Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(27): e2311083, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38268236

RESUMO

Although metal-organic polyhedra (MOPs) expansion has been studied to date, it is still a rare occurrence for their porous intermolecular assembly for iodine capture. The major limitation is the lack of programmable and controllable methods for effectively constructing and utilizing the exterior cavities. Herein, the goal of programmable porous intermolecular assembly is realized in the first family of aluminum oxo polyhedrons (AlOPs) using ligands with directional H-bonding donor/acceptor pairs and auxiliary alcohols as structural regulation sites. The approach has the advantage of avoiding the use of expensive edge-directed ditopic and face-directed tritopic ligands in the general synthesis strategy of MOPs. Combining theoretical calculations and experiments, the intrinsic relationship is revealed between alcohol ligands and the growth mechanism of AlOPs. The maximum I2 uptake based on the mass gain during sorption corresponds to 2.35 g g-1, representing the highest reported I2 sorption by an MOP. In addition, it can be easily regenerated and maintained the iodine sorption capacity, revealing its further potential application. This method of constructing stable and programmable porous materials will provide a new way to solve problems such as radionuclide capture.

2.
Angew Chem Int Ed Engl ; 62(49): e202309971, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37877336

RESUMO

Clusters that can be experimentally precisely characterized and theoretically accurately calculated are essential to understanding the relationship between material structure and function. Here, we propose the concept of "supraclusters", which aim to connect "supramolecules" and "suprananoparticles" as well as reveal the unique assembly behavior of "supraclusters" with nanoparticle size at the molecular level. The implementation of supraclusters is full of challenges due to the difficulty in satisfying the ordered connectivity of clusters due to their abundant and dispersed hydrogen bonding sites. By solvothermal synthesis under a high catechol (H2 CATs) content, we successfully isolated a series of triangular {Al6 M3 } cluster compounds possessing brucite-like structural features. Interestingly, eight {Al6 M3 } clusters form 72-fold strong hydrogen bonding truncatedhexahedron Archimedean {Al6 M3 }8 supracluster cage (abbreviated as H-tcu). Surprisingly, the solution stability of the H-tcu was further proved by electrospray ionization mass spectrometry (ESI-MS) characterization. Therefore, it is not difficult to explain the reason for assembly of H-tcu into edge-directed and vertex-directed isomers. These porous supraclusters can be obtained by scale-up synthesis and exhibit a noticeable catalysis effect towards the condensation of acetone and p-nitrobenzaldehyde. As an intermediate state of supramolecule and suprananoparticle, the supracluster assembly can enrich the cluster chemistry and bring new structural types.

3.
Angew Chem Int Ed Engl ; 60(9): 4849-4854, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33258227

RESUMO

The hydrolysis of earth-abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third-order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π-conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32 -oxo clusters with hydrotalcite-like cores and π-conjugated shells are isolated. X-ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32 -oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners.

4.
Adv Mater ; 35(9): e2208774, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36434806

RESUMO

Nanocomposite materials, consisting of two or more phases, at least one of which has a nanoscale dimension, play a distinctive role in materials science because of the multiple possibilities for tailoring their structural properties and, consequently, their functionalities. In addition to the challenges of controlling the size, size distribution, and volume fraction of nanometer phases, thermodynamic stability conditions limit the choice of constituent materials. This study goes beyond this limitation by showing the possibility of achieving nanocomposites from a bimetallic system, which exhibits complete miscibility under equilibrium conditions. A series of nanocomposite samples with different compositions are synthesized by the co-deposition of 2000-atom Ni-clusters and a flux of Cu-atoms using a novel cluster ion beam deposition system. The retention of the metastable nanostructure is ascertained from atom probe tomography (APT), magnetometry, and magnetotransport studies. APT confirms the presence of nanoscale regions with ≈100 at% Ni. Magnetometry and magnetotransport studies reveal superparamagnetic behavior and magnetoresistance stemming from the single-domain ferromagnetic Ni-clusters embedded in the Cu-matrix. Essentially, the magnetic properties of the nanocomposites can be tailored by the precise control of the Ni concentration. The initial results offer a promising direction for future research on nanocomposites consisting of fully miscible elements.

5.
ACS Nano ; 11(6): 6015-6023, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28514137

RESUMO

Monolayer protected clusters exhibit rich diversity in geometric and electronic structures. However, structure-reactivity relationships in these clusters are rarely explored. In this context, [Ag44(SR)30]4-, where -SR is an alkyl/aryl thiolate, is an interesting system due to its geometrically and electronically closed-shell structures and distinct charge states. We demonstrate that these structural features of [Ag44(SR)30]4- are distinctly manifested in its solution-state reaction with another cluster, [Au25(SR)18]-. Through this reaction, an alloy cluster anion, [Au12Ag32(SR)30]4-, evolves spontaneously as revealed by high-resolution electrospray ionization mass spectrometry. Ultraviolet-visible absorption spectroscopy and density functional theory calculations indicate that [Au12Ag32(SR)30]4- is formed by the substitution of all of the Ag atoms in the innermost icosahedral shell of [Ag44(SR)30]4- and the abundance is attributed to its higher stability due to closed geometric as well as electronic shell structure, similar to the reactant clusters. We further demonstrate that the substitution of metal atoms in the middle dodecahedral shell and the outermost mount sites are also possible, however such substitutions produce AuxAg44-x(SR)30 alloy clusters with geometrically and electronically open shells. Depending on specific sites of substitution, an unexpected superatom-nonsuperatom transition occurs in the distribution of AuxAg44-x(SR)30 alloy clusters formed in this reaction. Our results present a unique example of a structure-reactivity relationship in the metal atom substitution chemistry of monolayer protected clusters, wherein a systematic trend, reflecting the geometric and the electronic shell structures of the reactant as well as the product clusters, was observed.

6.
ACS Nano ; 11(12): 12609-12614, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29166559

RESUMO

Thiolate monolayer, protecting a gold nanocluster, is responsible for its chemical behavior and interaction with the environment. Understanding the parameters that influence the stability and reactivity of the monolayer will enable its precise and controlled functionalization. Here we present a protocol for the investigation of the monolayer reactivity in Au25(SR)18 based on MALDI mass spectrometry and NMR spectroscopy. Thiol exchange reaction between cluster and thiol molecules has been investigated showing how this reaction is affected by several factors (stability of the thiols in solution, the affinity of the sulfur to the gold cluster, intermolecular interactions within the ligand layer, etc.). Furthermore, intercluster thiol exchange has been clarified to occur during collisions between particles without thiol release to the solution. In this reaction, the stability of the thiols in solution and the affinity of the sulfur to the gold for the two thiols do not affect the equilibrium position because for both thiols one S-Au bond is broken and one is formed within the cycle. Importantly, the rate of direct thiol exchange between clusters is comparable to that of the ligand exchange with free thiols. However, the thermodynamic driving force of the two reactions is different, since only the latter involves free thiol species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA