Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931533

RESUMO

Mapping corrosion depths along pipeline sections using guided-wave-based tomographic methods is a challenging task. Accurate defect sizing depends heavily on the precision of the forward model in guided wave tomography. This model is fitted to measured data using inversion techniques. This study evaluates the effectiveness of a recursive extrapolation scheme for tomography applications and full waveform inversion. It employs a table-driven approach, with precomputed extrapolation operators stored across a spectrum of wavenumbers. This enables fast modelling for extensive pipe sections, approaching the speed of ray tracing while accurately handling complex velocity models within the full frequency band. This ensures an accurate representation of diffraction phenomena. The study examines the assumptions underlying the extrapolation approach, namely, the negligible reflection and conversion of modes at defects. In our tomography approach, we intend to use multiple wave modes-A0, S0, and SH1-and helical paths. The acoustic extrapolation method is validated through numerical studies for different wave modes, solving the 3D elastodynamic wave equation. Comparison with an experimentally measured single-mode wavefield from an aluminium plate with an artificial defect reveals good agreement.

2.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850808

RESUMO

Electromagnetic techniques are widely employed for corrosion detection, and their performance for inspection of corrosion is well established. However, limited work is carried out on the development and reliability of smart corrosion monitoring devices for tracking internal or buried thickness loss due to corrosion remotely. A novel smart magnetic corrosion transducer is developed for long-term monitoring of thickness loss due to corrosion at critical locations. The reliability of the transducer is enhanced by using a dissimilar active redundancy approach. The improved corrosion monitor has been tested in the ambient environment for seven months to evaluate the stability against environmental factors and degradation. The monitor is found to show great sensitivity to detect defects due to corrosion. Detection of anomalous patterns in the time series data received from the monitors is accomplished by using Pearson's correlation coefficient. The critical component of the monitor is identified at the end of the test. Research findings reveal that, compared to the existing corrosion monitoring techniques in the industry, the detection and isolation of faulty sensor features introduced in this study can contribute to reliable monitoring of thickness loss due to corrosion in ferromagnetic structures over an extended period of time.

3.
Sensors (Basel) ; 23(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960566

RESUMO

Reinforced Concrete Structures (RCS) are a fundamental part of a country's civil infrastructure. However, RCSs are often affected by rebar corrosion, which poses a major problem because it reduces their service life. The traditionally used inspection and management methods applied to RCSs are poorly operative. Structural Health Monitoring and Management (SHMM) by means of embedded sensors to analyse corrosion in RCSs is an emerging alternative, but one that still involves different challenges. Examples of SHMM include INESSCOM (Integrated Sensor Network for Smart Corrosion Monitoring), a tool that has already been implemented in different real-life cases. Nevertheless, work continues to upgrade it. To do so, the authors of this work consider implementing a new measurement procedure to identify the triggering agent of the corrosion process by analysing the double-layer capacitance of the sensors' responses. This study was carried out on reinforced concrete specimens exposed for 18 months to different atmospheres. The results demonstrate the proposed measurement protocol and the multivariate analysis can differentiate the factor that triggers corrosion (chlorides or carbonation), even when the corrosion kinetics are similar. Data were validated by principal component analysis (PCA) and by the visual inspection of samples and rebars at the end of the study.

4.
Sensors (Basel) ; 23(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36772348

RESUMO

Globally, corrosion is the costliest cause of the deterioration of metallic and concrete structures, leading to significant financial losses and unexpected loss of life. Therefore, corrosion monitoring is vital to the assessment of structures' residual performance and for the identification of pathologies in early stages for the predictive maintenance of facilities. However, the high price tag on available corrosion monitoring systems leads to their exclusive use for structural health monitoring applications, especially for atmospheric corrosion detection in civil structures. In this paper a systematic literature review is provided on the state-of-the-art electrochemical methods and physical methods used so far for corrosion monitoring compatible with low-cost sensors and data acquisition devices for metallic and concrete structures. In addition, special attention is paid to the use of these devices for corrosion monitoring and detection for in situ applications in different industries. This analysis demonstrates the possible applications of low-cost sensors in the corrosion monitoring sector. In addition, this study provides scholars with preferred techniques and the most common microcontrollers, such as Arduino, to overcome the corrosion monitoring difficulties in the construction industry.

5.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366152

RESUMO

The conventional way of studying corrosion in marine environments is by installing corrosion coupons. Instead, this paper presents an experimental field study using an unattended corrosion sensor developed on the basis of ultrasound (US) technology to assess the thickness loss caused by general atmospheric corrosion on land close to the sea (coastal region). The system described here uses FPGA, low-power microcontroller, analog front-end devices in the sensor node, and a Beaglebone black wireless board for posting data to a server. The overall system is small, operates at low power, and was deployed at Gran Canaria to detect the thickness loss of an S355 steel sample and consequently estimate the corrosion rate. This experiment aims to demonstrate the system's viability in marine environments and its potential to monitor corrosion in offshore wind turbines. In a day, the system takes four sets of measurements in 6 hour intervals, and each set consists of 5 consecutive measurements. Over the course of 5 months, the proposed experiment allowed for us to continuously monitor the corrosion rate in an equivalent corrosion process to an average thickness loss rate of 0.134 mm/year.


Assuntos
Aço , Corrosão
6.
Sensors (Basel) ; 22(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35891035

RESUMO

The sulfuric acid attack is a common form of degradation of reinforced concrete in contact with industrial wastewater, mine water, acid rain, or in sewage treatment stations. In this work, new pH-sensitive IrOx electrodes were developed for monitoring the pH inside mortar or concrete. To test their ability, the pH sensors were embedded in mortar samples at different depths and the samples were exposed to sulfuric acid solution. In another set of experiments, iron wires were placed at the same depths inside similar mortar samples and their corrosion was monitored as the acid attacked the mortar. Severe acid attack led to cement dissolution and formation of gypsum. The new pH sensors succeeded in measuring the pH changes inside the mortars. The pH gradient, from the high acid environment to the high alkaline mortar interior, occurred in a narrow region. Corrosion of the iron electrodes started only when the acidic solution was in their close vicinity.


Assuntos
Materiais de Construção , Aço , Corrosão , Concentração de Íons de Hidrogênio , Ferro , Ácidos Sulfúricos
7.
Sensors (Basel) ; 21(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925906

RESUMO

This paper aims to design a coil sensor for corrosion monitoring of industrial pipes that could detect variations in thickness using the MFL (Magnetic Flux Leakage) technique. An MFL coil sensor is designed and tested with pipe sample thicknesses of 2, 4, 6, and 8 mm based on the magnetic field effect of ferrite cores. Moreover, a measurement setup for analysing pipe samples up to a temperature of 200° Celsius is suggested. Experimental results reveal that the MFL coil sensor can fulfil the requirements for MFL testing of pipes in high temperature conditions, and that the precision of MFL monitoring of pipes to detect corrosion at high temperatures can be improved significantly.

8.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143333

RESUMO

An Ag/AgCl electrode used as a corrosion sensor in a reinforced concrete structure isconsidered as having good application prospect. However, its performance under complexconditions, such as dry-wet cycle condition, is not affirmed. In the current study, the performanceof Ag/AgCl as chloride selective electrode in mortar exposed to dry-wet cycle condition wasinvestigated. A simple Ag/AgCl electrode was prepared and fabricated by electrochemicalanodization. These Ag/AgCl electrodes were embedded into a mortar specimen with temperaturesensors, humidity sensors and anode ladder monitoring system (ALS). After 28 d curing time, theupper surface of mortar specimen was wetted (with 5% NaCl solution) and dried regularly. Theobtained results indicate that Ag/AgCl electrode responds to the ingress of chloride ion, sensitively.The chloride ion concentration variation can be reflected by the potential trend. Furthermore, thebalance potential of Ag/AgCl electrodes is influenced by dry-wet cycles. Compared with ALS, itdemonstrates that Ag/AgCl electrodes are more sensitive to chloride. The research provides the keyelement for the specific application of Ag/AgCl electrode for corrosion monitoring in the future.

9.
Sensors (Basel) ; 18(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702554

RESUMO

This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

10.
Sensors (Basel) ; 18(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388844

RESUMO

This study investigates the feasibility of distributed fiber optic sensor for corrosion monitoring of steel bars embedded in concrete. Two sensor installation methods are compared: (1) attaching the sensor along the bar and (2) winding the sensor on the bar. For the second method, optical fibers were winded spirally on steel bars with different spacings: 0 mm, 2 mm, 5 mm, and 10 mm. Steel bar pull-out testing was conducted to evaluate the effect of presence of distributed sensor on the bond strength of steel⁻concrete interface. Electrochemical testing was carried out to assess the influence of the installation methods on the corrosion resistance of the reinforced concrete. Winding the optical fiber on steel bars with a 10-mm spacing does not affect the bond strength and corrosion resistance and allows real-time corrosion monitoring. The distributed sensor data can be used to estimate the corrosion induced steel loss and predict concrete cracking.

11.
Sensors (Basel) ; 17(12)2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231848

RESUMO

Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.

12.
Sensors (Basel) ; 17(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956847

RESUMO

Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs) for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI) change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber's modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR) while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

13.
Materials (Basel) ; 17(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38893927

RESUMO

This paper presents the most typical corrosion mechanisms occurring in the petroleum industry. The methods of corrosion monitoring are described for particular corrosion mechanisms. The field and scope of the application of given corrosion-monitoring methods are provided in detail. The main advantages and disadvantages of particular methods are highlighted. Measurement difficulties and obstacles are identified and widely discussed based on actual results. Presented information will allow the corrosion personnel in refineries to extract more reliable data from corrosion-monitoring systems.

14.
Crit Rev Anal Chem ; : 1-26, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878408

RESUMO

Interculturally, corrosion has been counted as one of the most expensive factors toward the retrogression of concrete and metallic structures resulting in huge monetary losses and unanticipated loss of life. To a large extent, corrosion-related catastrophes can be avoided by having the ability to monitor corrosion before structural integrity is jeopardized. This paper critically reviews the various accustomed electrochemical techniques utilized for corrosion monitoring in terms of their definition, timeline, experimental set-up, advantages, and shortcomings. Additionally, literature exploiting these techniques as their corrosion detection technique has been focused on here. Furthermore, a comparison between recently reported methods has been made to provide better insights into the research progress in this arena.

15.
Materials (Basel) ; 16(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36676285

RESUMO

The protective behaviour of ZrO2-3%molY2O3 sol-gel coatings, deposited with an immersion coating technique on 9Cr-1Mo P91 steel, was evaluated with corrosion monitoring sensors using the electrochemical impedance spectroscopy technique. The tests were carried out in contact with solar salt at 500 °C for a maximum of 2000 h. The results showed the highly protective behaviour of the coating, with the corrosion process in the coated system being controlled by the diffusion of charged particles through the protective layer. The coating acts by limiting the transport of ions and slowing down the corrosive process. The system allowed a reduction in the corrosion rate of uncoated P91 steel. The estimated corrosion rate of 22.62 µm·year-1 is lower than that accepted for in-service operations. The proposed ZrO2-3%molY2O3 sol-gel coatings are an option to mitigate the corrosion processes caused by the molten salts in concentrated solar power plants.

16.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421031

RESUMO

Based on high-stress characteristics of prestressed anchor cables, this paper develops an axial-distributed testing method to test corrosion damage of prestressed anchor cables. The positioning accuracy and corrosion range of an axial-distributed optical fiber sensor is studied, and its mathematical model between corrosion mass loss and axial fiber strain is established. The experimental results show that the fiber strain from an axial-distributed sensor enables one to reflect the corrosion rate along a prestressed anchor. Moreover, it has a greater sensitivity when an anchored cable has a higher stress. The mathematical model between corrosion mass loss and axial fiber strain is determined to be ε=4723.64ρ+2592.95. The corrosion location along the anchor cable is characterized by axial fiber strain. Therefore, this work provides an insight for cable corrosion.

17.
Sensors (Basel) ; 11(6): 5695-715, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163921

RESUMO

The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction.


Assuntos
Acústica , Processamento de Sinais Assistido por Computador , Algoritmos , Teorema de Bayes , Conservação dos Recursos Naturais , Corrosão , Monitoramento Ambiental/métodos , Teoria da Informação , Modelos Estatísticos , Reprodutibilidade dos Testes
18.
Micromachines (Basel) ; 12(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34945302

RESUMO

This paper proposes a novel spiral-wound, optic-fiber sensor to monitor the corrosion of steel bars. At the same time, the winding parameters, such as winding angle and pitch, were first theoretically deduced. Then, to decrease light loss, a practically distributed sensor wound onto the protective mortar layer was developed by increasing the winding curvature radius. The spiral distributed sensors were experimentally verified for their feasibility. Experimental results showed that the spiral fiber strain depended on the thickness of the protective mortar layer. Furthermore, the spiral distributed strain well reflected the cracking process of concrete. In addition, the concrete cracking time depended on the thickness of the protective concrete layer. Accordingly, this method is feasible for evaluating the initial and final cracking behaviors of concrete structures and provides a sight for steel bar corrosion.

19.
Ultrasonics ; 101: 105988, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31505329

RESUMO

Corrosion damage of aircraft structures can significantly reduce the structural performance and endanger flight safety. There is a pressing need for research on aircraft structural corrosion monitoring technology. Lamb wave tomography (LWT) can be used to evaluate structural corrosion. However, the conventional tomographic method needs sensors with dense array, which is not easy to be satisfied in practice and limits its application. Due to the sparsity of corrosion damage in aircraft structures, compressed sensing (CS), which is an emerging signal processing technique, can be employed to optimize LWT. This paper presents a novel CS-based tomographic method to map out the internal situation of aircraft structure. Compared to conventional LWT, the CS-based tomographic method requires fewer sensors to detect the same corrosion damage while the imaging quality still maintains. The experimental study is carried out to diagnose the real corrosion damage by the new approach. Results show the advantages of the proposed CS-based tomographic method.

20.
Materials (Basel) ; 13(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952294

RESUMO

Reinforced concrete structures require continuous monitoring and maintenance to prevent corrosion of the carbon steel reinforcement. In this work, concrete columns with carbon and stainless steel reinforcements were exposed to a real marine environment. In order to monitor the corrosion processes, two types of corrosion probes were embedded in these columns at different height levels. The results from the monitoring of the probes were compared to the actual corrosion damage in the different exposure zones. Electrical resistance (ER) probes and coupled multi-electrodes (CMEs) were shown to be promising methods for long-term corrosion monitoring in concrete. Correlations between the different exposure zones and the corrosion processes of the steel in the concrete were found. Macrocell corrosion properties and the distribution of the separated anodic/cathodic places on the steel in chloride-contaminated concrete were addressed as two of the key issues for understanding the corrosion mechanisms in such environments. The specific advantages and limitations of the tested measuring techniques for long-term corrosion monitoring were also indicated. The results of the measurements and the corrosion damage evaluation clearly confirmed that the tested stainless steels (AISI 304 and AISI 304L) in a chloride-contaminated environment behave significantly better than ordinary carbon steel, with corrosion rates from 110× to 9500× lower in the most severe (tidal) exposure conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA