Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 835
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2746-2766.e25, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38631355

RESUMO

Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.


Assuntos
Fatores de Transcrição , Animais , Humanos , Camundongos , Regulação da Expressão Gênica , Mutação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular
2.
Cell ; 187(7): 1701-1718.e28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38503283

RESUMO

Biomolecules incur damage during stress conditions, and damage partitioning represents a vital survival strategy for cells. Here, we identified a distinct stress granule (SG), marked by dsRNA helicase DHX9, which compartmentalizes ultraviolet (UV)-induced RNA, but not DNA, damage. Our FANCI technology revealed that DHX9 SGs are enriched in damaged intron RNA, in contrast to classical SGs that are composed of mature mRNA. UV exposure causes RNA crosslinking damage, impedes intron splicing and decay, and triggers DHX9 SGs within daughter cells. DHX9 SGs promote cell survival and induce dsRNA-related immune response and translation shutdown, differentiating them from classical SGs that assemble downstream of translation arrest. DHX9 modulates dsRNA abundance in the DHX9 SGs and promotes cell viability. Autophagy receptor p62 is activated and important for DHX9 SG disassembly. Our findings establish non-canonical DHX9 SGs as a dedicated non-membrane-bound cytoplasmic compartment that safeguards daughter cells from parental RNA damage.


Assuntos
RNA , Grânulos de Estresse , Citoplasma , RNA Mensageiro/genética , Estresse Fisiológico , Humanos , Células HeLa
3.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38942013

RESUMO

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Concentração de Íons de Hidrogênio , Grânulos de Estresse/metabolismo
4.
Cell ; 187(2): 331-344.e17, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38194964

RESUMO

Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 µm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 µm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição SOXB1 , Super Intensificadores , Transcrição Gênica , DNA/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição SOXB1/genética , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Microscopia/métodos
5.
Cell ; 187(4): 945-961.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320550

RESUMO

DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.


Assuntos
Reparo do DNA , Poli(ADP-Ribose) Polimerase-1 , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Humanos
6.
Cell ; 184(10): 2649-2664.e18, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33848463

RESUMO

Receptor tyrosine kinase (RTK)-mediated activation of downstream effector pathways such as the RAS GTPase/MAP kinase (MAPK) signaling cascade is thought to occur exclusively from lipid membrane compartments in mammalian cells. Here, we uncover a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer. Chimeric (fusion) oncoproteins involving certain RTKs including ALK and RET undergo de novo higher-order assembly into membraneless cytoplasmic protein granules that actively signal. These pathogenic biomolecular condensates locally concentrate the RAS activating complex GRB2/SOS1 and activate RAS in a lipid membrane-independent manner. RTK protein granule formation is critical for oncogenic RAS/MAPK signaling output in these cells. We identify a set of protein granule components and establish structural rules that define the formation of membraneless protein granules by RTK oncoproteins. Our findings reveal membraneless, higher-order cytoplasmic protein assembly as a distinct subcellular platform for organizing oncogenic RTK and RAS signaling.


Assuntos
Condensados Biomoleculares/metabolismo , Grânulos Citoplasmáticos/metabolismo , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Enzimática , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Células HEK293 , Humanos , Proteína SOS1/metabolismo , Transdução de Sinais
7.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233164

RESUMO

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Germinação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Príons/metabolismo , Sementes/crescimento & desenvolvimento , Água/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Desidratação , Imageamento Tridimensional , Peptídeos e Proteínas de Sinalização Intercelular/química , Mutação/genética , Dormência de Plantas , Plantas Geneticamente Modificadas , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Sementes/ultraestrutura
8.
Cell ; 181(5): 1062-1079.e30, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32386547

RESUMO

Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.


Assuntos
Expansão das Repetições de DNA/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Alanina/genética , Animais , Sequência de Bases/genética , Expansão das Repetições de DNA/fisiologia , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Mutação/genética , Linhagem , Sindactilia/genética , Fatores de Transcrição/metabolismo
9.
Cell ; 180(3): 411-426.e16, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928844

RESUMO

Stress granules are condensates of non-translating mRNAs and proteins involved in the stress response and neurodegenerative diseases. Stress granules form in part through intermolecular RNA-RNA interactions, and to better understand how RNA-based condensation occurs, we demonstrate that RNA is effectively recruited to the surfaces of RNA or RNP condensates in vitro. We demonstrate that, through ATP-dependent RNA binding, the DEAD-box protein eIF4A reduces RNA condensation in vitro and limits stress granule formation in cells. This defines a function for eIF4A to limit intermolecular RNA-RNA interactions in cells. These results establish an important role for eIF4A, and potentially other DEAD-box proteins, as ATP-dependent RNA chaperones that limit the condensation of RNA, analogous to the function of proteins like HSP70 in combatting protein aggregates.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , RNA Helicases/metabolismo , RNA Fúngico/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Ligação Proteica , RNA Fúngico/isolamento & purificação , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Imagem com Lapso de Tempo
10.
Cell ; 183(7): 1772-1784.e13, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33326747

RESUMO

The association of nuclear DNA with histones to form chromatin is essential for temporal and spatial control of eukaryotic genomes. In this study, we examined the physical state of condensed chromatin in vitro and in vivo. Our in vitro studies demonstrate that self-association of nucleosomal arrays under a wide range of solution conditions produces supramolecular condensates in which the chromatin is physically constrained and solid-like. By measuring DNA mobility in living cells, we show that condensed chromatin also exhibits solid-like behavior in vivo. Representative heterochromatin proteins, however, display liquid-like behavior and coalesce around the solid chromatin scaffold. Importantly, euchromatin and heterochromatin show solid-like behavior even under conditions that produce limited interactions between chromatin fibers. Our results reveal that condensed chromatin exists in a solid-like state whose properties resist external forces and create an elastic gel and provides a scaffold that supports liquid-liquid phase separation of chromatin binding proteins.


Assuntos
Cromatina/metabolismo , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Dano ao DNA , Eucromatina/metabolismo , Fluorescência , Heterocromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Lasers , Camundongos , Modelos Biológicos , Concentração Osmolar , Fotodegradação
11.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32359423

RESUMO

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/fisiologia , Expressão Gênica/genética , Genes Essenciais/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
12.
Cell ; 181(2): 325-345.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302571

RESUMO

The mechanisms underlying ribonucleoprotein (RNP) granule assembly, including the basis for establishing and maintaining RNP granules with distinct composition, are unknown. One prominent type of RNP granule is the stress granule (SG), a dynamic and reversible cytoplasmic assembly formed in eukaryotic cells in response to stress. Here, we show that SGs assemble through liquid-liquid phase separation (LLPS) arising from interactions distributed unevenly across a core protein-RNA interaction network. The central node of this network is G3BP1, which functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations. Moreover, we show that interplay between three distinct intrinsically disordered regions (IDRs) in G3BP1 regulates its intrinsic propensity for LLPS, and this is fine-tuned by phosphorylation within the IDRs. Further regulation of SG assembly arises through positive or negative cooperativity by extrinsic G3BP1-binding factors that strengthen or weaken, respectively, the core SG network.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Estruturas Citoplasmáticas/metabolismo , Células HEK293 , Humanos , Fosforilação , RNA/metabolismo
13.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32810437

RESUMO

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Sobrevivência Celular/imunologia , Imunidade Vegetal/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Ubiquitinação/imunologia
14.
Cell ; 173(3): 693-705.e22, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29677513

RESUMO

Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-ß2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-ß2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-ß2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-ß2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-ß2 may act analogously to control condensates in diverse cellular contexts.


Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Sítios de Ligação , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Carioferinas/metabolismo , Luz , Extração Líquido-Líquido , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Mutação , Nefelometria e Turbidimetria , Ligação Proteica , Domínios Proteicos , RNA/química , Espalhamento de Radiação , Temperatura
15.
Mol Cell ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39232584

RESUMO

Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.

16.
Mol Cell ; 84(12): 2238-2254.e11, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38870936

RESUMO

Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements. Hydrogen-deuterium exchange shows that the LSD1 IDR interconverts between transient open and closed conformational states, the latter of which inhibits partitioning of the protein's structured domains with TF condensates. This autoinhibitory switch controls leukemic differentiation by modulating repression of active cis-regulatory elements bound by LSD1 and master hematopoietic TFs. Together, these studies unveil alternative mechanisms by which disordered regions and their dynamic crosstalk with structured regions can shape coregulator-TF interactions to control cis-regulatory landscapes and cell fate.


Assuntos
Elementos Facilitadores Genéticos , Histona Desmetilases , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Ligação Proteica , Camundongos , Diferenciação Celular , Inativação Gênica
17.
Mol Cell ; 84(9): 1783-1801.e7, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614097

RESUMO

Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.


Assuntos
Centrômero , Humanos , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/química , Separação de Fases
18.
Mol Cell ; 83(19): 3438-3456.e12, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37738977

RESUMO

Transcription factors (TFs) activate enhancers to drive cell-specific gene programs in response to signals, but our understanding of enhancer assembly during signaling events is incomplete. Here, we show that androgen receptor (AR) forms condensates through multivalent interactions mediated by its N-terminal intrinsically disordered region (IDR) to orchestrate enhancer assembly in response to androgen signaling. AR IDR can be substituted by IDRs from selective proteins for AR condensation capacity and its function on enhancers. Expansion of the poly(Q) track within AR IDR results in a higher AR condensation propensity as measured by multiple methods, including live-cell single-molecule microscopy. Either weakening or strengthening AR condensation propensity impairs its heterotypic multivalent interactions with other enhancer components and diminishes its transcriptional activity. Our work reveals the requirement of an optimal level of AR condensation in mediating enhancer assembly and suggests that alteration of the fine-tuned multivalent IDR-IDR interactions might underlie AR-related human pathologies.


Assuntos
Elementos Facilitadores Genéticos , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Hormônios , Transdução de Sinais
19.
Mol Cell ; 83(17): 3095-3107.e9, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683610

RESUMO

The nucleolus is the largest biomolecular condensate and facilitates transcription, processing, and assembly of ribosomal RNA (rRNA). Although nucleolar function is thought to require multiphase liquid-like properties, nucleolar fluidity and its connection to the highly coordinated transport and biogenesis of ribosomal subunits are poorly understood. Here, we use quantitative imaging, mathematical modeling, and pulse-chase nucleotide labeling to examine nucleolar material properties and rRNA dynamics. The mobility of rRNA is several orders of magnitude slower than that of nucleolar proteins, with rRNA steadily moving away from the transcriptional sites in a slow (∼1 Å/s), radially directed fashion. This constrained but directional mobility, together with polymer physics-based calculations, suggests that nascent rRNA forms an entangled gel, whose constant production drives outward flow. We propose a model in which progressive maturation of nascent rRNA reduces its initial entanglement, fluidizing the nucleolar periphery to facilitate the release of assembled pre-ribosomal particles.


Assuntos
RNA Ribossômico , RNA , RNA/genética , RNA Ribossômico/genética , Condensados Biomoleculares , Nucléolo Celular/genética , Proteínas Nucleares/genética
20.
Mol Cell ; 83(7): 1180-1196.e8, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028415

RESUMO

Proper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the RIG-I-like receptors (RLRs), which recognize viral dsRNA and initiate antiviral innate immune responses with the potential of triggering systemic inflammation and immunopathology. Here, we show that stress granules (SGs), molecular condensates that form in response to various stresses including viral dsRNA, play key roles in the controlled activation of RLR signaling. Without the SG nucleators G3BP1/2 and UBAP2L, dsRNA triggers excessive inflammation and immune-mediated apoptosis. In addition to exogenous dsRNA, host-derived dsRNA generated in response to ADAR1 deficiency is also controlled by SG biology. Intriguingly, SGs can function beyond immune control by suppressing viral replication independently of the RLR pathway. These observations thus highlight the multi-functional nature of SGs as cellular "shock absorbers" that converge on protecting cell homeostasis by dampening both toxic immune response and viral replication.


Assuntos
DNA Helicases , RNA Helicases , Humanos , DNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos de Estresse , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Imunidade Inata , Inflamação/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA