Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 86(2): 262-272, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27889916

RESUMO

Climate change is transforming precipitation regimes world-wide. Changes in precipitation regimes are known to have powerful effects on plant productivity, but the consequences of these shifts for the dynamics of ecological communities are poorly understood. This knowledge gap hinders our ability to anticipate and mitigate the impacts of climate change on biodiversity. Precipitation may affect fauna through direct effects on physiology, behaviour or demography, through plant-mediated indirect effects, or by modifying interactions among species. In this paper, we examined the response of a semi-arid ecological community to a fivefold change in precipitation over 7 years. We examined the effects of precipitation on the dynamics of a grassland ecosystem in central California from 2007 to 2013. We conducted vegetation surveys, pitfall trapping of invertebrates, visual surveys of lizards and capture-mark-recapture surveys of rodents on 30 plots each year. We used structural equation modelling to evaluate the direct, indirect and modifying effects of precipitation on plants, ants, beetles, orthopterans, kangaroo rats, ground squirrels and lizards. We found pervasive effects of precipitation on the ecological community. Although precipitation increased plant biomass, direct effects on fauna were often stronger than plant-mediated effects. In addition, precipitation altered the sign or strength of consumer-resource and facilitative interactions among the faunal community such that negative or neutral interactions became positive or vice versa with increasing precipitation. These findings indicate that precipitation influences ecological communities in multiple ways beyond its recognized effects on primary productivity. Stochastic variation in precipitation may weaken the average strength of biotic interactions over time, thereby increasing ecosystem stability and resilience to climate change.


Assuntos
Biodiversidade , Mudança Climática , Pradaria , Chuva , Animais , Invertebrados/fisiologia , Lagartos/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Dinâmica Populacional , Roedores/fisiologia
2.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28566509

RESUMO

Interspecific interactions are affected by community context and, as a consequence, show spatial variation in magnitude and sign. The selective forces imposed by interactions at the mutualism-antagonism interface are a consequence of the traits involved and their matching between species. If mutualistic and antagonistic communities are linked by gene flow, coevolution between a pair of interacting species is influenced by how selection varies in space. Here we investigate the effects of metacommunity arrangement, i.e. patterns of connection between communities and the number of communities, on the coevolutionary dynamics between two species for which the sign and magnitude of the interaction varies across the landscape. We quantify coevolutionary outcome as an index that can be decomposed into the contribution of intraspecific genetic diversity and interspecific interaction. We show that polymorphisms and mismatches are an expected outcome, which is influenced by spatial structure, interaction strength and the degree of gene flow. The index describes how variation is distributed within and between species, and provides information on the directionality of the mismatches and polymorphisms. Finally, we argue that depending on metacommunity arrangement, some communities have disproportionate roles in maintaining genetic diversity, with implications for the coevolution of interacting species in a fragmented landscape.


Assuntos
Evolução Biológica , Ecossistema , Fluxo Gênico , Modelos Genéticos , Simbiose , Animais , Variação Genética , Seleção Genética
3.
Ecol Evol ; 5(21): 4766-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640658

RESUMO

The mutualistic versus antagonistic nature of an interaction is defined by costs and benefits of each partner, which may vary depending on the environment. Contrasting with this dynamic view, several pollination interactions are considered as strictly obligate and mutualistic. Here, we focus on the interaction between Trollius europaeus and Chiastocheta flies, considered as a specialized and obligate nursery pollination system - the flies are thought to be exclusive pollinators of the plant and their larvae develop only in T. europaeus fruits. In this system, features such as the globelike flower shape are claimed to have evolved in a coevolutionary context. We examine the specificity of this pollination system and measure traits related to offspring fitness in isolated T. europaeus populations, in some of which Chiastocheta flies have gone extinct. We hypothesize that if this interaction is specific and obligate, the plant should experience dramatic drop in its relative fitness in the absence of Chiastocheta. Contrasting with this hypothesis, T. europaeus populations without flies demonstrate a similar relative fitness to those with the flies present, contradicting the putative obligatory nature of this pollination system. It also agrees with our observation that many other insects also visit and carry pollen among T. europaeus flowers. We propose that the interaction could have evolved through maximization of by-product benefits of the Chiastocheta visits, through the male flower function, and selection on floral traits by the most effective pollinator. We argue this mechanism is also central in the evolution of other nursery pollination systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA