function experiments, including Cell Counting Kit-8 and Transwell assays. Correlation between circABCB1 and the docetaxel-treated outcome was analyzed by multivariate Cox regression analysis, in addition to Kaplan-Meier analysis of time to treatment failure (TTF). The targeting relationship between circABCB1 and miR-153-3p was predicted and verified by dual-luciferase reporter assay and RNA immunoprecipitation. CircABCB1 was highly expressed in cancerous tissues, as well as the docetaxel-sensitive group and cells. The overexpression of circABCB1 contributed to cell viability, docetaxel-resistance and migration/invasion, but inhibited apoptosis. CircABCB1 can sponge miR-153-3p. CircABCB1 contributed to the docetaxel resistance of breast cancer, maybe via the miR-153-3p.