RESUMO
The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.
Assuntos
Proteínas de Transporte , Proteínas Nucleares , RNA Polimerase I , Saccharomyces cerevisiae , Animais , Humanos , Camundongos , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Posttranslational modifications (PTMs) play an important role in cell signaling and they are often deregulated in disease. This review addresses recent advances in the development of heterobifunctional small molecules that enable targeting or hijacking PTMs. This emerging field is spearheaded by proteolysis-targeting chimeras (PROTACs), that induce ubiquitination of their targets and, thus, tag them for degradation by the proteasome. Within the last decade, several improvements have been made to enhance spatiotemporal control of PROTAC-induced degradation as well as cell permeability. Inspired by the success story of PROTACs, additional concepts based on chimeric small molecules have emerged such as phosphatase-recruiting chimeras (PhoRCs). Herein, an overview of strategies causing (de-)phosphorylation, deubiquitination as well as acetylation is provided, and the opportunities and challenges of heterobifunctional molecules for drug discovery are highlighted. Although significant progress has been achieved, a plethora of PTMs have not yet been covered and PTM-inducing chimeras will be helpful tools for chemical biology and could even find application in pharmacotherapy.
Assuntos
Descoberta de Drogas , Complexo de Endopeptidases do Proteassoma , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Transdução de Sinais , Indutores das Enzimas do Citocromo P-450RESUMO
Conditional protein degradation is a powerful tool for controlled protein knockdown. The auxin-inducible degron (AID) technology uses a plant auxin to induce depletion of degron-tagged proteins, and it has been shown to be functional in several non-plant eukaryotes. In this study, we demonstrated AID-based protein knockdown in an industrially important oleaginous yeast Yarrowia lipolytica. Using the mini-IAA7 (mIAA7) degron derived from Arabidopsis IAA7, coupled with an Oryza sativa TIR1 (OsTIR1) plant auxin receptor F-box protein (expressed from the copper-inducible MT2 promoter), C-terminal degron-tagged superfolder GFP could be degraded in Yarrowia lipolytica upon addition of copper and the synthetic auxin 1-Naphthaleneacetic acid (NAA). However, leaky degradation of the degron-tagged GFP in the absence of NAA was also noted. This NAA-independent degradation was largely eliminated by replacing the wild-type OsTIR1 and NAA with the OsTIR1F74A variant and the auxin derivative 5-Ad-IAA, respectively. Degradation of the degron-tagged GFP was rapid and efficient. However, Western blot analysis revealed cellular proteolytic cleavage within the mIAA7 degron sequence, leading to the production of a GFP sub-population lacking an intact degron. The utility of the mIAA7/OsTIR1F74A system was further explored in controlled degradation of a metabolic enzyme, ß-carotene ketolase, which converts ß-carotene to canthaxanthin via echinenone. This enzyme was tagged with the mIAA7 degron and expressed in a ß-carotene producing Y. lipolytica strain that also expressed OsTIR1F74A controlled by the MT2 promoter. By adding copper and 5-Ad-IAA at the time of culture inoculation, canthaxanthin production was found to be reduced by about 50% on day five compared to the control culture without adding 5-Ad-IAA. This is the first report that demonstrates the efficacy of the AID system in Y. lipolytica. Further improvement of AID-based protein knockdown in Y. lipolytica may be achieved by preventing proteolytic removal of the mIAA7 degron tag.
RESUMO
The ubiquitin proteasome system plays an important role in transcription. Monoubiquitination of activators is believed to aid their function, while the 26S proteasomal degradation of repressors is believed to restrict their function. What remains controversial is the question of whether the degradation of activators aids or restricts their function.