Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(18): 4626-4639.e13, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34411517

RESUMO

Speech perception is thought to rely on a cortical feedforward serial transformation of acoustic into linguistic representations. Using intracranial recordings across the entire human auditory cortex, electrocortical stimulation, and surgical ablation, we show that cortical processing across areas is not consistent with a serial hierarchical organization. Instead, response latency and receptive field analyses demonstrate parallel and distinct information processing in the primary and nonprimary auditory cortices. This functional dissociation was also observed where stimulation of the primary auditory cortex evokes auditory hallucination but does not distort or interfere with speech perception. Opposite effects were observed during stimulation of nonprimary cortex in superior temporal gyrus. Ablation of the primary auditory cortex does not affect speech perception. These results establish a distributed functional organization of parallel information processing throughout the human auditory cortex and demonstrate an essential independent role for nonprimary auditory cortex in speech processing.


Assuntos
Córtex Auditivo/fisiologia , Fala/fisiologia , Audiometria de Tons Puros , Eletrodos , Processamento Eletrônico de Dados , Humanos , Fonética , Percepção da Altura Sonora , Tempo de Reação/fisiologia , Lobo Temporal/fisiologia
2.
Cell ; 174(1): 21-31.e9, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958109

RESUMO

In speech, the highly flexible modulation of vocal pitch creates intonation patterns that speakers use to convey linguistic meaning. This human ability is unique among primates. Here, we used high-density cortical recordings directly from the human brain to determine the encoding of vocal pitch during natural speech. We found neural populations in bilateral dorsal laryngeal motor cortex (dLMC) that selectively encoded produced pitch but not non-laryngeal articulatory movements. This neural population controlled short pitch accents to express prosodic emphasis on a word in a sentence. Other larynx cortical representations controlling voicing and longer pitch phrase contours were found at separate sites. dLMC sites also encoded vocal pitch during a non-speech singing task. Finally, direct focal stimulation of dLMC evoked laryngeal movements and involuntary vocalization, confirming its causal role in feedforward control. Together, these results reveal the neural basis for the voluntary control of vocal pitch in human speech. VIDEO ABSTRACT.


Assuntos
Laringe/fisiologia , Córtex Motor/fisiologia , Fala , Adolescente , Adulto , Mapeamento Encefálico , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Adulto Jovem
3.
Brain ; 147(7): 2522-2529, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289871

RESUMO

Lesions in the language-dominant ventral occipitotemporal cortex (vOTC) can result in selective impairment of either reading or naming, resulting in alexia or anomia. Yet, functional imaging studies that show differential activation for naming and reading do not reveal activity exclusively tuned to one of these inputs. To resolve this dissonance in the functional architecture of the vOTC, we used focused stimulation to the vOTC in 49 adult patients during reading and naming, and generated a population-level, probabilistic map to evaluate if reading and naming are clearly dissociable within individuals. Language mapping (50 Hz, 2829 stimulations) was performed during passage reading (216 positive sites) and visual naming (304 positive sites). Within the vOTC, we isolated sites that selectively disrupted reading (24 sites in 11 patients) or naming (27 sites in 12 patients), and those that disrupted both processes (75 sites in 21 patients). The anteromedial vOTC had a higher probability of producing naming disruption, while posterolateral regions resulted in greater reading-specific disruption. Between them lay a multi-modal region where stimulation disrupted both reading and naming. This work provides a comprehensive view of vOTC organization-the existence of a heteromodal cortex critical to both reading and naming, along with a causally dissociable unimodal naming cortex, and a reading-specific visual word form area in the vOTC. Their distinct roles as associative regions may thus relate to their connectivity within the broader language network that is disrupted by stimulation, more than to highly selective tuning properties. Our work also implies that pre-surgical mapping of both reading and naming is essential for patients requiring vOTC resections, as these functions are not co-localized, and such mapping may prevent the occurrence of unexpected deficits.


Assuntos
Mapeamento Encefálico , Lobo Occipital , Leitura , Lobo Temporal , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/fisiopatologia , Adulto , Lobo Temporal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Idoso , Imageamento por Ressonância Magnética , Adulto Jovem , Idioma , Estimulação Luminosa/métodos
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38858838

RESUMO

We revisited the anatomo-functional characteristics of the basal temporal language area (BTLA), first described by Lüders et al. (1986), using electrical cortical stimulation (ECS) in the context of Japanese language and semantic networks. We recruited 11 patients with focal epilepsy who underwent chronic subdural electrode implantation and ECS mapping with multiple language tasks for presurgical evaluation. A semiquantitative language function density map delineated the anatomo-functional characteristics of the BTLA (66 electrodes, mean 3.8 cm from the temporal tip). The ECS-induced impairment probability was higher in the following tasks, listed in a descending order: spoken-word picture matching, picture naming, Kanji word reading, paragraph reading, spoken-verbal command, and Kana word reading. The anterior fusiform gyrus (FG), adjacent anterior inferior temporal gyrus (ITG), and the anterior end where FG and ITG fuse, were characterized by stimulation-induced impairment during visual and auditory tasks requiring verbal output or not, whereas the middle FG was characterized mainly by visual input. The parahippocampal gyrus was the least impaired of the three gyri in the basal temporal area. We propose that the BTLA has a functional gradient, with the anterior part involved in amodal semantic processing and the posterior part, especially the middle FG in unimodal semantic processing.


Assuntos
Mapeamento Encefálico , Idioma , Lobo Temporal , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , População do Leste Asiático , Estimulação Elétrica , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Japão , Imageamento por Ressonância Magnética , Lobo Temporal/fisiologia
5.
Epilepsia ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162772

RESUMO

OBJECTIVE: This study was undertaken to investigate the potential of interictal electroencephalographic (EEG) findings and electrically stimulated seizures during stereo-EEG (SEEG) as surrogate markers for the spontaneous seizure onset zone (spSOZ). We hypothesized that combining the localizing information of these markers would allow clinically meaningful estimation of the spSOZ. METHODS: We included all patients (n = 63) who underwent SEEG between January 2013 and March 2020 at Helsinki University Hospital and had spontaneous seizures during the recording. We scored spikes, gamma activity, and background abnormality on each channel visually during a 12-h epoch containing waking state and sleep. Based on semiology, we classified stimulated seizures as typical or atypical/unclassifiable and estimated the stimulated SOZ (stimSOZ) for typical seizures. To assess which markers increased the odds of channel inclusion in the spSOZ, we fitted mixed effects logistic regression models. RESULTS: A combined regression model including the stimSOZ and interictal markers scored during sleep performed better in estimating which channels were part of the spSOZ than models based on stimSOZ (p < .001) or interictal markers (p < .001) alone. Of the individual markers, the effect sizes were greatest for inclusion of a channel in the stimSOZ (odds ratio [OR] = 60, 95% confidence interval [CI] = 37-97, p < .001) and for continuous (OR = 25, 95% CI = 12-55, p < .001) and subcontinuous (OR = 36, 95% CI = 21-64, p < .001) interictal spiking. At the individual level, the model's accuracy to predict spSOZ inclusion varied markedly (median accuracy = 85.7, range = 54.4-100), which was not explained by etiology (p > .05). SIGNIFICANCE: Compared to either marker alone, combining visually rated interictal SEEG markers and stimulated seizures improved prediction of which SEEG channels belonged to the spSOZ. Inclusion in the stimSOZ and continuous or subcontinuous spikes increased the odds of spSOZ inclusion the most. Future studies should investigate whether suboptimal sampling of the true epileptogenic zone can explain the model's poor performance in certain patients.

6.
Neuroimage ; 276: 120197, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245558

RESUMO

Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Percepção de Movimento , Percepção do Tato , Córtex Cerebral/fisiologia , Córtex Somatossensorial/fisiologia , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Estimulação Transcraniana por Corrente Contínua , Epilepsia Resistente a Medicamentos/fisiopatologia
7.
Hum Brain Mapp ; 44(12): 4498-4511, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318703

RESUMO

Our understanding of cingulate cortex function is limited. As a method for locating the epileptogenic zone, direct electrical cortical stimulation (ECS) provides an opportunity to understand the functional localization of the cingulate cortex. This study aimed to learn more about the function of the cingulate cortex by analyzing a large body of data from our center and by reviewing existing literature on cortical mapping. We retrospectively analyzed the ECS data of 124 patients with drug-resistant epilepsy who had undergone electrode implantation in the cingulate cortex. The standard stimulation parameters included a biphasic pulse and bipolar stimulation at 50 Hz. Furthermore, we reviewed existing studies on cingulate responses elicited by the ECS and compared them with our results. A total of 329 responses were evoked in 276 contacts using ECS. Of these, 196 were physiological functional responses, which included sensory, affective, autonomic, language, visual, vestibular, and motor responses, along with a few other sensations. Sensory, motor, vestibular, and visual responses were concentrated in the cingulate sulcus visual area (CSv). Furthermore, 133 epilepsy-related responses were evoked, most of which were concentrated in the ventral cingulate cortex. No responses were evoked by 498 contacts. Furthermore, the comparison of our ECS results with those reported in 11 comprehensive reviews revealed that the cingulate cortex is involved in complicated functions. The cingulate cortex is involved in sensory, affective, autonomic, language, visual, vestibular, and motor functions. The CSv is an integrating node of sensory, motor, vestibular, and visual systems.


Assuntos
Epilepsia , Giro do Cíngulo , Humanos , Giro do Cíngulo/fisiologia , Estudos Retrospectivos , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Epilepsia/terapia , Estimulação Elétrica , Eletroencefalografia
8.
Epilepsia ; 64(7): 1925-1938, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119434

RESUMO

OBJECTIVE: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing. METHODS: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline. RESULTS: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04). SIGNIFICANCE: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.


Assuntos
Eletrocorticografia , Epilepsia , Taxa Respiratória , Respiração , Taxa Respiratória/fisiologia , Tonsila do Cerebelo , Lobo Temporal , Tálamo , Estudos Prospectivos
9.
J Neurooncol ; 163(3): 505-514, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438656

RESUMO

INTRODUCTION: Brain malignancy and, at the same time central nervous system malignancy are two of the most difficult problems in the oncology field of practice. Brain tumors located near or within eloquent areas may represent another challenge toward neurosurgeon treatment. As such, electrical stimulation, either directly or through other methods, may prove necessary as proper mapping of the eloquent area thus may create a proper resection guide. Minimal resection will hopefully preserve patient neurological function and ensure patient quality of life. METHODS: This research is a systematic review and meta-analysis that aim to compare outcomes, primarily adverse event analysis, between direct cortical stimulation and transcortical magnetic stimulation. RESULTS: Fourteen studies were identified between 2010 and the 2023 interval. While this number is sufficient, most studies were not randomized and were not accompanied by blinding. Meta-analysis was then applied as a hypothesis test, which showed that TMS were not inferior compared to DCS in terms of motoric and lingual outcome which were marked subjectively by diamond location and objectively through a p-value above 0.05. CONCLUSION: TMS is a noninvasive imaging method for the evaluation of eloquent brain areas that is not inferior compared to the invasive gold-standard imaging method (DCS). However its role as adjuvant to DCS and alternative only when awake surgery is not available must be emphasized.


Assuntos
Neoplasias Encefálicas , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Qualidade de Vida , Mapeamento Encefálico/métodos , Vigília/fisiologia , Imageamento por Ressonância Magnética
10.
AJR Am J Roentgenol ; 221(6): 806-816, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377358

RESUMO

BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.


Assuntos
Neoplasias Encefálicas , Humanos , Recém-Nascido , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Fala/fisiologia , Estudos Retrospectivos , Vigília , Imageamento por Ressonância Magnética , Idioma , Mapeamento Encefálico/métodos
11.
Epilepsy Behav ; 145: 109327, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422934

RESUMO

BACKGROUND: Auditory seizures (AS) are a rare type of focal seizures. AS are classically thought to involve a seizure onset zone (SOZ) in the temporal lobe, but there remain uncertainties about their localizing and lateralizing value. We conducted a narrative literature review with the aim of providing an up-to-date description of the lateralizing and localizing value of AS. METHODS: The databases PubMed, Scopus, and Google Scholar were searched for literature on AS in December 2022. All cortical stimulation studies, case reports, and case series were analyzed to assess for auditory phenomena that were suggestive of AS and to evaluate if the lateralization and/or localization of the SOZ could be determined. We classified AS according to their semiology (e.g., simple hallucination versus complex hallucination) and the level of evidence with which the SOZ could be predicted. RESULTS: A total of 174 cases comprising 200 AS were analyzed from 70 articles. Across all studies, the SOZ of AS were more often in the left (62%) than in the right (38%) hemisphere. AS heard bilaterally followed this trend. Unilaterally heard AS were more often due to a SOZ in the contralateral hemisphere (74%), although they could also be ipsilateral (26%). The SOZ for AS was not limited to the auditory cortex, nor to the temporal lobe. The areas more frequently involved in the temporal lobe were the superior temporal gyrus (STG) and mesiotemporal structures. Extratemporal locations included parietal, frontal, insular, and rarely occipital structures. CONCLUSION: Our review highlighted the complexity of AS and their importance in the identification of the SOZ. Due to the limited data and heterogeneous presentation of AS in the literature, the patterns associated with different AS semiologies warrant further research.


Assuntos
Eletroencefalografia , Epilepsia do Lobo Temporal , Humanos , Convulsões/complicações , Convulsões/diagnóstico , Lobo Temporal
12.
Acta Neurochir (Wien) ; 165(6): 1665-1669, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37079109

RESUMO

Intraoperative direct cortical stimulation (DCS) is the gold standard technique to maximize the extent of resection of tumors located in eloquent areas. To date, there are three cases reported of awake mapping for language centers in deaf patients who could communicate only with sign language. We present the case of DCS in a deaf patient who could communicate vocally, native to American Sign Language and English, that underwent intraoperative awake mapping. DCS showed similar disruption of expressive phonology to both pictorial and gestural stimuli, confirming that sign language follows the same pattern as oral language.


Assuntos
Neoplasias Encefálicas , Glioma , Perda Auditiva , Humanos , Língua de Sinais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Vigília/fisiologia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Craniotomia/métodos , Audição
13.
J Integr Neurosci ; 22(1): 17, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36722245

RESUMO

BACKGROUND: Cortico-cortical evoked potentials (CCEPs) have been used to map the frontal (FLA) and parietal (PLA) cortical regions related to language function. However, they have usually been employed as a complementary method during sleep-awake surgery. METHODS: Five male and two female patients received surgery for tumors located near language areas. Six patients received general anesthesia and the sleep-awake method was used for patients with tumors located near the cortical language areas. We performed motor and somatosensory mapping with CCEPs to identify language areas and we monitored responses during surgery based on the mapping results. Electrocorticography was performed throughout the surgery. Single pulses of 1 ms duration at 5-20 mA were delivered by direct cortical stimulation using one grid at one region (e.g., FLA) and then recording using a second gird at another area (i.e., PLA). Next, reversed stimulation (from PLA to FLA) was performed. The charge density for electrical stimulation was computed. Sensibility, specificity, predictive positive values, and predicted negative values were also computed for warning alterations of CCEPs. RESULTS: Gross tumor resection was achieved in four cases. The first postsurgical day showed language alterations in three patients, but one year later six patients remained asymptomatic and one patient showed the same symptomatology as previously. Seizures were observed in two patients that were easily jugulated. CCEPs predicted warning events with high sensibility and specificity. Postsurgical language deficits were mostly transitory. Although the latency between frontal and parietal regions showed symmetry, the amplitude and the relationship between amplitude and latency were different for FLA than for PLA. The charge density elicited by CCEPs ranged from 442 to 1768 µC/cm2. CONCLUSIONS: CCEPs have proven to be a reliable neurophysiological technique for mapping and monitoring the regions associated with language function in a small group of anesthetized patients. The high correlation between warning events and postsurgical outcomes suggested a high sensitivity and specificity and CCEPs can be used systematically in patients under general anesthesia. Nevertheless, the small number of studied patients suggests considering these results cautiously.


Assuntos
Neoplasias Encefálicas , Humanos , Feminino , Masculino , Neoplasias Encefálicas/cirurgia , Vigília , Encéfalo , Idioma , Poliésteres
14.
Biomed Eng Online ; 21(1): 58, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038875

RESUMO

BACKGROUND: Motor cortex stimulation applied as a clinical treatment for neuropathic disorders for decades. With stimulation electrodes placed directly on the cortical surface, this neuromodulation method provides higher spatial resolution than other non-invasive therapies. Yet, the therapeutic effects reported were not in conformity with different syndromes. One of the main issues is that the stimulation parameters are always determined by clinical experience. The lack of understanding about how the stimulation current propagates in the cortex and various stimulation parameters and configurations obstruct the development of this method. METHODS: In this study, we investigated the effect of different stimulation configurations on cortical responses to motor cortical stimulations using intrinsic optical imaging. RESULTS: Our results showed that the cortical activation of electrical stimulation is not only related to the current density but also related to the propagation distance. Besides, stimulation configurations also affect the propagation of the stimulation current. CONCLUSIONS: All these results provide preliminary experimental evidence for parameter and electrode configuration optimizations.


Assuntos
Córtex Motor , Estimulação Elétrica , Eletrodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Projetos Piloto
15.
Artigo em Russo | MEDLINE | ID: mdl-35942834

RESUMO

OBJECTIVE: To develop a system for preoperative prediction of individual activations of motor and speech areas in patients with brain gliomas using resting state fMRI (rsfMRI), task-based fMRI (tb-fMRI), direct cortical stimulation and machine learning methods. MATERIAL AND METHODS: Thirty-three patients with gliomas (19 females and 14 males aged 19 - 540) underwent DCS-assisted resection of tumor (19 ones with lesion of motor zones and 14 patients with lesions of speech areas). Awake craniotomy was performed in 14 cases. Preoperative mapping was performed according to special MRI protocol (T1, tb-fMRI, rs-fMRI).Machine learning system was built on open source data from The Human Connectome Project. MR data of 200 healthy subjects from this database were used for system pre-training. Further, this system was trained on the data of our patients with gliomas. RESULTS: In DCS, we obtained 332 stimulations including 173 with positive response. According to comparison of functional activations between rs-fMRI and tb-fMRI, there were more positive DCS responses predicted by rs-fMRI (132 vs 112). Non-response stimulation sites (negative) prevailed in tb-fMRI activations (69 vs 44). CONCLUSION: The developed method with machine learning based on resting state fMRI showed greater sensitivity compared to classical task-based fMRI after verification with DCS: 0.72 versus 0.66 (p<0.05) for identifying the speech zones and 0.79 versus 0.62 (p<0.05) for motor areas.


Assuntos
Neoplasias Encefálicas , Glioma , Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Glioma/diagnóstico por imagem , Glioma/cirurgia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino
16.
Epilepsy Behav ; 122: 108116, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139619

RESUMO

Electrocortical stimulation mapping (ESM) is often performed in patients undergoing stereoelectroencephalography (SEEG) prior to epilepsy surgery, with the goal of identifying functional cortex and preserving it postoperatively. ESM may also evoke a patient's typical seizure semiology. The purpose of this study was to determine whether the sites at which typical auras are evoked during ESM are associated with other known clinical and electrophysiologic biomarkers of the epileptogenic zone: the seizure onset zone (SOZ), the early spread zone (ES), and high-frequency oscillations (HFOs). We found that the sites at which auras were provoked were not consistently associated with known biomarkers (p = 0.09). We conclude that evoked auras during ESM may reflect electrical spread rather than true epileptogenicity, and that a larger study is needed to assess their potential value as independent epileptic biomarkers.


Assuntos
Eletroencefalografia , Epilepsia , Biomarcadores , Mapeamento Encefálico , Epilepsia/diagnóstico , Humanos , Convulsões
17.
Neurosurg Rev ; 44(4): 1903-1920, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33009990

RESUMO

The objective of this systematic review is to create an overview of the literature on the comparison of navigated transcranial magnetic stimulation (nTMS) as a mapping tool to the current gold standard, which is (intraoperative) direct cortical stimulation (DCS) mapping. A search in the databases of PubMed, EMBASE, and Web of Science was performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations were used. Thirty-five publications were included in the review, describing a total of 552 patients. All studies concerned either mapping of motor or language function. No comparative data for nTMS and DCS for other neurological functions were found. For motor mapping, the distances between the cortical representation of the different muscle groups identified by nTMS and DCS varied between 2 and 16 mm. Regarding mapping of language function, solely an object naming task was performed in the comparative studies on nTMS and DCS. Sensitivity and specificity ranged from 10 to 100% and 13.3-98%, respectively, when nTMS language mapping was compared with DCS mapping. The positive predictive value (PPV) and negative predictive value (NPV) ranged from 17 to 75% and 57-100% respectively. The available evidence for nTMS as a mapping modality for motor and language function is discussed.


Assuntos
Neoplasias Encefálicas , Neurocirurgia , Mapeamento Encefálico , Neoplasias Encefálicas/cirurgia , Humanos , Neuronavegação , Estudos Prospectivos , Estudos Retrospectivos , Estimulação Magnética Transcraniana
18.
Molecules ; 26(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641332

RESUMO

L-DOPA therapy in Parkinson's disease (PD) is limited due to emerging L-DOPA-induced dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor (5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal 5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We assessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs) and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) measured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone (10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg) and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in patients with PD.


Assuntos
Discinesia Induzida por Medicamentos/prevenção & controle , Levodopa/administração & dosagem , Oxidopamina/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Receptor 5-HT1A de Serotonina/metabolismo , Cloridrato de Vilazodona/administração & dosagem , Animais , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Regulação da Expressão Gênica , Levodopa/efeitos adversos , Masculino , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Cloridrato de Vilazodona/farmacologia
19.
Mov Disord ; 35(12): 2348-2353, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32914888

RESUMO

BACKGROUND: Converging literatures suggest that deep brain stimulation (DBS) in Parkinson's disease affects multiple circuit mechanisms. One proposed mechanism is the normalization of primary motor cortex (M1) pathophysiology via effects on the hyperdirect pathway. OBJECTIVES: We hypothesized that DBS would reduce the current intensity necessary to modulate motor-evoked potentials from focally applied direct cortical stimulation (DCS). METHODS: Intraoperative subthalamic DBS, DCS, and preoperative diffusion tensor imaging data were acquired in 8 patients with Parkinson's disease. RESULTS: In 7 of 8 patients, DBS significantly reduced the M1 DCS current intensity required to elicit motor-evoked potentials. This neuromodulation was specific to select DBS bipolar configurations. In addition, the volume of activated tissue models of these configurations were significantly associated with overlap of the hyperdirect pathway. CONCLUSIONS: DBS reduces the current necessary to elicit a motor-evoked potential using DCS. This supports a circuit mechanism of DBS effectiveness, potentially involving the hyperdirect pathway that speculatively may underlie reductions in hypokinetic abnormalities in Parkinson's disease. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Imagem de Tensor de Difusão , Humanos , Doença de Parkinson/terapia
20.
J Neurooncol ; 148(3): 587-598, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32524393

RESUMO

INTRODUCTION: 20.8% of the United States population and 67% of the European population speak two or more languages. Intraoperative different languages, mapping, and localization are crucial. This investigation aims to address three questions between BL and ML patients: (1) Are there differences in complications (i.e. seizures) and DECS techniques during intra-operative brain mapping? (2) Is EOR different? and (3) Are there differences in the recovery pattern post-surgery? METHODS: Data from 56 patients that underwent left-sided awake craniotomy for tumors infiltrating possible dominant hemisphere language areas from September 2016 to June 2019 were identified and analyzed in this study; 14 BL and 42 ML control patients. Patient demographics, education level, and the age of language acquisition were documented and evaluated. fMRI was performed on all participants. RESULTS: 0 (0%) BL and 3 (7%) ML experienced intraoperative seizures (P = 0.73). BL patients received a higher direct DECS current in comparison to the ML patients (average = 4.7, 3.8, respectively, P = 0.03). The extent of resection was higher in ML patients in comparison to the BL patients (80.9 vs. 64.8, respectively, P = 0.04). The post-operative KPS scores were higher in BL patients in comparison to ML patients (84.3, 77.4, respectively, P = 0.03). BL showed lower drop in post-operative KPS in comparison to ML patients (- 4.3, - 8.7, respectively, P = 0.03). CONCLUSION: We show that BL patients have a lower incidence of intra-operative seizures, lower EOR, higher post-operative KPS and tolerate higher DECS current, in comparison to ML patients.


Assuntos
Neoplasias Encefálicas/cirurgia , Craniotomia/métodos , Glioma/cirurgia , Idioma , Convulsões/epidemiologia , Vigília , Mapeamento Encefálico/métodos , Neoplasias Encefálicas/patologia , Feminino , Seguimentos , Glioma/patologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/métodos , Prognóstico , Estudos Retrospectivos , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA