Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2301197120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463218

RESUMO

Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and -1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay-Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration.


Assuntos
Fibroblastos , Cicatrização , Divisão Celular , Movimento Celular , Morfogênese
2.
Bioessays ; 45(6): e2300017, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042438

RESUMO

Constraining collective cell migration in vitro using different types of engineered substrates such as microstructured surfaces or adhesive patterns of different shapes and sizes often leads to the emergence of specific patterns of motion. Recently, analogies between the behavior of cellular assemblies and that of active fluids have enabled significant advances in our understanding of collective cell migration; however, the physiological relevance and potential functional consequences of the resulting migration patterns remain elusive. Here we describe the different patterns of collective cell migration that have been reported in vitro in response to geometrical constraints, explore the in vivo pertinence of the in vitro systems used to impose the geometrical constraints, and discuss the potential physiological ramifications of the collective migration patterns that emerge as a result of physical constraints. We conclude by highlighting key upcoming challenges in the exciting field of constrained collective cell migration.


Assuntos
Movimento Celular , Movimento Celular/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(32): e2201328119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914175

RESUMO

Cellular quiescence is a state of reversible cell cycle arrest that is associated with tissue dormancy. Timely regulated entry into and exit from quiescence is important for processes such as tissue homeostasis, tissue repair, stem cell maintenance, developmental processes, and immunity. However, little is known about processes that control the mechanical adaption to cell behavior changes during the transition from quiescence to proliferation. Here, we show that quiescent human keratinocyte monolayers sustain an actinomyosin-based system that facilitates global cell sheet displacements upon serum-stimulated exit from quiescence. Mechanistically, exposure of quiescent cells to serum-borne mitogens leads to rapid amplification of preexisting contractile sites, leading to a burst in monolayer tension that subsequently drives large-scale displacements of otherwise motility-restricted monolayers. The stress level after quiescence exit correlates with the level of quiescence depth at the time of activation, and a critical stress magnitude must be reached to overcome the cell sheet displacement barrier. The study shows that static quiescent cell monolayers are mechanically poised for motility, and it identifies global stress amplification as a mechanism for overcoming motility restrictions in confined confluent cell monolayers.


Assuntos
Ciclo Celular , Homeostase , Queratinócitos , Ciclo Celular/fisiologia , Divisão Celular , Proliferação de Células , Humanos , Queratinócitos/citologia
4.
Nano Lett ; 24(12): 3631-3637, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38466240

RESUMO

A striking phenomenon of collective cell motion is that they can exhibit a spontaneously emerging wave during epithelia expansions. However, the fundamental mechanism, governing the emergence and its crucial characteristics (e.g., the eigenfrequency and the pattern), remains an enigma. By introducing a mechanochemical feedback loop, we develop a highly efficient discrete vertex model to investigate the spatiotemporal evolution of spreading epithelia. We find both numerically and analytically that expanding cell monolayers display a power-law dependence of wave frequency on the local heterogeneities (i.e., cell density) with a scaling exponent of -1/2. Moreover, our study demonstrates the quantitative capability of the proposed model in capturing distinct X-, W-, and V-mode wave patterns. We unveil that the phase transition between these modes is governed by the distribution of active self-propulsion forces. Our work provides an avenue for rigorous quantitative investigations into the collective motion and pattern formation of cell groups.

5.
FASEB J ; 37(3): e22786, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786724

RESUMO

Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/ß-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/ß-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/ß-catenin signaling in the growth and dissemination of colorectal carcinomas.


Assuntos
Junções Aderentes , Neoplasias do Colo , Humanos , Junções Aderentes/metabolismo , Actinas/metabolismo , beta Catenina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias do Colo/metabolismo , Caderinas/metabolismo
6.
Bull Math Biol ; 86(8): 95, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896328

RESUMO

Epithelial monolayers are some of the best-studied models for collective cell migration due to their abundance in multicellular systems and their tractability. Experimentally, the collective migration of epithelial monolayers can be robustly steered e.g. using electric fields, via a process termed electrotaxis. Theoretically, however, the question of how to design an electric field to achieve a desired spatiotemporal movement pattern is underexplored. In this work, we construct and calibrate an ordinary differential equation model to predict the average velocity of the centre of mass of a cellular monolayer in response to stimulation with an electric field. We use this model, in conjunction with optimal control theory, to derive physically realistic optimal electric field designs to achieve a variety of aims, including maximising the total distance travelled by the monolayer, maximising the monolayer velocity, and keeping the monolayer velocity constant during stimulation. Together, this work is the first to present a unified framework for optimal control of collective monolayer electrotaxis and provides a blueprint to optimally steer collective migration using other external cues.


Assuntos
Movimento Celular , Células Epiteliais , Conceitos Matemáticos , Modelos Biológicos , Células Epiteliais/fisiologia , Células Epiteliais/citologia , Movimento Celular/fisiologia , Animais , Simulação por Computador , Resposta Táctica/fisiologia , Cães , Humanos , Células Madin Darby de Rim Canino
7.
J Math Biol ; 88(3): 32, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407620

RESUMO

Collective cell migration is a multicellular phenomenon that arises in various biological contexts, including cancer and embryo development. 'Collectiveness' can be promoted by cell-cell interactions such as co-attraction and contact inhibition of locomotion. These mechanisms act on cell polarity, pivotal for directed cell motility, through influencing the intracellular dynamics of small GTPases such as Rac1. To model these dynamics we introduce a biased random walk model, where the bias depends on the internal state of Rac1, and the Rac1 state is influenced by cell-cell interactions and chemoattractive cues. In an extensive simulation study we demonstrate and explain the scope and applicability of the introduced model in various scenarios. The use of a biased random walk model allows for the derivation of a corresponding partial differential equation for the cell density while still maintaining a certain level of intracellular detail from the individual based setting.


Assuntos
Quimiotaxia , Crista Neural , Locomoção , Movimento Celular , Comunicação Celular
8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33737392

RESUMO

Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue-the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell-cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed-cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell-cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell-cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix-the geometry of the fiber can generate entirely new behaviors.


Assuntos
Técnicas de Cultura de Células , Movimento Celular , Fenômenos Fisiológicos Celulares , Inibição de Contato , Nanofibras , Matriz Extracelular/metabolismo
9.
Semin Cell Dev Biol ; 120: 66-74, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34275746

RESUMO

The ability to migrate is a fundamental property of animal cells which is essential for development, homeostasis and disease progression. Migrating cells sense and respond to biochemical and mechanical cues by rapidly modifying their intrinsic repertoire of signalling molecules and by altering their force generating and transducing machinery. We have a wealth of information about the chemical cues and signalling responses that cells use during migration. Our understanding of the role of forces in cell migration is rapidly evolving but is still best understood in the context of cells migrating in 2D and 3D environments in vitro. Advances in live imaging of developing embryos combined with the use of experimental and theoretical tools to quantify and analyse forces in vivo, has begun to shed light on the role of mechanics in driving embryonic cell migration. In this review, we focus on the recent studies uncovering the physical basis of embryonic cell migration in vivo. We look at the physical basis of the classical steps of cell migration such as protrusion formation and cell body translocation and review the recent research on how these processes work in the complex 3D microenvironment of a developing organism.


Assuntos
Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Humanos
10.
Breast Cancer Res ; 25(1): 102, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649089

RESUMO

BACKGROUND: Intratumor heterogeneity is a well-established hallmark of cancer that impedes cancer research, diagnosis, and treatment. Previously, we phenotypically sorted human breast cancer cells based on migratory potential. When injected into mice, highly migratory cells were weakly metastatic and weakly migratory cells were highly metastatic. The purpose of this study was to determine whether these weakly and highly migratory cells interact with each other in vitro or in vivo. METHODS: To assess the relationship between heterogeneity in cancer cell migration and metastatic fitness, MDA-MB-231 and SUM159PT triple negative breast cancer cells were phenotypically sorted into highly migratory and weakly migratory subpopulations and assayed separately and in a 1:1 mixture in vitro and in vivo for metastatic behaviors. Unpaired, two-tailed Student's t-tests, Mann-Whitney tests, ordinary, one-way ANOVAs, and Kruskal-Wallis H tests were performed as appropriate with p < 0.05 as the cutoff for statistical significance. RESULTS: When highly and weakly migratory cells are co-seeded in mixed spheroids, the weakly migratory cells migrated farther than weakly migratory only spheroids. In mixed spheroids, leader-follower behavior occurred with highly migratory cells leading the weakly migratory cells in migration strands. When cell suspensions of highly migratory, weakly migratory, or a 1:1 mixture of both subpopulations were injected orthotopically into mice, both the mixed cell suspensions and weakly migratory cells showed significant distal metastasis, but the highly migratory cells did not metastasize significantly to any location. Notably, significantly more distal metastasis was observed in mice injected with the 1:1 mixture compared to either subpopulation alone. CONCLUSIONS: This study suggests that weakly migratory cells interact with highly migratory cells in a commensal fashion resulting in increased migration and metastasis. Together, these findings indicate that cancer cell subpopulation migration ability does not correlate with metastatic potential and that cooperation between highly migratory and weakly migratory subpopulations can enhance overall metastatic fitness.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Suspensões , Simbiose , Movimento Celular , Bioensaio
11.
EMBO J ; 38(14): e99299, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304629

RESUMO

The metastatic progression of cancer is a multi-step process initiated by the local invasion of the peritumoral stroma. To identify the mechanisms underlying colorectal carcinoma (CRC) invasion, we collected live human primary cancer specimens at the time of surgery and monitored them ex vivo. This revealed that conventional adenocarcinomas undergo collective invasion while retaining their epithelial glandular architecture with an inward apical pole delineating a luminal cavity. To identify the underlying mechanisms, we used microscopy-based assays on 3D organotypic cultures of Caco-2 cysts as a model system. We performed two siRNA screens targeting Rho-GTPases effectors and guanine nucleotide exchange factors. These screens revealed that ROCK2 inhibition triggers the initial leader/follower polarization of the CRC cell cohorts and induces collective invasion. We further identified FARP2 as the Rac1 GEF necessary for CRC collective invasion. However, FARP2 activation is not sufficient to trigger leader cell formation and the concomitant inhibition of Myosin-II is required to induce invasion downstream of ROCK2 inhibition. Our results contrast with ROCK pro-invasive function in other cancers, stressing that the molecular mechanism of metastatic spread likely depends on tumour types and invasion mode.


Assuntos
Adenocarcinoma/metabolismo , Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/metabolismo , Quinases Associadas a rho/metabolismo , Adenocarcinoma/genética , Animais , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Organoides/citologia , Organoides/metabolismo , RNA Interferente Pequeno/farmacologia , Quinases Associadas a rho/genética
12.
Development ; 147(10)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444428

RESUMO

Over the past 5 years, several studies have begun to uncover the links between the classical signal transduction pathways and the physical mechanisms that are used to sculpt branched tissues. These advances have been made, in part, thanks to innovations in live imaging and reporter animals. With modern research tools, our conceptual models of branching morphogenesis are rapidly evolving, and the differences in branching mechanisms between each organ are becoming increasingly apparent. Here, we highlight four branched epithelia that develop at different spatial scales, within different surrounding tissues and via divergent physical mechanisms. Each of these organs has evolved to employ unique branching strategies to achieve a specialized final architecture.


Assuntos
Epitélio/metabolismo , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Feminino , Humanos , Rim/embriologia , Rim/crescimento & desenvolvimento , Rim/metabolismo , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/embriologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Glândulas Salivares/embriologia , Glândulas Salivares/crescimento & desenvolvimento , Glândulas Salivares/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(11): 5655-5663, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123100

RESUMO

Epithelial tissues mechanically deform the surrounding extracellular matrix during embryonic development, wound repair, and tumor invasion. Ex vivo measurements of such multicellular tractions within three-dimensional (3D) biomaterials could elucidate collective dissemination during disease progression and enable preclinical testing of targeted antimigration therapies. However, past 3D traction measurements have been low throughput due to the challenges of imaging and analyzing information-rich 3D material deformations. Here, we demonstrate a method to profile multicellular clusters in a 96-well-plate format based on spatially heterogeneous contractile, protrusive, and circumferential tractions. As a case study, we profile multicellular clusters across varying states of the epithelial-mesenchymal transition, revealing a successive loss of protrusive and circumferential tractions, as well as the formation of localized contractile tractions with elongated cluster morphologies. These cluster phenotypes were biochemically perturbed by using drugs, biasing toward traction signatures of different epithelial or mesenchymal states. This higher-throughput analysis is promising to systematically interrogate and perturb aberrant mechanobiology, which could be utilized with human-patient samples to guide personalized therapies.


Assuntos
Movimento Celular , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal , Alicerces Teciduais/química , Fenômenos Biomecânicos , Linhagem Celular , Colágeno/química , Fibroínas/química , Humanos , Hidrogéis/química , Fenótipo , Medicina de Precisão/métodos , Cultura Primária de Células/métodos , Esferoides Celulares/fisiologia
14.
Nano Lett ; 22(1): 302-310, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939414

RESUMO

The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell-cell adhesion strength at the cellular and molecular level. Here, we establish DNA nanotechnology as a tool to control cell-cell adhesion of epithelial cells. We designed a DNA-E-cadherin hybrid system consisting of complementary DNA strands covalently bound to a truncated E-cadherin with a modified extracellular domain. DNA sequence design allows to tune the DNA-E-cadherin hybrid molecular binding strength, while retaining its cytosolic interactions and downstream signaling capabilities. The DNA-E-cadherin hybrid facilitates strong and reversible cell-cell adhesion in E-cadherin deficient cells by forming mechanotransducive adherens junctions. We assess the direct influence of cell-cell adhesion strength on intracellular signaling and collective cell dynamics. This highlights the scope of DNA nanotechnology as a precision technology to study and engineer cell collectives.


Assuntos
Junções Aderentes , Caderinas , Caderinas/genética , Adesão Celular , DNA/metabolismo , Células Epiteliais/metabolismo
15.
Dev Biol ; 477: 177-190, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038742

RESUMO

Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.


Assuntos
Nadadeiras de Animais/embriologia , Células Epidérmicas/fisiologia , Epiderme/embriologia , Proteínas Hedgehog/fisiologia , Morfogênese , Proteínas de Peixe-Zebra/fisiologia , Nadadeiras de Animais/citologia , Nadadeiras de Animais/metabolismo , Animais , Benzamidas/farmacologia , Movimento Celular , Epiderme/metabolismo , Receptor Patched-2/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/fisiologia , Peixe-Zebra
16.
Proc Natl Acad Sci U S A ; 116(35): 17298-17306, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413194

RESUMO

Migratory cells transition between dispersed individuals and multicellular collectives during development, wound healing, and cancer. These transitions are associated with coordinated behaviors as well as arrested motility at high cell densities, but remain poorly understood at lower cell densities. Here, we show that dispersed mammary epithelial cells organize into arrested, fractal-like clusters at low density in reduced epidermal growth factor (EGF). These clusters exhibit a branched architecture with a fractal dimension of [Formula: see text], reminiscent of diffusion-limited aggregation of nonliving colloidal particles. First, cells display diminished motility in reduced EGF, which permits irreversible adhesion upon cell-cell contact. Subsequently, leader cells emerge that guide collectively migrating strands and connect clusters into space-filling networks. Thus, this living system exhibits gelation-like arrest at low cell densities, analogous to the glass-like arrest of epithelial monolayers at high cell densities. We quantitatively capture these behaviors with a jamming-like phase diagram based on local cell density and EGF. These individual to collective transitions represent an intriguing link between living and nonliving systems, with potential relevance for epithelial morphogenesis into branched architectures.


Assuntos
Comunicação Celular , Movimento Celular , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Contagem de Células , Linhagem Celular , Células Epiteliais/citologia , Feminino , Humanos , Glândulas Mamárias Humanas/citologia
17.
Proc Natl Acad Sci U S A ; 116(16): 7867-7872, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923113

RESUMO

The ability of primary tumor cells to invade into adjacent tissues, followed by the formation of local or distant metastasis, is a lethal hallmark of cancer. Recently, locomoting clusters of tumor cells have been identified in numerous cancers and associated with increased invasiveness and metastatic potential. However, how the collective behaviors of cancer cells are coordinated and their contribution to cancer invasion remain unclear. Here we show that collective invasion of breast cancer cells is regulated by the energetic statuses of leader and follower cells. Using a combination of in vitro spheroid and ex vivo organoid invasion models, we found that cancer cells dynamically rearrange leader and follower positions during collective invasion. Cancer cells invade cooperatively in denser collagen matrices by accelerating leader-follower switching thus decreasing leader cell lifetime. Leader cells exhibit higher glucose uptake than follower cells. Moreover, their energy levels, as revealed by the intracellular ATP/ADP ratio, must exceed a threshold to invade. Forward invasion of the leader cell gradually depletes its available energy, eventually leading to leader-follower transition. Our computational model based on intracellular energy homeostasis successfully recapitulated the dependence of leader cell lifetime on collagen density. Experiments further supported model predictions that decreasing the cellular energy level by glucose starvation decreases leader cell lifetime whereas increasing the cellular energy level by AMP-activated kinase (AMPK) activation does the opposite. These findings highlight coordinated invasion and its metabolic regulation as potential therapeutic targets of cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Movimento Celular/fisiologia , Metabolismo Energético/fisiologia , Invasividade Neoplásica/fisiopatologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Humanos , Espaço Intracelular/metabolismo
18.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293228

RESUMO

Metastasis is a major complication of cancer treatments. Studies of the migratory behavior of cells are needed to investigate and control metastasis. Metastasis is based on the epithelial-mesenchymal transition, in which epithelial cells acquire mesenchymal properties and the ability to leave the population to invade other regions of the body. In collective migration, highly migratory "leader" cells are found at the front of the cell population, as well as cells that "follow" these leader cells. However, the interactions between these cells are not well understood. We examined the migration properties of leader-follower cells during collective migration at the single-cell level. Different mixed ratios of "leader" and "follower" cell populations were compared. Collective migration was quantitatively analyzed from two perspectives: cell migration within the colony and migration of the entire colony. Analysis of the effect of the cell mixing ratio on migration behavior showed that a small number of highly migratory cells enhanced some of the migratory properties of other cells. The results provide useful insights into the cellular interactions in collective cell migration of cancer cell invasion.


Assuntos
Rastreamento de Células , Neoplasias , Humanos , Movimento Celular , Transição Epitelial-Mesenquimal , Comunicação Celular , Neoplasias/patologia
19.
Semin Cell Dev Biol ; 93: 55-68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859995

RESUMO

Cell migration is essential for a wide range of biological processes such as embryo morphogenesis, wound healing, regeneration, and also in pathological conditions, such as cancer. In such contexts, cells are required to migrate as individual entities or as highly coordinated collectives, both of which requiring cells to respond to molecular and mechanical cues from their environment. However, whilst the function of chemical cues in cell migration is comparatively well understood, the role of tissue mechanics on cell migration is just starting to be studied. Recent studies suggest that the dynamic tuning of the viscoelasticity within a migratory cluster of cells, and the adequate elastic properties of its surrounding tissues, are essential to allow efficient collective cell migration in vivo. In this review we focus on the role of viscoelasticity in the control of collective cell migration in various cellular systems, mentioning briefly some aspects of single cell migration. We aim to provide details on how viscoelasticity of collectively migrating groups of cells and their surroundings is adjusted to ensure correct morphogenesis, wound healing, and metastasis. Finally, we attempt to show that environmental viscoelasticity triggers molecular changes within migrating clusters and that these new molecular setups modify clusters' viscoelasticity, ultimately allowing them to migrate across the challenging geometries of their microenvironment.


Assuntos
Movimento Celular , Humanos , Termodinâmica , Viscosidade
20.
J Biol Chem ; 295(8): 2495-2505, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31937589

RESUMO

Homeostasis in healthy tissues strongly relies on cell-to-cell adhesion and cell-to-extracellular matrix interactions. For instance, normal epithelial cells maintain tissue structure by adhering to each other and to the extracellular matrix. The proteins that mediate these distinct interactions are collectively called cell adhesion molecules and are divided into four major groups: cadherins, integrins, selectins, and immunoglobulins. They not only physically anchor cells, but also critically integrate signaling between the extracellular microenvironment and cells. These signals include biochemical cues, as adhesion proteins can both act as ligand-activated receptors and activate mechanotransduction triggered by changes in the physical environment. Molecular mechanisms related to cell adhesion signaling have been extensively studied, especially because mutations and changes in expression of these proteins, particularly cadherins and integrins, are frequently associated with diseases ranging from developmental intellectual disability to cancer. In fact, two major hallmarks of cancer, loss of cell-to-cell adhesion and anchorage-independent growth, are both dependent on cell adhesion molecules. Despite many studies elucidating the relationships between malignant transformation and metastasis and cellular adhesion processes, several areas still await exploration. Here, we highlight recently discovered roles of adhesion molecules in collective cancer cell migration and discuss the utility of three-dimensional models in studying cell-cell adhesion. We also describe recent therapeutic approaches targeting adhesion molecules.


Assuntos
Movimento Celular , Neoplasias/patologia , Animais , Adesão Celular , Comunicação Celular , Transformação Celular Neoplásica/patologia , Humanos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA