Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949641

RESUMO

Enrichment or depletion ranging from -40 to +100% in the major isotopes 16O and 24Mg were observed experimentally in solids condensed from carbonaceous plasma composed of CO2/MgCl2/Pentanol or N2O/Pentanol for O and MgCl2/Pentanol for Mg. In NanoSims imaging, isotope effects appear as micrometer-size hotspots embedded in a carbonaceous matrix showing no isotope fractionation. For Mg, these hotspots are localized in carbonaceous grains, which show positive and negative isotopic effects so that the whole grain has a standard isotope composition. For O, no specific structure was observed at hotspot locations. These results suggest that MIF (mass-independent fractionation) effects can be induced by chemical reactions taking place in plasma. The close agreement between the slopes of the linear correlations observed between δ25Mg versus δ26Mg and between δ17O versus δ18O and the slopes calculated using the empirical MIF factor η discovered in ozone [M. H. Thiemens, J. E. Heidenreich, III. Science 219, 1073-1075; C. Janssen, J. Guenther, K. Mauersberger, D. Krankowsky. Phys. Chem. Chem. Phys 3, 4718-4721] attests to the ubiquity of this process. Although the chemical reactants used in the present experiments cannot be directly transposed to the protosolar nebula, a similar MIF mechanism is proposed for oxygen isotopes: at high temperature, at the surface of grains, a mass-independent isotope exchange could have taken place between condensing oxides and oxygen atoms originated form the dissociation of CO or H2O gas.

2.
Proc Natl Acad Sci U S A ; 117(4): 1884-1889, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932423

RESUMO

We determined interstellar cosmic ray exposure ages of 40 large presolar silicon carbide grains extracted from the Murchison CM2 meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga ago. A majority of the grains have interstellar lifetimes of <300 Ma, which is shorter than theoretical estimates for large grains. These grains condensed in outflows of asymptotic giant branch stars <4.9 Ga ago that possibly formed during an episode of enhanced star formation ∼7 Ga ago. A minority of the grains have ages >1 Ga. Longer lifetimes are expected for large grains. We determined that at least 12 of the analyzed grains were parts of aggregates in the interstellar medium: The large difference in nuclear recoil loss of cosmic ray spallation products 3He and 21Ne enabled us to estimate that the irradiated objects in the interstellar medium were up to 30 times larger than the analyzed grains. Furthermore, we estimate that the majority of the grains acquired the bulk of their cosmogenic nuclides in the interstellar medium and not by exposure to an enhanced particle flux of the early active sun.

3.
Chimia (Aarau) ; 76(1-2): 9-17, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38069744

RESUMO

Noble gases are very rare elements in most relevant samples in geochemistry and cosmochemistry. Noble gases may perhaps also look rather boring to chemists, as they do not form any stable compounds. However, it is just their rarity and chemical inertness which makes noble gases versatile elements in a very wide range of fields, such as oceanography, climatology, environmental sciences, meteorite studies, rock dating, early solar system and early Earth history, and many others. Mass spectrometry is by far the main analytical tool in noble gas geochemistry and cosmochemistry, partly because the rarity of noble gases often allows researchers to recognize in the same sample different noble gas "components" of different origin and hence different isotopic composition. This contribution attempts to illustrate the wide range of applications of noble gas mass spectrometry in the Earth sciences with selected examples.

4.
Proc Natl Acad Sci U S A ; 115(34): 8547-8552, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30082398

RESUMO

Chondrites and their main components, chondrules, are our guides into the evolution of the Solar System. Investigating the history of chondrules, including their volatile element history and the prevailing conditions of their formation, has implications not only for the understanding of chondrule formation and evolution but for that of larger bodies such as the terrestrial planets. Here we have determined the bulk chemical composition-rare earth, refractory, main group, and volatile element contents-of a suite of chondrules previously dated using the Pb-Pb system. The volatile element contents of chondrules increase with time from ∼1 My after Solar System formation, likely the result of mixing with a volatile-enriched component during chondrule recycling. Variations in the Mn/Na ratios signify changes in redox conditions over time, suggestive of decoupled oxygen and volatile element fugacities, and indicating a decrease in oxygen fugacity and a relative increase in the fugacities of in-fluxing volatiles with time. Within the context of terrestrial planet formation via pebble accretion, these observations corroborate the early formation of Mars under relatively oxidizing conditions and the protracted growth of Earth under more reducing conditions, and further suggest that water and volatile elements in the inner Solar System may not have arrived pairwise.

5.
Geostand Geoanal Res ; 44(4): 695-710, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33376464

RESUMO

Beryllium-10 (t 1/2 = 1.4 Ma) is a short-lived radionuclide present in the early Solar System. It is produced solely by irradiation reactions and can provide constraints on the astrophysical environment of the Sun's formation. Calcium- and aluminium-rich inclusions (CAIs), the first solids formed in the Solar System, show clear evidence for live 10Be at their time of formation, but it is unclear whether they record the same initial 10Be/9Be ratio. In this study, we examine the secondary ion mass spectrometry methods used to determine the initial 10Be/9Be ratio in meteoritic inclusions. Based on analyses of synthesised matrix-matched glass reference materials, we show that the effects of differing major element bulk compositions on the secondary ion yields of Be and B are minor for relevant phases. We demonstrate the importance of using the mean square weighted deviation (MSWD) to interpret the significance of the initial 10Be/9Be value. For thirty-two CAIs, we re-calculated the regressions using literature data, finding that several have unacceptably high MSWD. We calculate the effects of possible sources of isotopic disturbance. Finally, we outline best practices for reporting 10Be-10B data, to enable a more refined determination of the initial 10Be/9Be ratio in the early Solar System.

6.
Proc Natl Acad Sci U S A ; 114(5): 870-874, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096422

RESUMO

The hydrogen isotope ratio (D/H) is commonly used to reconstruct the chemical processes at the origin of water and organic compounds in the early solar system. On the one hand, the large enrichments in deuterium of the insoluble organic matter (IOM) isolated from the carbonaceous meteorites are interpreted as a heritage of the interstellar medium or resulting from ion-molecule reactions taking place in the diffuse part of the protosolar nebula. On the other hand, the molecular structure of this IOM suggests that organic radicals have played a central role in a gas-phase organosynthesis. So as to reproduce this type of chemistry between organic radicals, experiments based on a microwave plasma of CH4 have been performed. They yielded a black organic residue in which ion microprobe analyses revealed hydrogen isotopic anomalies at a submicrometric spatial resolution. They likely reflect differences in the D/H ratios between the various CHx radicals whose polymerization is at the origin of the IOM. These isotopic heterogeneities, usually referred to as hot and cold spots, are commensurable with those observed in meteorite IOM. As a consequence, the appearance of organic radicals in the ionized regions of the disk surrounding the Sun during its formation may have triggered the formation of organic compounds.

7.
Angew Chem Int Ed Engl ; 58(21): 6826-6844, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30633432

RESUMO

Stable isotope ratio measurements have been used as a measure of a wide variety of processes, including solar system evolution, geological formational temperatures, tracking of atmospheric gas and aerosol chemical transformation, and is the only means by which past global temperatures may be determined over long time scales. Conventionally, isotope effects derive from differences of isotopically substituted molecules in isotope vibrational energy, bond strength, velocity, gravity, and evaporation/condensation. The variations in isotope ratio, such as 18 O/16 O (δ18 O) and 17 O/16 O (δ17 O) are dependent upon mass differences with δ17 O/δ18 O=0.5, due to the relative mass differences (1 amu vs. 2 amu). Relations that do not follow this are termed mass independent and are the focus of this Minireview. In chemical reactions such as ozone formation, a δ17 O/δ18 O=1 is observed. Physical chemical models capture most parameters but differ in basic approach and are reviewed. The mass independent effect is observed in atmospheric species and used to track their chemistry at the modern and ancient Earth, Mars, and the early solar system (meteorites).


Assuntos
Atmosfera/análise , Clima , Isótopos de Oxigênio/análise , Planeta Terra , Marte , Meteoroides
8.
Astrobiology ; 24(S1): S57-S75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498821

RESUMO

The materials that form the diverse chemicals and structures on Earth-from mountains to oceans and biological organisms-all originated in a universe dominated by hydrogen and helium. Over billions of years, the composition and structure of the galaxies and stars evolved, and the elements of life, CHONPS, were formed through nucleosynthesis in stellar cores. Climactic events such as supernovae and stellar collisions produced heavier elements and spread them throughout the cosmos, often to be incorporated into new, more metal-rich stars. Stars typically form in molecular clouds containing small amounts of dust through the collapse of a high-density core. The surrounding nebular material is then pulled into a protoplanetary disk, from which planets, moons, asteroids, and comets eventually accrete. During the accretion of planetary systems, turbulent mixing can expose matter to a variety of different thermal and radiative environments. Chemical and physical changes in planetary system materials occur before and throughout the process of accretion, though many factors such as distance from the star, impact history, and level of heating experienced combine to ultimately determine the final geophysical characteristics. In Earth's planetary system, called the Solar System, after the orbits of the planets had settled into their current configuration, large impacts became rare, and the composition of and relative positions of objects became largely fixed. Further evolution of the respective chemical and physical environments of the planets-geosphere, hydrosphere, and atmosphere-then became dependent on their local geochemistry, their atmospheric interactions with solar radiation, and smaller asteroid impacts. On Earth, the presence of land, air, and water, along with an abundance of important geophysical and geochemical phenomena, led to a habitable planet where conditions were right for life to thrive.


Assuntos
Planetas , Sistema Solar , Planeta Terra , Atmosfera/química , Planetas Menores , Evolução Planetária , Meio Ambiente Extraterreno/química
9.
Geochim Cosmochim Acta ; 271: 116-131, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32214433

RESUMO

We report the structure, chemical composition, O, Al-Mg, He, and Ne isotope systematics of an interplanetary dust particle, "Manchanito". These analyses indicate that Manchanito solidified as refractory glass (with oxidized Fe but reduced Ti) in a chondrule-like formation environment more than 3.2 Myr after CAIs, after which it was exposed to Q-like noble gases in the dissipating solar nebula. Manchanito's He and Ne isotopic composition and concentrations are similar to those measured in samples of comet Wild 2, from which we infer that Manchanito's parent body was a comet. We propose that after formation and exposure to Q-like gases, Manchanito was transported to the outer Solar System where it came into contact with organics and volatile ices on its cometary parent body. Manchanito provides additional evidence that cometary solids have been subjected to energetic processing and large-scale transport in a wide range of environments in the Solar System.

10.
Icarus ; 317: 59-65, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31213726

RESUMO

Phosphorus is a minor element that controls the formation of several key planetary minerals. It is also an element critical to the development of life. A common assumption of phosphorus chemistry is that at low temperatures, phosphorus would have been a volatile component of ices or gases in the outer Solar System. Here I propose that phosphorus was depleted as a volatile throughout the developing solar system, and as a result, volatile forms of phosphorus would have been minimal, even in the cold regions of the solar nebula. Based on thermodynamic equilibrium models and metal phosphidation kinetics coupled to a simple 1D gas diffusion model, phosphorus migrated rapidly to the inner Solar System, forming solids such as phosphides and phosphates, and removing volatile phosphorus across large portions of the Solar System.

11.
Icarus ; 323: 1-15, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30739951

RESUMO

Silicon and Mg in differentiated rocky bodies exhibit heavy isotope enrichments that have been attributed to evaporation of partially or entirely molten planetesimals. We evaluate the mechanisms of planetesimal evaporation in the early solar system and the conditions that controled attendant isotope fractionations. Energy balance at the surface of a body accreted within ~1 Myr of CAI formation and heated from within by 26Al decay results in internal temperatures exceeding the silicate solidus, producing a transient magma ocean with a thin surface boundary layer of order < 1 meter that would be subject to foundering. Bodies that are massive enough to form magma oceans by radioisotope decay (≥ 0.1% M ⊕) can retain hot rock vapor even in the absence of ambient nebular gas. We find that a steady-state rock vapor forms within minutes to hours and results from a balance between rates of magma evaporation and atmospheric escape. Vapor pressure buildup adjacent to the surfaces of the evaporating magmas would have inevitably led to an approach to equilibrium isotope partitioning between the vapor phase and the silicate melt. Numerical simulations of this near-equilibrium evaporation process for a body with a radius of ~ 700 km yield a steady-state far-field vapor pressure of 10-8 bar and a vapor pressure at the surface of 10-4 bar, corresponding to 95% saturation. Approaches to equilibrium isotope fractionation between vapor and melt should have been the norm during planet formation due to the formation of steady-state rock vapor atmospheres and/or the presence of protostellar gas. We model the Si and Mg isotopic composition of bulk Earth as a consequence of accretion of planetesimals that evaporated subject to the conditions described above. The results show that the best fit to bulk Earth is for a carbonaceous chondrite-like source material with about 12% loss of Mg and 15% loss of Si resulting from near-equilibrium evaporation into the solar protostellar disk of H2 on timescales of 104 to 105 years.

12.
Life (Basel) ; 8(2)2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29757217

RESUMO

A hypothesis in prebiotic chemistry argues that organics were delivered to the early Earth in abundance by meteoritic sources. This study tests that hypothesis by measuring how the transfer of organic matter to the surface of Earth is affected by energy-dissipation processes such as ablation and airbursts. Exogenous delivery has been relied upon as a source of primordial material, but it must stand to reason that other avenues (i.e., hydrothermal vents, electric discharge) played a bigger role in the formation of life as we know it on Earth if exogenous material was unable to deliver significant quantities of organics. For this study, we look at various properties of meteors such as initial velocity and mass of the object, and atmospheric composition to see how meteors with different initial velocities and masses ablate. We find that large meteors do not slow down fast enough and thus impact the surface, vaporizing their components; fast meteors with low masses are vaporized during entry; and meteors with low velocities and high initial masses reach the surface. For those objects that survive to reach the surface, about 60 to >99% of the mass is lost by ablation. Large meteors that fragment are also shown to spread out over increasingly larger areas with increasing mass, and small meteors (~1 mm) are subjected to intense thermal heating, potentially degrading intrinsic organics. These findings are generally true across most atmospheric compositions. These findings provide several caveats to extraterrestrial delivery models that—while a viable point source of organics—likely did not supply as much prebiotic material as an effective endogenous production route.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA