Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ecol Lett ; 27(8): e14492, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136137

RESUMO

A rapidly warming climate is driving changes in biodiversity worldwide, and its impact on insect communities is critical given their outsized role in ecosystem function and services. We use a long-term dataset of North American bumble bee species occurrences to determine whether the community temperature index (CTI), a measure of the balance of warm- and cool-adapted species in a community, has increased given warming temperatures. CTI has increased by an average of 0.99°C in strong association with warming maximum summer temperatures over the last 30 years with the areas exhibiting the largest increases including mid- to high latitudes as well as low and high elevations-areas relatively shielded from other intensive global changes. CTI shifts have been driven by the decline of cold-adapted species and increases in warm-adapted species within bumble bee communities. Our results show the pervasive impacts and ecological implications warming temperatures pose to insects.


Assuntos
Estações do Ano , Animais , Abelhas/fisiologia , América do Norte , Biodiversidade , Temperatura , Aquecimento Global , Mudança Climática
2.
Glob Chang Biol ; 30(8): e17481, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161269

RESUMO

Rising global temperatures present unprecedented challenges to marine ecosystems, demanding a profound understanding of their ecological dynamics for effective conservation strategies. Over a comprehensive macroalgal assessment spanning three decades, we investigated the spatiotemporal evolution of shallow-water benthic communities in the southern Bay of Biscay, uncovering climate-resilient areas amidst the ongoing phase shift in the region. Our investigation identified seven locations serving as potential climate refugia, where cold-affinity, canopy-forming macroalgal species persisted and community structure was similar to that observed in 1991. We unveiled a clear association between the emergence of these refugia, sea surface temperature (SST), and the Community Temperature Index, positioning SST as a significant driver of the observed phase shift in the region. Warming processes, defined as tropicalization (increase of warm-affinity species) and deborealization (decrease of cold-affinity species), were prominent outside refugia. In contrast, cooling processes, defined as borealization (increase of cold-affinity species) and detropicalization (decrease of warm-affinity species), prevailed inside refugia. Refugia exhibited approximately 35% lower warming processes compared to non-refuge areas. This resulted in a dominance of warm-affinity species outside refugia, contrasting with the stability observed within refugia. The persistence of canopy-forming species in refuge areas significantly contributed to maintaining ecosystem diversity and stability. These findings underscored the pivotal role of climate refugia in mitigating climate-driven impacts. Prioritizing the protection and restoration of these refugia can foster resilience and ensure the preservation of biodiversity for future generations. Our study illustrates the importance of refining our understanding of how marine ecosystems respond to climate change, offering actionable insights essential for informed conservation strategies and sustainable environmental management.


Assuntos
Mudança Climática , Refúgio de Vida Selvagem , Alga Marinha , Temperatura , Alga Marinha/fisiologia , Baías , Ecossistema , Biodiversidade
3.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34155095

RESUMO

As climate change unfolds, changes in population dynamics and species distribution ranges are expected to fundamentally reshuffle communities worldwide. Yet, a comprehensive understanding of the mechanisms and extent of community reorganization remains elusive. This is particularly true in riverine systems, which are simultaneously exposed to changing temperature and streamflow, and where land-use change continues to be a major driver of biodiversity loss. Here, we use the most comprehensive compilation of fish abundance time series to date to provide a global synthesis of climate- and LU-induced effects on riverine biota with respect to changes in species thermal and streamflow affinities. We demonstrate that fish communities are increasingly dominated by thermophilic (warm-water) and limnophilic (slow-water) species. Despite being consistent with trends in water temperature and streamflow observed over recent decades, these community changes appear largely decoupled from each other and show wide spatial variation. We further reveal a synergy among climate- and land use-related drivers, such that community thermophilization is heightened in more human-modified systems. Importantly, communities in which species experience thermal and flow regimes that approach or exceed their tolerance thresholds (high community sensitivity), as well as species-poor communities (low community resilience), also display faster rates of compositional change. This research illustrates that quantifying vulnerability of riverine systems to climate change requires a broadening from a narrower thermal focus to more integrative approaches that account for the spatially varying and multifaceted sensitivity of riverine organisms to the interactive effects of water temperature, hydrology, and other anthropogenic changes.


Assuntos
Mudança Climática , Peixes/fisiologia , Internacionalidade , Rios , Animais , Geografia , Modelos Teóricos , Temperatura , Fatores de Tempo , Movimentos da Água
4.
Conserv Biol ; 37(5): e14134, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37259595

RESUMO

Conservation of biodiversity relies heavily on protected areas but their role and effectiveness under a warming climate is still debated. We estimated the climate-driven changes in the temperature niche compositions of bird communities inside and outside protected areas in southern Canada. We hypothesized that communities inside protected areas include a higher proportion of cold-dwelling species than communities outside protected areas. We also hypothesized that communities shift to warm-dwelling species more slowly inside protected areas than outside. To study community changes, we used large-scale and long-term (1997-2019) data from the Breeding Bird Survey of Canada. To describe the temperature niche compositions of bird communities, we calculated the community temperature index (CTI) annually for each community inside and outside protected areas. Generally, warm-dwelling species dominated communities with high CTI values. We modeled temporal changes in CTI as a function of protection status with linear mixed-effect models. We also determined which species contributed most to the temporal changes in CTI with a jackknife approach. As anticipated, CTI was lower inside protected areas than outside. However, contrary to our expectation, CTI increased faster over time inside than outside protected areas and warm-dwelling species contributed most to CTI change inside protected areas. These results highlight the ubiquitous impacts of climate warming. Currently, protected areas can aid cold-dwelling species by providing habitat, but as the climate warms, the communities' temperature compositions inside protected areas quickly begin to resemble those outside protected areas, suggesting that protected areas delay the impacts of climate warming on cold-dwelling species.


Cambios en la composición del nicho térmico dentro y fuera de las áreas protegidas bajo el calentamiento climático Resumen La conservación de la biodiversidad depende mucho de las áreas protegidas, aunque todavía se debate su papel y efectividad bajo el calentamiento climático. Estimamos los cambios causados por el clima en la composición de los nichos térmicos de las comunidades de aves dentro y fuera de las áreas protegidas al sur de Canadá. Supusimos que las comunidades dentro de las áreas protegidas incluyen una proporción mayor de especies de zonas frías que las comunidades fuera de las áreas protegidas. También supusimos que las comunidades cambian a especies de zonas cálidas de forma más lenta dentro de las áreas protegidas que fuera de ellas. Usamos datos de gran escala y largo plazo (1997-2019) del Censo de Aves Reproductoras de Canadá para estudiar los cambios comunitarios. Calculamos el índice anual de temperatura comunitaria (ITC) para cada comunidad dentro y fuera de las áreas protegidas para describir las composiciones del nicho térmico de las comunidades de aves. En general, las especies de zonas cálidas dominaron las comunidades con valores altos del ITC. Simulamos los cambios temporales en el ITC como función del estado de protección mediante modelos lineales de efecto mixto. También determinamos cuáles especies contribuyen más a los cambios temporales en el ITC con un enfoque jackknife. Como lo anticipamos, el ITC fue menor dentro de las áreas protegidas que afuera. Sin embargo, contrario a nuestra hipótesis, el ITC incrementó más rápido con el tiempo dentro de las áreas protegidas y las especies de zonas cálidas contribuyeron más al cambio en el ITC también dentro de las áreas protegidas. Estos resultados resaltan el impacto universal del calentamiento climático. Actualmente, las áreas protegidas pueden auxiliar a las especies de zonas frías al proporcionarles hábitats, pero conforme la temperatura aumenta, las composiciones térmicas de las comunidades dentro de las áreas protegidas se asemejan rápidamente a aquellas fuera de las áreas protegidas, lo que sugiere que las áreas protegidas retrasan el impacto del calentamiento climático sobre las especies de zonas frías.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Temperatura , Clima , Ecossistema , Biodiversidade , Aves
5.
Ecol Lett ; 24(4): 708-718, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33583096

RESUMO

Understanding how community composition is reshaped by changing climate is important for interpreting and predicting patterns of community assembly through time or across space. Community composition often does not perfectly correspond to expectations from current environmental conditions, leading to community-climate mismatches. Here, we combine data analysis and theory development to explore how species climate response curves affect the community response to climate change. We show that strong mismatches between community and climate can appear in the absence of demographic delays or limited species pools. Communities simulated using species response curves showed temporal changes of similar magnitude to those observed in natural communities of fishes and plankton, suggesting no overall delays in community change despite substantial unexplained variation from community assembly and other processes. Our approach can be considered as a null model that will be important to use when interpreting observed community responses to climate change and variability.


Assuntos
Mudança Climática , Peixes , Animais , Ecossistema , Plâncton
6.
Ecol Lett ; 24(5): 950-957, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33694308

RESUMO

Habitat fragmentation may present a major impediment to species range shifts caused by climate change, but how it affects local community dynamics in a changing climate has so far not been adequately investigated empirically. Using long-term monitoring data of butterfly assemblages, we tested the effects of the amount and distribution of semi-natural habitat (SNH), moderated by species traits, on climate-driven species turnover. We found that spatially dispersed SNH favoured the colonisation of warm-adapted and mobile species. In contrast, extinction risk of cold-adapted species increased in dispersed (as opposed to aggregated) habitats and when the amount of SNH was low. Strengthening habitat networks by maintaining or creating stepping-stone patches could thus allow warm-adapted species to expand their range, while increasing the area of natural habitat and its spatial cohesion may be important to aid the local persistence of species threatened by a warming climate.


Assuntos
Borboletas , Mudança Climática , Adaptação Fisiológica , Animais , Ecossistema , Dinâmica Populacional
7.
Conserv Biol ; 35(3): 834-845, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33009673

RESUMO

Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993-2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD ). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming.


Beneficios de las Áreas Protegidas para las Aves Acuáticas No Reproductoras que Están Ajustando su Distribución Debido al Calentamiento Climático Resumen El calentamiento climático está generando cambios en la distribución y en la composición comunitaria de las especies. Muchas de ellas tienen una deuda climática, es decir, los cambios en la distribución se atrasan con respecto a los cambios en las isoclinas térmicas. Dentro de las áreas protegidas (APs), los cambios comunitarios como respuesta al calentamiento climático pueden facilitarse mediante tasas mayores de colonización por especies de climas cálidos, pero también pueden mitigarse al reducir las tasas de extirpación de las especies de climas fríos. Se requiere una evaluación de la importancia relativa de los procesos de colonización-extirpación para orientar las estrategias de conservación que buscan la reducción de la deuda climática y la conservación de las especies. Analizamos las dinámicas de colonización-extirpación que participan en los cambios comunitarios como respuesta al clima dentro y fuera de las APs. Para realizar lo anterior, usamos datos tomados durante 25 años de la presencia de aves acuáticas no reproductoras en el Paleártico occidental (97 especies, 7,071 sitios, 39 países, 1993-2017). Usamos un marco de trabajo del índice de temperatura comunitaria (ITC) basado en las afinidades térmicas de las especies para así investigar la rotación de especies inducida por el incremento en la temperatura. Determinamos si el ajuste térmico en la comunidad estuvo asociado con la colonización por especies de climas cálidos o con la extirpación de especies de climas fríos al modelar el cambio mediante una desviación estándar del ITC (ITCDS ). Con los modelos lineales de efectos mixtos investigamos si las comunidades dentro de las APs tenían una deuda climática más baja y patrones diferentes de cambio comunitario que las comunidades localizadas fuera de las APs. Con la combinación del ITC y deL ITCDS , las comunidades dentro de las APs tuvieron más especies, una mayor colonización, una menor extirpación y una deuda climática más baja (16%) que las comunidades fuera de las APs. Por lo tanto, nuestros resultados sugieren que las APs facilitan dos procesos independientes que moldean las dinámicas comunitarias y mantienen la biodiversidad. Sin embargo, el ajuste comunitario no fue lo suficientemente rápido para mantener el paso de los grandes incrementos en la temperatura de las regiones central y noreste del Paleártico occidental. Nuestros resultados resaltan el potencial que tiene la combinación de las medidas del ITC y del ICTDS para mejorar el entendimiento de los patrones de colonización-extirpación causados por el calentamiento climático.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Biodiversidade , Aves , Ecossistema , Temperatura
8.
Conserv Biol ; 34(4): 966-976, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31868276

RESUMO

Although the impacts of climate and land-use changes on biodiversity have been widely documented, their joint effects remain poorly understood. We evaluated how nonbreeding waterbird communities adjust to climate warming along a gradient of land-use change. Using midwinter waterbird counts (132 species) at 164 major nonbreeding sites in 22 Mediterranean countries, we assessed the changes in species composition from 1991 to 2010, relative to thermal niche position and breadth, in response to regional and local winter temperature anomalies and conversion of natural habitats. We observed a low-level, nonsignificant community adjustment to the temperature increase where natural habitat conversion occurred. At the sites affected by natural habitat conversion, the relative increase of warm-dwelling species in response to climate warming was 6 times lower and the relative species decline was 3 times higher than in the sites without natural habitat conversion. We found no evidence of community adjustment to climate warming when natural habitat conversion was >5% over 15 years. This strong negative effect suggests an antagonistic interaction between climate warming and habitat change. These results underline the importance of habitat conservation in community adjustment to climate warming.


Efecto Antagonista de la Conversión de Hábitats Naturales sobre el Ajuste Comunitario ante el Calentamiento Climático en Aves Acuáticas No Reproductoras Resumen Aunque el impacto de los cambios del clima y del uso de suelo sobre la biodiversidad está ampliamente documentado, los efectos conjuntos de estos cambios todavía no están entendidos del todo. Evaluamos cómo las comunidades no reproductoras de aves acuáticas se ajustan al calentamiento climático a la par de un gradiente de cambio de uso de suelo. Usamos conteos de aves acuáticas (132 especies) realizados en pleno invierno en 164 sitios no reproductores importantes en 22 países mediterráneos, evaluamos los cambios en la composición entre 1991 y 2010 en relación a la posición termal y a la amplitud del nicho en respuesta a las anomalías en la temperatura invernal local y a la conversión de hábitats naturales. Observamos un ajuste comunitario no significativo de bajo nivel al incremento de la temperatura en los lugares en donde ocurrió la conversión del hábitat natural. En los sitios afectados por la conversión del hábitat natural, el incremento relativo de las especies de hábitats cálidos como respuesta al calentamiento climático fue seis veces más bajo y la declinación relativa de especies fue tres veces más alto que en los sitios sin conversión del hábitat natural. No encontramos evidencias del ajuste comunitario al calentamiento climático cuando la conversión del hábitat natural fue >5% durante 15 años. Este efecto negativo pronunciado sugiere una interacción antagonista entre el calentamiento climático y el cambio del hábitat. Estos resultados remarcan la importancia que la conservación del hábitat tiene para el ajuste comunitario ante el calentamiento climático.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Biodiversidade , Clima , Ecossistema
9.
J Environ Manage ; 256: 109919, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989974

RESUMO

Grasslands are among the most species-rich ecosystems in Europe. However, their biodiversity has become increasingly threatened by land-use and climate change. Here, we analyze Orthoptera assemblage shifts between 1996 and 2017 across three grassland types in the Black Forest (SW Germany) (N = 63): (i) formerly managed wet grasslands which have been frequently abandoned in recent decades (WET) (N = 15); (ii) common pastures which are still traditionally managed by rough grazing (COMMON) (N = 29), and (iii) mesic grasslands which have recently suffered from land-use intensification (MESIC) (N = 19). Both annual and summer temperatures increased during the study period. Orthoptera assemblages strongly responded to the altered environmental conditions in the grasslands. However, effects differed clearly among grassland types. Despite a strong increase in overall species richness in common pastures, neither the Community Farmland Index (CFI) nor the Community Temperature Index (CTI) had changed. In the two other grassland types, the CFI decreased and the CTI increased. The CFI - established here for Orthoptera - helped to disentangle the effects of climate and land-use change on Orthoptera assemblage composition. Based on our study, climate warming has led to biotic homogenization of the Orthoptera assemblages of wet grasslands affected by abandonment, and mesic grasslands affected by land-use intensification towards a dominance of more widespread species. In contrast, common pastures characterized by a high heterogeneity and low-intensity management were more resilient to the effects of climate warming.


Assuntos
Pradaria , Ortópteros , Animais , Biodiversidade , Ecossistema , Europa (Continente) , Alemanha
10.
Proc Biol Sci ; 284(1856)2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28592671

RESUMO

Shifts in the abundance and location of species are restructuring life on the Earth, presenting the need to build resilience into our natural systems. Here, we tested if protection from fishing promotes community resilience in temperate reef communities undergoing rapid warming in Tasmania. Regardless of protection status, we detected a signature of warming in the brown macroalgae, invertebrates and fishes, through increases in the local richness and abundance of warm-affinity species. Even so, responses in protected communities diverged from exploited communities. At the local scale, the number of cool-affinity fishes and canopy-forming algal species increased following protection, even though the observation window fell within a period of warming. At the same time, exploited communities gained turf algal and sessile invertebrate species. We further found that the recovery of predator populations following protection leads to marked declines in mobile invertebrates-this trend could be incorrectly attributed to warming without contextual data quantifying community change across trophic levels. By comparing long-term change in exploited and protected reefs, we empirically demonstrate the role of biological interactions in both facilitating and resisting climate-related biodiversity change. We further highlight the potential for trophic interactions to alter the progression of both range expansions and contractions.


Assuntos
Biodiversidade , Mudança Climática , Recifes de Corais , Animais , Peixes , Invertebrados , Phaeophyceae , Tasmânia
11.
Glob Chang Biol ; 23(6): 2218-2229, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27626183

RESUMO

The spatial tracking of climatic shifts is frequently reported as a biodiversity response to climatic change. However, species' range shifts are often idiosyncratic and inconsistent with climatic shift predictions. At the community scale, this discrepancy can be measured by comparing the spatial shift in the relative composition of cold- vs. warm-adapted species in a local assemblage [the community temperature index (CTI)] with the spatial shift in temperature isotherms. While the local distribution of climate change velocity is a promising approach to downscaling climate change pressure and responses, CTI velocity has only been investigated on a continental or national scale. In this study, we coupled French Breeding Bird Survey data, collected from 2133 sites monitored between 2001 and 2012, with climatic data in order to estimate the local magnitude and direction of breeding season temperature shift, CTI shift, and their spatiotemporal divergence - the local climatic debt. We also tested whether landscape characteristics that are known to affect climate velocity and spatial tracking of climate change mediated the climatic debt on the local scale. We found a clear spatial structure, together with heterogeneity in both temperature and CTI spatial shifts. Local climatic debt decreased as the elevation, habitat diversity, and the naturalness of the landscape increased. These results suggest the complementary effects of the local topographic patterns sheltering more diverse microclimates and the increasing permeability of natural and diversified landscape. Our findings suggest that a more nuanced evaluation of spatial variability in climatic and biotic shifts is necessary in order to properly describe biodiversity responses to climate change rather than the oversimplified descriptions of uniform poleward shifts.


Assuntos
Biodiversidade , Aves , Mudança Climática , Ecossistema , Animais , Estações do Ano
12.
Glob Chang Biol ; 23(6): 2241-2249, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27685981

RESUMO

Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late.


Assuntos
Biodiversidade , Aves , Mudança Climática , Animais , Clima , Conservação dos Recursos Naturais , Finlândia , Humanos
13.
Glob Chang Biol ; 23(6): 2272-2283, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28073167

RESUMO

Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation.


Assuntos
Aves , Borboletas , Mudança Climática , Animais , Clima , Humanos , Dinâmica Populacional , Temperatura
14.
Bioscience ; 67(2): 134-146, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596615

RESUMO

Reporting progress against targets for international biodiversity agreements is hindered by a shortage of suitable biodiversity data. We describe a cost-effective system involving Reef Life Survey citizen scientists in the systematic collection of quantitative data covering multiple phyla that can underpin numerous marine biodiversity indicators at high spatial and temporal resolution. We then summarize the findings of a continental- and decadal-scale State of the Environment assessment for rocky and coral reefs based on indicators of ecosystem state relating to fishing, ocean warming, and invasive species and describing the distribution of threatened species. Fishing impacts are widespread, whereas substantial warming-related change affected some regions between 2005 and 2015. Invasive species are concentrated near harbors in southeastern Australia, and the threatened-species index is highest for the Great Australian Bight and Tasman Sea. Our approach can be applied globally to improve reporting against biodiversity targets and enhance public and policymakers' understanding of marine biodiversity trends.

15.
J Anim Ecol ; 85(1): 251-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26521706

RESUMO

Insect responses to recent climate change are well documented, but the role of resource specialization in determining species vulnerability remains poorly understood. Uncovering local ecological effects of temperature change with high-quality, standardized data provides an important first opportunity for predictions about responses of resource specialists, and long-term time series are essential in revealing these responses. Here, we investigate temperature-related changes in local insect communities, using a sampling site with more than a quarter-million records from two decades (1992-2009) of full-season, quantitative light trapping of 1543 species of moths and beetles. We investigated annual as well as long-term changes in fauna composition, abundance and phenology in a climate-related context using species temperature affinities and local temperature data. Finally, we explored these local changes in the context of dietary specialization. Across both moths and beetles, temperature affinity of specialists increased through net gain of hot-dwelling species and net loss of cold-dwelling species. The climate-related composition of generalists remained constant over time. We observed an increase in species richness of both groups. Furthermore, we observed divergent phenological responses between cold- and hot-dwelling species, advancing and delaying their relative abundance, respectively. Phenological advances were particularly pronounced in cold-adapted specialists. Our results suggest an important role of resource specialization in explaining the compositional and phenological responses of insect communities to local temperature increases. We propose that resource specialists in particular are affected by local temperature increase, leading to the distinct temperature-mediated turnover seen for this group. We suggest that the observed increase in species number could have been facilitated by dissimilar utilization of an expanded growing season by cold- and hot-adapted species, as indicated by their oppositely directed phenological responses. An especially pronounced advancement of cold-adapted specialists suggests that such phenological advances might help minimize further temperature-induced loss of resource specialists. Although limited to a single study site, our results suggest several local changes in the insect fauna in concordance with expected change of larger-scale temperature increases.


Assuntos
Biodiversidade , Mudança Climática , Besouros/fisiologia , Mariposas/fisiologia , Animais , Dinamarca , Estações do Ano , Temperatura
16.
Glob Chang Biol ; 21(2): 572-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25322929

RESUMO

Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.


Assuntos
Distribuição Animal , Aves/fisiologia , Mudança Climática , Adaptação Fisiológica , Animais , Canadá , México , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie , Fatores de Tempo , Estados Unidos
17.
J Anim Ecol ; 84(4): 943-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25757576

RESUMO

Climate change is reported to have caused widespread changes to species' populations and ecological communities. Warming has been associated with population declines in long-distance migrants and habitat specialists, and increases in southerly distributed species. However, the specific climatic drivers behind these changes remain undescribed. We analysed annual fluctuations in the abundance of 59 breeding bird species in England over 45 years to test the effect of monthly temperature and precipitation means upon population trends. Strong positive correlations between population growth and both winter and breeding season temperature were identified for resident and short-distance migrants. Lagged correlations between population growth and summer temperature and precipitation identified for the first time a widespread negative impact of hot, dry summer weather. Resident populations appeared to increase following wet autumns. Populations of long-distance migrants were negatively affected by May temperature, consistent with a potential negative effect of phenological mismatch upon breeding success. There was evidence for some nonlinear relationships between monthly weather variables and population growth. Habitat specialists and cold-associated species showed consistently more negative effects of higher temperatures than habitat generalists and southerly distributed species associated with warm temperatures. Results suggest that previously reported changes in community composition represent the accumulated effects of spring and summer warming. Long-term population trends were more significantly correlated with species' sensitivity to temperature than precipitation, suggesting that warming has had a greater impact on population trends than changes in precipitation. Months where there had been the greatest warming were the most influential drivers of long-term change. There was also evidence that species with the greatest sensitivity to extremes of precipitation have tended to decline. Our results provide novel insights about the impact of climate change on bird communities. Significant lagged effects highlight the potential for altered species' interactions to drive observed climate change impacts, although some community changes may have been driven by more immediate responses to warming. In England, resident and short-distance migrant populations have increased in response to climate change, but potentially at the expense of long-distance migrants, habitat specialists and cold-associated species.


Assuntos
Migração Animal , Aves/fisiologia , Mudança Climática , Chuva , Temperatura , Animais , Ecossistema , Inglaterra , Dinâmica Populacional , Estações do Ano
18.
Mar Environ Res ; 195: 106351, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219379

RESUMO

Global warming is triggering significant shifts in temperate macroalgal communities worldwide, favoring small, warm-affinity species over large canopy-forming, cold-affinity species. The Cantabrian Sea, a region acutely impacted by climate change, is also witnessing this shift. This study delved into the impacts of increasing sea surface temperature on the subtidal macroalgal communities in the southeastern Bay of Biscay over the last four decades, by using data from the years 1982, 2007, 2014, and 2020. We found that temperature has shaped the community structure, with warm-affinity species steadily displacing their cold-affinity counterparts. Notably, new communities exhibited a profusion of smaller algal species, explaining the observed increased biodiversity within the area. In the last period investigated (2014-2020), we observed a partial recovery of the communities, coinciding with cooler sea surface temperatures. Shallow algal communities were more reactive to temperature variations than deeper communities, possibly associated with higher exposure to increased temperatures. Our study offered insights into the intricate relationship between the changes in ocean temperature and algal species in the southeastern Bay of Biscay, shedding light on the ongoing ecological shifts in this region.


Assuntos
Alga Marinha , Temperatura , Baías , Biodiversidade , Mudança Climática , Ecossistema
19.
Ecology ; 104(5): e3987, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36756662

RESUMO

Climate change is reshaping biological communities, as species track environmental temperature. Assemblage reorganization is underpinned by shifts in species abundance and distribution, but studies often focus on documenting compositional turnover. As a consequence, phenomena such as the tropicalization of temperate communities have been widely associated with increased occupancy of warm-affinity species. Abundance-weighted change in thermal affinity can be tracked with the Community Temperature Index (CTI), and decomposed into four processes: tropicalization (increasing warm-affinity), borealization (increasing cold-affinity), deborealization (decreasing cold-affinity), and detropicalization (decreasing warm-affinity). Further evaluation of these processes according to species persistence (i.e., immigrant, emigrant, and resident) may provide insights on whether novel communities emerge primarily from local shifts in species abundance or distribution. Using long-term data on fish assemblages undergoing climate change's effects across 19 temperate estuaries surveyed for at least 20 years, we hypothesized (1) deborealization is the main process reshaping communities under climate change, and (2) the contribution of resident species to processes reshaping communities surpass the ones from immigrants and emigrants. Community dissimilarity was calculated through the Temporal Beta Index (TBI), which was further decomposed into species and individual losses and gains. These values were then used as effect sizes in the meta-analyses performed to detect systematic trends in assemblage reorganization in response to climate change. We also calculated CTI and the strength of temperature-related processes for resident, immigrant and emigrant species. Species and individual gains outweighed losses in estuaries. Temperature was correlated with changes in species abundance, but not occurrence. Fish abundance decreased with warming, and initially cooler estuaries gained more fish than warmer ones. Novel communities were shaped by a variety of processes, but mainly tropicalization. Assemblage reorganization was primarily driven by shifts in abundance of resident species with distinct thermal affinities, while contributions of arriving and exiting species played a secondary role. These findings reveal that novel communities are drawn primarily from the local species pool, due to changes in climate-related drivers that favor distinct resident species.


Assuntos
Temperatura Baixa , Peixes , Animais , Peixes/fisiologia , Temperatura , Mudança Climática , Ecossistema
20.
Mar Environ Res ; 190: 106098, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453282

RESUMO

Climate change is causing significant shifts in biological communities worldwide, including the degradation of marine communities. Previous research has predicted that southern Bay of Biscay canopy-forming subtidal macroalgal communities will shift into turf-forming Mediterranean-like communities by the end of the century. These predictions were based on a community-environment relationship model that used macroalgal abundance data and IPCC environmental projections. We have tested the short-term accuracy of that model by resampling the same communities and locations four years later and found the short-term predictions to be consistent with the observed communities. Changes in sea surface temperature were positively correlated with changes in the Community Temperature Index, suggesting that macroalgal communities had responded quickly to global warming. The changes over four years were significant, but canopy-forming macroalgae were more resilient in local sites with favourable temperature conditions. Our study demonstrated that updating predictive models with new data has the potential to yield reliable predictions and inform effective conservation strategies.


Assuntos
Baías , Alga Marinha , Alga Marinha/fisiologia , Mudança Climática , Aquecimento Global , Biota , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA