Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(2): 515-528.e17, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625057

RESUMO

Bladder cancer is the fifth most prevalent cancer in the U.S., yet is understudied, and few laboratory models exist that reflect the biology of the human disease. Here, we describe a biobank of patient-derived organoid lines that recapitulates the histopathological and molecular diversity of human bladder cancer. Organoid lines can be established efficiently from patient biopsies acquired before and after disease recurrence and are interconvertible with orthotopic xenografts. Notably, organoid lines often retain parental tumor heterogeneity and exhibit a spectrum of genomic changes that are consistent with tumor evolution in culture. Analyses of drug response using bladder tumor organoids show partial correlations with mutational profiles, as well as changes associated with treatment resistance, and specific responses can be validated using xenografts in vivo. Our studies indicate that patient-derived bladder tumor organoids represent a faithful model system for studying tumor evolution and treatment response in the context of precision cancer medicine.


Assuntos
Neoplasias da Bexiga Urinária/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mutação , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Medicina de Precisão , Transplante Heterólogo , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo
2.
Cell ; 172(1-2): 205-217.e12, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307488

RESUMO

Ductal carcinoma in situ (DCIS) is an early-stage breast cancer that infrequently progresses to invasive ductal carcinoma (IDC). Genomic evolution has been difficult to delineate during invasion due to intratumor heterogeneity and the low number of tumor cells in the ducts. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS) to measure genomic copy number profiles of single tumor cells while preserving their spatial context in tissue sections. We applied TSCS to 1,293 single cells from 10 synchronous patients with both DCIS and IDC regions in addition to exome sequencing. Our data reveal a direct genomic lineage between in situ and invasive tumor subpopulations and further show that most mutations and copy number aberrations evolved within the ducts prior to invasion. These results support a multiclonal invasion model, in which one or more clones escape the ducts and migrate into the adjacent tissues to establish the invasive carcinomas.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Evolução Clonal , Adulto , Idoso , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Movimento Celular , Exoma , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Invasividade Neoplásica , Análise de Sequência de DNA , Análise de Célula Única
3.
Cell ; 173(7): 1755-1769.e22, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754820

RESUMO

High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análise por Conglomerados , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Perda de Heterozigosidade , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
4.
Cell ; 171(4): 934-949.e16, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29033130

RESUMO

The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Melanoma/terapia , Microambiente Tumoral , Estudo de Associação Genômica Ampla , Humanos , Melanoma/genética , Melanoma/imunologia , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T , Transcriptoma
5.
Immunity ; 49(6): 1162-1174.e8, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30552024

RESUMO

Elicitation of VRC01-class broadly neutralizing antibodies (bnAbs) is an appealing approach for a preventative HIV-1 vaccine. Despite extensive investigations, strategies to induce VRC01-class bnAbs and overcome the barrier posed by the envelope N276 glycan have not been successful. Here, we inferred a high-probability unmutated common ancestor (UCA) of the VRC01 lineage and reconstructed the stages of lineage maturation. Env immunogens designed on reverted VRC01-class bnAbs bound to VRC01 UCA with affinity sufficient to activate naive B cells. Early mutations defined maturation pathways toward limited or broad neutralization, suggesting that focusing the immune response is likely required to steer B cell maturation toward the development of neutralization breadth. Finally, VRC01 lineage bnAbs with long CDR H3s overcame the HIV-1 N276 glycan barrier without shortening their CDR L1, revealing a solution for broad neutralization in which the heavy chain, not CDR L1, is the determinant to accommodate the N276 glycan.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Polissacarídeos/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Sequência de Aminoácidos , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/classificação , Anticorpos Neutralizantes/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação/genética , Anticorpos Amplamente Neutralizantes , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Filogenia , Polissacarídeos/metabolismo , Homologia de Sequência de Aminoácidos
6.
J Pathol ; 263(3): 271-274, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38775014

RESUMO

Follicular lymphoma (FL) is an indolent B-cell neoplasm characterised by multistep evolution from premalignant precursor cells carrying the hallmark t(14;18) translocation in the majority of cases. In a new article in The Journal of Pathology, samples of relapsed early-stage FL - primary manifestation and relapse with or without transformation - initially treated with radiotherapy only, were studied for clonal relationships and evolution. Using somatic mutations and the rearranged immunoglobulin sequences as markers, the majority of paired lymphoma samples showed so-called branched evolution from a common, possibly premalignant progenitor cell, with both shared and private mutations. In addition, clonally unrelated cases were identified. This and previous studies with similar findings clearly document that relapse or transformation of FL in many instances not necessarily represents a linear progression of disease due to acquisition of additional mutations and therapy resistance, but rather new outgrowths derived from a pool of clonally related, long-lived, and low proliferating precursor cells, or even unrelated second neoplasms. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Evolução Clonal , Linfoma Folicular , Linfoma Folicular/genética , Linfoma Folicular/patologia , Humanos , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Progressão da Doença
7.
Genes Chromosomes Cancer ; 63(3): e23231, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38459936

RESUMO

Lynch syndrome-associated endometrial cancer patients often present multiple synchronous tumors and this assessment can affect treatment strategies. We present a case of a 27-year-old woman with tumors in the uterine corpus, cervix, and ovaries who was diagnosed with endometrial cancer and exhibited cervical invasion and ovarian metastasis. Her family history suggested Lynch syndrome, and genetic testing identified a variant of uncertain significance, MLH1 p.L582H. We conducted immunohistochemical staining, microsatellite instability analysis, and Sanger sequencing for Lynch syndrome-associated cancers in three generations of the family and identified consistent MLH1 loss. Whole-exome sequencing for the corpus, cervical, and ovarian tumors of the proband identified a copy-neutral loss of heterozygosity (LOH) occurring at the MLH1 position in all tumors. This indicated that the germline variant and the copy-neutral LOH led to biallelic loss of MLH1 and was the cause of cancer initiation. All tumors shared a portion of somatic mutations with high mutant allele frequencies, suggesting a common clonal origin. There were no mutations shared only between the cervix and ovary samples. The profiles of mutant allele frequencies shared between the corpus and cervix or ovary indicated that two different subclones originating from the corpus independently metastasized to the cervix or ovary. Additionally, all tumors presented unique mutations in endometrial cancer-associated genes such as ARID1A and PIK3CA. In conclusion, we demonstrated clonal origin and genomic diversity in a Lynch syndrome-associated endometrial cancer, suggesting the importance of evaluating multiple sites in Lynch syndrome patients with synchronous tumors.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias do Endométrio , Proteína 1 Homóloga a MutL , Neoplasias Primárias Múltiplas , Adulto , Feminino , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/complicações , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Genômica , Instabilidade de Microssatélites , Proteína 1 Homóloga a MutL/genética , Neoplasias Primárias Múltiplas/genética
8.
Lab Invest ; 104(7): 102074, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723854

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a lethal cancer with poor survival especially when it spreads. The histopathology of its rare intraductal papillary neoplasm of the bile duct type (IPNB) characteristically shows cancer cells originating within the confined bile duct space. These cells eventually invade and infiltrate the nearby liver tissues, making it a good model to study the mechanism of local invasion, which is the earliest step of metastasis. To discover potential suppressor genes of local invasion in ICC, we analyzed the somatic mutation profiles and performed clonal evolution analyses of the 11 pairs of macrodissected locally invasive IPNB tissues (LI-IPNB) and IPNB tissues without local invasion from the same patients. We identified a protein-truncating variant in an E3 ubiquitin ligase, RNF213 (c.6967C>T; p.Gln2323X; chr17: 78,319,102 [hg19], exon 29), as the most common protein-truncating variant event in LI-IPNB samples (4/11 patients). Knockdown of RNF213 in HuCCT1 and YSCCC cells showed increased migration and invasion, and reduced vasculogenic mimicry but maintained normal proliferation. Transcriptomic analysis of the RNF213-knockdown vs control cells was then performed in the HuCCT1, YSCCC, and KKU-100 cells. Gene ontology enrichment analysis of the common differentially expressed genes revealed significantly altered cytokine and oxidoreductase-oxidizing metal ion activities, as confirmed by Western blotting. Gene Set Enrichment Analysis identified the most enriched pathways being oxidative phosphorylation, fatty acid metabolism, reactive oxygen species, adipogenesis, and angiogenesis. In sum, loss-of-function mutation of RNF213 is a common genetic alteration in LI-IPNB tissues. RNF213 knockdown leads to increased migration and invasion of ICC cells, potentially through malfunctions of the pathways related to inflammation and energy metabolisms.

9.
Cancer Sci ; 115(7): 2117-2124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623936

RESUMO

Cancer originates from a single ancestral cell that acquires a driver mutation, which confers a growth or survival advantage, followed by the acquisition of additional driver mutations by descendant cells. Recently, it has become evident that somatic cell mutations accumulate in normal tissues with aging and exposure to environmental factors, such as alcohol, smoking, and UV rays, increases the mutation rate. Clones harboring driver mutations expand with age, leading to tissue remodeling. Lineage analysis of myeloproliferative neoplasms and der(1;16)-positive breast cancer revealed that driver mutations were acquired early in our lives and that the development of cancer takes decades, unveiling the previously unknown early process of cancer development. Evidence that clonal hematopoiesis affects various diseases, including nonneoplastic diseases, highlights the potential role of the identification and functional analysis of mutated clones in unraveling unknown pathologies. In this review, we summarize the recent updates on clonal expansion in normal tissues and the natural history of cancer revealed through lineage analysis of noncancerous and cancerous tissues.


Assuntos
Mutação , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Animais , Hematopoiese Clonal/genética , Evolução Clonal
10.
Br J Haematol ; 204(1): 240-249, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38062779

RESUMO

Large-scale next-generation sequencing (NGS) studies revealed extensive genetic heterogeneity, driving a highly variable clinical course of chronic lymphocytic leukaemia (CLL). The evolution of subclonal populations contributes to diverse therapy responses and disease refractoriness. Besides, the dynamics and impact of subpopulations before therapy initiation are not well understood. We examined changes in genomic defects in serial samples of 100 untreated CLL patients, spanning from indolent to aggressive disease. A comprehensive NGS panel LYNX, which provides targeted mutational analysis and genome-wide chromosomal defect assessment, was employed. We observed dynamic changes in the composition and/or proportion of genomic aberrations in most patients (62%). Clonal evolution of gene variants prevailed over the chromosomal alterations. Unsupervised clustering based on aberration dynamics revealed four groups of patients with different clinical behaviour. An adverse cluster was associated with fast progression and early therapy need, characterized by the expansion of TP53 defects, ATM mutations, and 18p- alongside dynamic SF3B1 mutations. Our results show that clonal evolution is active even without therapy pressure and that repeated genetic testing can be clinically relevant during long-term patient monitoring. Moreover, integrative NGS testing contributes to the consolidated evaluation of results and accurate assessment of individual patient prognosis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Prognóstico , Mutação , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
11.
Mod Pathol ; 37(1): 100352, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839675

RESUMO

In this study, we performed a comprehensive molecular analysis of paired skin and peripheral blood/bone marrow (BM) samples from 17 patients with cutaneous myeloid or cutaneous histiocytic-dendritic neoplasms. The cutaneous manifestations included 10 patients with cutaneous acute myeloid leukemia (c-AML), 2 patients with full or partial Langerhans cell differentiation, 2 patients with blastic plasmacytoid dendritic cell neoplasms (BPDCN), 1 patient with both Langerhans cell differentiation and BPDCN, and 2 patients with full or partial indeterminate dendritic cell differentiation. Seven of the 10 c-AML patients (70%) exhibited concurrent or subsequent marrow involvement by acute myeloid leukemia, with all 7 cases (100%) demonstrating shared clonal mutations in both the skin and BM. However, clonal relatedness was documented in one additional case that never had any BM involvement. Nevertheless, NPM1 mutations were identified in 7 of the 10 (70%) of these c-AML cases while one had KMT2A rearrangement and one showed inv(16). All 3 patients (100%) with Langerhans cell neoplasms, 2 patients with BPDCN (100%), and one of the 2 patients (50%) with other cutaneous dendritic cell neoplasms also demonstrated shared mutations between the skin and concurrent or subsequent myeloid neoplasms. Both BM and c-AML shared identical founding drivers, with a predominance of NPM1, DNMT3A, and translocations associated with monocytic differentiation, with common cutaneous-only mutations involving genes in the signal transduction and epigenetic pathways. Cutaneous histiocytic-dendritic neoplasms shared founding drivers in ASXL1, TET2, and/or SRSF2. However, in the Langerhans cell histiocytosis or histiocytic sarcoma cases, there exist recurrent secondary RAS pathway hits, whereas cutaneous BPDCN cases exhibit copy number or structural variants. These results enrich and broaden our understanding of clonally related cutaneous manifestations of myeloid neoplasms and further illuminate the highly diverse spectrum of morphologic and immunophenotypic features they exhibit.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Humanos , Medula Óssea/patologia , Células Dendríticas/metabolismo , Mutação , Leucemia Mieloide Aguda/patologia , Neoplasias Hematológicas/patologia , Neoplasias Cutâneas/patologia , Transtornos Mieloproliferativos/patologia , Proteínas Nucleares/genética
12.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34671807

RESUMO

The recent advance of single-cell copy number variation (CNV) analysis plays an essential role in addressing intratumor heterogeneity, identifying tumor subgroups and restoring tumor-evolving trajectories at single-cell scale. Informative visualization of copy number analysis results boosts productive scientific exploration, validation and sharing. Several single-cell analysis figures have the effectiveness of visualizations for understanding single-cell genomics in published articles and software packages. However, they almost lack real-time interaction, and it is hard to reproduce them. Moreover, existing tools are time-consuming and memory-intensive when they reach large-scale single-cell throughputs. We present an online visualization platform, single-cell Somatic Variant Analysis Suite (scSVAS), for real-time interactive single-cell genomics data visualization. scSVAS is specifically designed for large-scale single-cell genomic analysis that provides an arsenal of unique functionalities. After uploading the specified input files, scSVAS deploys the online interactive visualization automatically. Users may conduct scientific discoveries, share interactive visualizations and download high-quality publication-ready figures. scSVAS provides versatile utilities for managing, investigating, sharing and publishing single-cell CNV profiles. We envision this online platform will expedite the biological understanding of cancer clonal evolution in single-cell resolution. All visualizations are publicly hosted at https://sc.deepomics.org.


Assuntos
Variações do Número de Cópias de DNA , Software , Visualização de Dados , Genoma , Genômica/métodos
13.
Ann Hematol ; 103(3): 749-758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242970

RESUMO

We studied the incidence of relapse, transformation to myelodysplastic syndrome/acute myeloid leukemia, and survival in patients with aplastic anemia (AA) surviving more than 1 year after ATG/ALG-based immunosuppressive therapy (IST) between 1985 and 2020. Four-hundred seventy patients (413 adults and 57 children) were studied, and data were compared with 223 patients who underwent matched sibling donor transplant (MSD HSCT). Median follow-up is 50 months (12-359). Relapse occurred in 21.9% at a median time of 33.5 months (5-228) post IST. Twenty-six (5.5%) patients progressed to PNH, while 20 (4.3%) evolved to MDS/AML. Ten-year estimated overall survival (OS) is 80.9 ± 3% and was significantly better in patients without an event (85.1 ± 4%) compared to relapse (74.6% ± 6.2%) or clonal evolution (12.8% ± 11.8%) (p = 0.024). While the severity of AA (p = 0.011) and type of ATG (p = 0.028) used predicted relapse, only age at IST administration influenced clonal evolution (p = 0.018). Among HSCT recipients, relapse rates were 4.9% with no clonal evolution, and the 10-year OS was 94.5 ± 2%. In patients who survived 1 year following IST, outcomes were good except with clonal evolution to MDS/AML. These outcomes, however, were still inferior compared to matched sibling donor HSCT.


Assuntos
Anemia Aplástica , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adulto , Criança , Humanos , Doença Enxerto-Hospedeiro/etiologia , Estudos Retrospectivos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Terapia de Imunossupressão/efeitos adversos , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/complicações , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/complicações , Recidiva
14.
Pharmacol Res ; : 107302, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004242

RESUMO

Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.

15.
J Pathol ; 261(1): 11-18, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345526

RESUMO

The translocation t(14;18)(q32:q21)/IGH::BCL2 occurs at the pre-B stage of B-cell development in the bone marrow and is insufficient for malignant transformation, although it leads to the formation of in situ follicular B-cell neoplasia (ISFN). Despite that, the translocation is the genetic hallmark of follicular lymphoma (FL), it occurs infrequently in metachronous/synchronous lymphomas, including extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (EMZL), mantle cell lymphoma, and Hodgkin's lymphoma. In each of these scenarios, the two lymphomas often appear to be clonally related by analyses of IGH::BCL2 and/or rearranged IG genes. However, it remains largely unknown whether one lymphoma originates from the other or they develop independently. We studied five cases of metachronous EMZL and FL. In four cases, the two lymphomas were clonally related, as shown by identical IGH::BCL2 and/or rearranged IG genes or shared mutations. There were common and unique mutations between the paired EMZL and FL, indicating that they developed independently from a common premalignant cell population, harbouring IGH::BCL2 in three cases. Furthermore, case 1 presented with three metachronous FLs, and all of them originated from a common precursor cell population via divergent evolution. Our findings highlight the multi-malignant potential of IGH::BCL2-positive B-cells. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Linfoma de Zona Marginal Tipo Células B , Linfoma Folicular , Humanos , Adulto , Linfoma Folicular/genética , Linfoma de Zona Marginal Tipo Células B/genética , Translocação Genética , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética
16.
Bioessays ; 44(5): e2100252, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253252

RESUMO

The presence and role of microbes in human cancers has come full circle in the last century. Tumors are no longer considered aseptic, but implications for cancer biology and oncology remain underappreciated. Opportunities to identify and build translational diagnostics, prognostics, and therapeutics that exploit cancer's second genome-the metagenome-are manifold, but require careful consideration of microbial experimental idiosyncrasies that are distinct from host-centric methods. Furthermore, the discoveries of intracellular and intra-metastatic cancer bacteria necessitate fundamental changes in describing clonal evolution and selection, reflecting bidirectional interactions with non-human residents. Reconsidering cancer clonality as a multispecies process similarly holds key implications for understanding metastasis and prognosing therapeutic resistance while providing rational guidance for the next generation of bacterial cancer therapies. Guided by these new findings and challenges, this Review describes opportunities to exploit cancer's metagenome in oncology and proposes an evolutionary framework as a first step towards modeling multispecies cancer clonality. Also see the video abstract here: https://youtu.be/-WDtIRJYZSs.


Assuntos
Evolução Clonal , Neoplasias , Evolução Biológica , Evolução Clonal/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia
17.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473705

RESUMO

Classic Hodgkin lymphoma (cHL) constitutes a B-cell neoplasm derived from germinal center lymphocytes. Despite high cure rates (80-90%) obtained with the current multiagent protocols, a significant proportion of cHL patients experience recurrences, characterized by a lower sensitivity to second-line treatments. The genomic background of chemorefractory cHL is still poorly understood, limiting personalized treatment strategies based on molecular features. In this study, using a targeted next-generation sequencing (NGS) panel specifically designed for cHL research, we compared chemosensitive and chemorefractory diagnostic tissue samples of cHL patients. Furthermore, we longitudinally examined paired diagnosis-relapsesamples of chemorefractory cHL in order to define patterns of dynamic evolution and clonal selection. Pathogenic variants in NOTCH1 and NOTCH2 genes frequently arise in cHL. Mutations in genes associated with epigenetic regulation (CREBBP and EP300) are particularly frequent in relapsed/refractory cHL. The appearance of novel clones characterized by mutations previously not identified at diagnosis is a common feature in cHL cases showing chemoresistance to frontline treatments. Our results expand current molecular and pathogenic knowledge of cHL and support the performance of molecular studies in cHL prior to the initiation of first-line therapies.


Assuntos
Doença de Hodgkin , Linfoma de Células B , Humanos , Doença de Hodgkin/patologia , Epigênese Genética , Linfoma de Células B/genética , Mutação , Centro Germinativo/metabolismo
18.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891959

RESUMO

The tyrosine kinase domain of the FMS-Like tyrosine kinase 3 (FLT3-TKD) is recurrently mutated in acute myeloid leukemia (AML). Common molecular techniques used in its detection include PCR and capillary electrophoresis, Sanger sequencing and next-generation sequencing with recognized sensitivity limitations. This study aims to validate the use of droplet digital PCR (ddPCR) in the detection of measurable residual disease (MRD) involving the common FLT3-TKD mutations (D835Y, D835H, D835V, D835E). Twenty-two diagnostic samples, six donor controls, and a commercial D835Y positive control were tested using a commercial Bio-rad® ddPCR assay. All known variants were identified, and no false positives were detected in the wild-type control (100% specificity and sensitivity). The assays achieved a limit of detection suitable for MRD testing at 0.01% variant allelic fraction. Serial samples from seven intensively-treated patients with FLT3-TKD variants at diagnosis were tested. Five patients demonstrated clearance of FLT3-TKD clones, but two patients had FLT3-TKD persistence in the context of primary refractory disease. In conclusion, ddPCR is suitable for the detection and quantification of FLT3-TKD mutations in the MRD setting; however, the clinical significance and optimal management of MRD positivity require further exploration.


Assuntos
Leucemia Mieloide Aguda , Mutação , Neoplasia Residual , Reação em Cadeia da Polimerase , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Reação em Cadeia da Polimerase/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Sequenciamento de Nucleotídeos em Larga Escala/métodos
19.
Int J Cancer ; 152(8): 1613-1629, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36533638

RESUMO

Mutational signatures, the generic patterns of mutations, are the footprints of both endogenous and exogenous factors that have influenced cancer development. To date, dozens of mutational signatures have been discerned through computational methods. However, the etiology, mutational properties, clonality, immunology and prognostic value of mutation signatures across cancer types are poorly understood. To address this, we extensively characterized mutational signatures across 8836 cancer samples spanning 42 cancer types. We confirmed and extended clinical and genomic features associated with mutation signatures. Mutation distribution analysis showed that most mutation processes were depleted in exons and APOBEC signatures (SBS2 and SBS13), the Pol-η related signature (SBS9) and SBS40 tended to contribute clustered mutations. We observed that age-related signatures (SBS1 and SBS5) and SBS40 tended to induce mutations affecting cancer genes and subclonal drivers posted by specific signatures (eg, mismatch repair deficiency-related signature SBS44) were unlikely subjected to positive selection. We also revealed early mutation signatures (eg, UV light exposure-related signature SBS7a) and signatures (eg, reactive oxygen species-related signature SBS18) predominated in the late stage of tumorigenesis. Comprehensive association analysis of mutation processes with microenvironment revealed that APOBEC- and mismatch repair deficiency-related signatures were positively associated with immune parameters, while age-related signatures showed negative correlations. In addition, prognostic association analysis showed that many signatures were favorable (eg, SBS9) or adverse factors (eg, SBS18) of patient survival. Our findings enhance appreciation of the role of mutational signatures in tumor evolution and underline their potential in immunotherapy guidance and prognostic prediction.


Assuntos
Neoplasias , Humanos , Genoma Humano , Genômica , Mutação , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
20.
Cancer Metastasis Rev ; 41(2): 433-446, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35286542

RESUMO

Breast cancer is a spatially and temporally dynamic disease in which differently evolving genetic clones are responsible for progression and clinical outcome. We review tumor heterogeneity and clonal evolution from studies comparing primary tumors and metastasis and discuss plasma circulating tumor DNA as a powerful real-time approach for monitoring the clonal landscape of breast cancer during treatment and recurrence. We found only a few early studies exploring clonal evolution and heterogeneity through analysis of multiregional tissue biopsies of different progression steps in comparison with circulating tumor DNA (ctDNA) from blood plasma. The model of linear progression seemed to be more often reported than the model of parallel progression. The results show complex routes to metastasis, however, and plasma most often reflected metastasis more than primary tumor. The described patterns of evolution and the polyclonal nature of breast cancer have clinical consequences and should be considered during patient diagnosis and treatment selection. Current studies focusing on the relevance of clonal evolution in the clinical setting illustrate the role of liquid biopsy as a noninvasive biomarker for monitoring clonal progression and response to treatment. In the clinical setting, circulating tumor DNA may be an ideal support for tumor biopsies to characterize the genetic landscape of the metastatic disease and to improve longitudinal monitoring of disease dynamics and treatment effectiveness through detection of residual tumor after resection, relapse, or metastasis within a particular patient.


Assuntos
Neoplasias da Mama , DNA Tumoral Circulante , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , DNA Tumoral Circulante/genética , DNA de Neoplasias/genética , Feminino , Humanos , Biópsia Líquida , Células Neoplásicas Circulantes/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA