Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2403424121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159367

RESUMO

Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.


Assuntos
Proteínas de Transporte , Comovirus , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Vigna , Comovirus/metabolismo , Comovirus/fisiologia , Comovirus/genética , Vigna/virologia , Vigna/metabolismo , Nicotiana/virologia , Nicotiana/metabolismo , Nicotiana/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/virologia , Cisteína Proteases/metabolismo , Cisteína Proteases/genética , Plantas Geneticamente Modificadas , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Potyvirus/fisiologia , Potyvirus/metabolismo , Endopeptidases
2.
Cancer Immunol Immunother ; 73(3): 51, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349406

RESUMO

Immune checkpoint therapy (ICT) for cancer can yield dramatic clinical responses; however, these may only be observed in a minority of patients. These responses can be further limited by subsequent disease recurrence and resistance. Combination immunotherapy strategies are being developed to overcome these limitations. We have previously reported enhanced efficacy of combined intratumoral cowpea mosaic virus immunotherapy (CPMV IIT) and ICT approaches. Lymphocyte-activation gene-3 (LAG-3) is a next-generation inhibitory immune checkpoint with broad expression across multiple immune cell subsets. Its expression increases on activated T cells and contributes to T cell exhaustion. We observed heightened efficacy of a combined CPMV IIT and anti-LAG-3 treatment in a mouse model of melanoma. Further, LAG-3 expression was found to be increased within the TME following intratumoral CPMV administration. The integration of CPMV IIT with LAG-3 inhibition holds significant potential to improve treatment outcomes by concurrently inducing a comprehensive anti-tumor immune response, enhancing local immune activation, and mitigating T cell exhaustion.


Assuntos
Comovirus , Melanoma , Humanos , Animais , Camundongos , Terapia Combinada , Imunoterapia , Modelos Animais de Doenças , Melanoma/terapia
3.
BMC Plant Biol ; 24(1): 599, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918732

RESUMO

BACKGROUND: Cowpea wilt is a harmful disease caused by Fusarium oxysporum, leading to substantial losses in cowpea production. Melatonin reportedly regulates plant immunity to pathogens; however the specific regulatory mechanism underlying the protective effect of melatonin pretreated of cowpea against Fusarium oxysporum remains known. Accordingly, the study sought to evaluate changes in the physiological and biochemical indices of cowpea following melatonin treated to facilitate Fusarium oxysporum resistance and elucidate the associated molecular mechanism using a weighted gene coexpression network. RESULTS: Treatment with 100 µM melatonin was effective in increasing cowpea resistance to Fusarium oxysporum. Glutathione peroxidase (GSH-PX), catalase (CAT), and salicylic acid (SA) levels were significantly upregulated, and hydrogen peroxide (H2O2) levels were significantly downregulated in melatonin treated samples in roots. Weighted gene coexpression network analysis of melatonin- and Fusarium oxysporum-treated samples identified six expression modules comprising 2266 genes; the number of genes per module ranged from 9 to 895. In particular, 17 redox genes and 32 transcription factors within the blue module formed a complex interconnected expression network. KEGG analysis revealed that the associated pathways were enriched in secondary metabolism, peroxisomes, phenylalanine metabolism, flavonoids, and flavonol biosynthesis. More specifically, genes involved in lignin synthesis, catalase, superoxide dismutase, and peroxidase were upregulated. Additionally, exogenous melatonin induced activation of transcription factors, such as WRKY and MYB. CONCLUSIONS: The study elucidated changes in the expression of genes associated with the response of cowpea to Fusarium oxysporum under melatonin treated. Specifically, multiple defence mechanisms were initiated to improve cowpea resistance to Fusarium oxysporum.


Assuntos
Resistência à Doença , Fusarium , Redes Reguladoras de Genes , Melatonina , Doenças das Plantas , Vigna , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Melatonina/farmacologia , Melatonina/metabolismo , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos , Fusarium/fisiologia , Vigna/genética , Vigna/microbiologia , Vigna/efeitos dos fármacos , Vigna/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Salicílico/metabolismo
4.
Mol Pharm ; 21(6): 2727-2739, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709860

RESUMO

The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying-mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.


Assuntos
Proteínas do Capsídeo , RNA Mensageiro , Vírus do Mosaico do Tabaco , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Vírus do Mosaico do Tabaco/genética , Proteínas do Capsídeo/genética , Bromovirus/genética , Nanopartículas/química , Humanos , Feminino , Vacinas contra COVID-19/administração & dosagem , Vírion/genética , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Lipossomos
5.
Plant Dis ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235413

RESUMO

Sesame (Sesamum indicum L.) is one of the primary oilseed crops in China, and often intercropped with shorter crops like peanuts and soybeans. Cowpea mild mottle virus (CpMMV), a member of the Betaflexiviridae family, has been reported in numerous countries worldwide and can infect natural hosts including cowpeas, soybeans, common beans, peanuts, and tomatoes, causing symptoms such as leaf mottling, mosaic patterns, or spotted patterns on the infected leaves. CpMMV is transmitted by whiteflies in nature and by mechanical inoculation in laboratory settings (Iwaki et al., 1982). In September 2023, while surveying soybean virus diseases in Huang-Huai-Hai region of China, we observed sesame plants near a soybean field (longitude 115.76°E, latitude 32.89°N) showing stunted growth, leaf mottling, and mosaic patterns. These symptoms affected approximately one-third of the sesame plants in a 0.1-hectare field. To identify the virus associated with symptomatic leaves, two sesame samples were collected for small RNA deep sequencing. Total RNA was extracted using TRIZOL and sent to BGI for library construction and sequencing with the BGISEQ-500 sequencer. De novo assembly of sRNA reads was performed using Velvet software (version 1.2.10) as described (Su et al., 2016), followed by BLASTn and BLASTx searches against the nonredundant nucleotide and protein databases. CpMMV was identified from sesame plants, with twenty-three contigs ranging from 51 to 368 nucleotides showing similarity to CpMMV, covering 33.7% of the total CpMMV genome. The largest CpMMV contig, spanning 368 nucleotides (nt), exhibited 97% identity to CpMMV isolate Anhui_SZ_DN1383 (Genbank Accession No. MN908944.1) from soybean (Wei et al., 2020). To validate the presence of CpMMV in sesame, RNA from each sample was individually extracted, and CpMMV was detected by reverse-transcription polymerase chain reaction (RT-PCR) according to the manufacturer's instructions (Vazyme, Nanjing, China). Primers were designed based on two small RNA-assembled contigs spanning the CpMMV triple gene block protein 1 (TGBp1) and TGBp2 ORF (Forward: 5´-GGTACCAAAAGATAAGCTTGTTATCTTG-3´; Reverse: 5´-TTAGTACCGTCTCTGTAACAGCCA-3´). Both sesame samples tested RT-PCR positive for CpMMV. The PCR amplicon (597 nt) of these two sesame samples were purified and sequenced. Sequences shared 100% nucleotide identity between them. Nucleotide sequence comparisons confirmed the virus as CpMMV (Accession No. PP767740), exhibiting >99% identity to CpMMV isolate HN_SQ (MW354940.1). Phylogenetic analysis of the 597 nt amplicon, using MEGA7 with eighteen other CpMMV isolates, revealed that the CpMMV isolate from sesame was most closely related to soybean isolates HN_SQ (MW354940.1) and Anhui_SZ_DN1383 (MN908944.1). To fulfill Koch's postulates, healthy sesame leaves were rub-inoculated with crude extracts from CpMMV-infected field samples. RT-PCR confirmed systemic infection at 4 weeks post-inoculation, with symptoms of stunted height, leaf mottle, and mosaic mirroring those observed in the field. Previously, CpMMV has been experimentally documented to infect sesame (Thouvenel et al., 1982), but to our best knowledge, this is the first report of CpMMV infecting sesame under natural conditions. With widespread whiteflies in the Huang-Huai-Hai region of China, CpMMV poses a significant risk to sesame production and may serve as a reservoir, threatening nearby crops such as soybeans.

6.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674099

RESUMO

In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection.


Assuntos
Resistência à Doença , Fusarium , Germinação , Nanopartículas , Doenças das Plantas , Plântula , Dióxido de Silício , Fusarium/efeitos dos fármacos , Dióxido de Silício/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nanopartículas/química , Germinação/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/microbiologia , Vigna/microbiologia , Vigna/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Porosidade
7.
J Environ Manage ; 353: 120172, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38310799

RESUMO

Understanding pesticide residue patterns in crops is important for ensuring human health. However, data on residue accumulation and distribution in cowpeas grown in the greenhouse and open field are lacking. Our results suggest that acetamiprid, chlorantraniliprole, cyromazine, and thiamethoxam residues in greenhouse cowpeas were 1.03-15.32 times higher than those in open field cowpeas. Moreover, repeated spraying contributed to the accumulation of pesticide residues in cowpeas. Clothianidin, a thiamethoxam metabolite, was detected at 1.04-86.00 µg/kg in cowpeas. Pesticide residues in old cowpeas were higher than those in tender cowpeas, and the lower half of the plants had higher pesticide residues than did the upper half. Moreover, pesticide residues differed between the upper and lower halves of the same cowpea pod. Chronic and acute dietary risk assessments indicated that the human health risk was within acceptable levels of cowpea consumption. Given their high residue levels and potential accumulation, pesticides in cowpeas should be continuously assessed.


Assuntos
Resíduos de Praguicidas , Praguicidas , Vigna , Humanos , Tiametoxam/análise , Tiametoxam/metabolismo , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Vigna/metabolismo , Bioacumulação , Contaminação de Alimentos/análise
8.
J Sci Food Agric ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324569

RESUMO

BACKGROUND: Various agricultural sidestreams have been demonstrated as feedstock to produce cellulose. To the best of our knowledge, there is no research work on the potential of agricultural sidestream from cowpea (Vigna unguiculata (L.) Walp.), a neglected and underutilised crop to produce cellulose fibres. Conventional methods to produce cellulose consume large amounts of chemicals (NaOH) and produce a high amount of effluent waste. Herein, we investigated extrusion pre-treatment without and with an alkali followed by bleaching as an alternative method to conventional alkaline pre-treatment followed by bleaching to produce cellulose fibres from cowpea sidestream. RESULTS: Cellulose extracted by extrusion without and with mild alkali followed by bleaching consumed about 20 times less NaOH compared to the conventional method and produced less effluent waste. Extrusion with mild alkali followed by bleaching resulted in higher cellulose yield, purity, and crystallinity compared to extrusion without an alkali followed by bleaching. However, the conventional method resulted in higher cellulose yield, purity and crystallinity compared to extrusion pre-treatment followed by bleaching. Scanning electron microscopy revealed that micro-sized cellulose fibres with an average diameter of 10-15 µm were extracted using both methods. Notably, cellulose fibres extracted using extrusion pre-treatment were shorter than those extracted using the conventional method. CONCLUSION: Extrusion pre-treatment is a promising continuous alternative to alkaline pre-treatment to produce micro-sized cellulose fibres from low-value, underutilised cowpea lignocellulosic sidestream, for potential use as a filler in composite plastics. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

9.
Plant J ; 110(5): 1255-1270, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315556

RESUMO

Chewing herbivores activate plant defense responses through a combination of mechanical wounding and elicitation by herbivore-associated molecular patterns (HAMPs). HAMPs are wound response amplifiers; however, specific defense outputs may also exist that strictly require HAMP-mediated defense signaling. To investigate HAMP-mediated signaling and defense responses, we characterized cowpea (Vigna unguiculata) transcriptome changes following elicitation by inceptin, a peptide HAMP common in Lepidoptera larvae oral secretions. Following inceptin treatment, we observed large-scale reprogramming of the transcriptome consistent with three different response categories: (i) amplification of mechanical wound responses, (ii) temporal extension through accelerated or prolonged responses, and (iii) examples of inceptin-specific elicitation and suppression. At both early and late timepoints, namely 1 and 6 h, large sets of transcripts specifically accumulated following inceptin elicitation. Further early inceptin-regulated transcripts were classified as reversing changes induced by wounding alone. Within key signaling- and defense-related gene families, inceptin-elicited responses included target subsets of wound-induced transcripts. Transcripts displaying the largest inceptin-elicited fold changes included transcripts encoding terpene synthases (TPSs) and peroxidases (POXs) that correspond with induced volatile production and increased POX activity in cowpea. Characterization of inceptin-elicited cowpea defenses via heterologous expression in Nicotiana benthamiana demonstrated that specific cowpea TPSs and POXs were able to confer terpene emission and the reduced growth of beet armyworm (Spodoptera exigua) herbivores, respectively. Collectively, our present findings in cowpea support a model where HAMP elicitation both amplifies concurrent wound responses and specifically contributes to the activation of selective outputs associated with direct and indirect antiherbivore defenses.


Assuntos
Fabaceae , Vigna , Animais , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Plantas , Spodoptera , Terpenos/metabolismo , Vigna/genética
10.
BMC Plant Biol ; 23(1): 593, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008746

RESUMO

BACKGROUND: Due to the factor of water deficit, which has placed human food security at risk by causing a 20% annual reduction in agricultural products, addressing this growing peril necessitates the adoption of inventive strategies aimed at enhancing plant tolerance. One such promising approach is employing elicitors such as 24-epibrassinolide (EBR) and yeast extract, which are potent agents capable of triggering robust defense responses in plants. By employing these elicitors, crops can develop enhanced adaptive mechanisms to combat water deficit and improve their ability to withstand drought condition. This study investigates the impact of different levels of EBR (0, 5, 10 µm) and yeast extract (0 and 12 g/l) on enhancing the tolerance of cowpea to water deficit stress over two growing seasons. RESULTS: The findings of this study demonstrate that, the combined application of EBR (especially 10 µm) and yeast extract (12 g/l) can increase seed yield (18%), 20-pod weight (16%), the number of pods per plant (18%), total chlorophyll content (90%), and decrease malondialdehyde content (45%) in cowpea, compared to plants grown under water deficit stress without these treatments. Upon implementing these treatments, impressive results were obtained, with the highest recorded values observed for the seed yield (1867.55 kg/ha), 20-pod weight (16.29 g), pods number per plant (9), and total chlorophyll content (19.88 mg g-1 FW). The correlation analysis indicated a significant relationship between the seed yield, and total chlorophyll (0.74**), carotenoids (0.82**), weight of 20 seeds (0.67**), and number of pods (0.90**). These traits should be prioritized in cowpea breeding programs focusing on water deficit stress. CONCLUSIONS: The comprehensive exploration of the effects of EBR and yeast extract across various levels on cowpea plants facing water deficit stress presents a pivotal contribution to the agricultural domain. This research illuminates a promising trajectory for future agricultural practices and users seeking sustainable solutions to enhance crops tolerance. Overall, the implications drawn from this study contribute significantly towards advancing our understanding of plant responses to water deficit stress while providing actionable recommendations for optimizing crop production under challenging environmental conditions.


Assuntos
Vigna , Água , Humanos , Melhoramento Vegetal , Clorofila , Desidratação , Plantas
11.
Mol Pharm ; 20(1): 500-507, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399598

RESUMO

Cowpea mosaic virus (CPMV) has been developed as a promising nanoplatform technology for cancer immunotherapy; when applied as in situ vaccine, CPMV exhibits potent, systemic, and durable efficacy. While CPMV is not infectious to mammals, it is infectious to legumes; therefore, agronomic safety needs to be addressed to broaden the translational application of CPMV. RNA-containing formulations are preferred over RNA-free virus-like particles because the RNA and protein, each, contribute to CPMV's potent antitumor efficacy. We have previously optimized inactivation methods to develop CPMV that contains RNA but is not infectious to plants. We established that inactivated CPMV has reduced efficacy compared to untreated, native CPMV. However, a systematic comparison between native CPMV and different inactivated forms of CPMV was not done. Therefore, in this study, we directly compared the therapeutic efficacies and mechanisms of immune activation of CPMV, ultraviolet- (UV-), and formalin (Form)-inactivated CPMV to explain the differential efficacies. In a B16F10 melanoma mouse tumor model, Form-CPMV suppressed the tumor growth with prolonged survival (there were no statistical differences comparing CPMV and Form-CPMV). In comparison, UV-CPMV inhibited tumor growth significantly but not as well as Form-CPMV or CPMV. The reduced therapeutic efficacy of UV-CPMV is explained by the degree of cross-linking and aggregated state of the RNA, which renders it inaccessible for sensing by Toll-like receptor (TLR) 7/8 to activate immune responses. The mechanistic studies showed that the highly aggregated state of UV-CPMV inhibited TLR7 signaling more so than for the Form-CPMV formulation, reducing the secretion of interleukin-6 (IL-6) and interferon-α (IFN-α), cytokines associated with TLR7 signaling. These findings support the translational development of Form-CPMV as a noninfectious immunotherapeutic agent.


Assuntos
Comovirus , Melanoma , Animais , Camundongos , Receptor 7 Toll-Like , Modelos Animais de Doenças , Vacinação/métodos , Mamíferos
12.
Mol Pharm ; 20(7): 3589-3597, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37294891

RESUMO

Plant virus nanoparticles can be used as drug carriers, imaging reagents, vaccine carriers, and immune adjuvants in the formulation of intratumoral in situ cancer vaccines. One example is the cowpea mosaic virus (CPMV), a nonenveloped virus with a bipartite positive-strand RNA genome with each RNA packaged separately into identical protein capsids. Based on differences in their densities, the components carrying RNA-1 (6 kb) denoted as the bottom (B) component or carrying RNA-2 (3.5 kb) denoted as the middle (M) component can be separated from each other and from a top (T) component, which is devoid of any RNA. Previous preclinical mouse studies and canine cancer trials used mixed populations of CPMV (containing B, M, and T components), so it is unclear whether the particle types differ in their efficacies. It is known that the CPMV RNA genome contributes to immunostimulation by activation of TLR7. To determine whether the two RNA genomes that have different sizes and unrelated sequences cause different immune stimulation, we compared the therapeutic efficacies of B and M components and unfractionated CPMV in vitro and in mouse cancer models. We found that separated B and M particles behaved similarly to the mixed CPMV, activating innate immune cells to induce the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while inhibiting immunosuppressive cytokines such as TGF-ß and IL-10. In murine models of melanoma and colon cancer, the mixed and separated CPMV particles all significantly reduced tumor growth and prolonged survival with no significant difference. This shows that the specific RNA genomes similarly stimulate the immune system even though B particles have 40% more RNA than M particles; each CPMV particle type can be used as an effective adjuvant against cancer with the same efficacy as native mixed CPMV. From a translational point of view, the use of either B or M component vs the mixed CPMV formulation offers the advantage that separated B or M alone is noninfectious toward plants and thus provides agronomic safety.


Assuntos
Vacinas Anticâncer , Comovirus , Melanoma , Animais , Cães , Camundongos , Comovirus/fisiologia , RNA Viral/genética , Modelos Animais de Doenças , Citocinas , Vacinação
13.
Bull Entomol Res ; 113(4): 555-564, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37350316

RESUMO

Two thrips, Megalurothrips usitatus (Bagnall) and Frankliniella intonsa (Trybom) are major pests of cowpea in South China. To realistically compare the growth, development and reproductive characteristics of these two thrips species, we compared their age-stage, two-sex life tables on cowpea pods under summer and winter natural environmental regimes. The results showed that the total preadult period of M. usitatus was 8.09 days, which was significantly longer than that of F. intonsa (7.06 days), while the adult female longevity of M. usitatus (21.14 days) was significantly shorter than that of F. intonsa (25.77 days). Significant differences were showed in male adult longevity (10.68 days for F. intonsa and 16.95 days for M. usitatus) and the female ratio of offspring (0.67 for F. intonsa and 0.51 for M. usitatus), and the total preadult period of M. usitatus (16.20 days) was significantly longer than that of F. intonsa (13.66 days) in the winter regime. The net reproductive rate (summer: R0 = 85.62, winter: R0 = 105.22), intrinsic rate of increase (summer: r = 0.3020 day-1, winter: r = 0.2115 day-1), finite rate of increase (summer: λ = 1.3526 day-1, winter: λ = 1.2356 day-1) and gross reproduction rate (summer: GRR = 139.34, winter: GRR = 159.88) of F. intonsa were higher than those of M. usitatus (summer: R0 = 82.91, r = 0.2741, λ = 1.3155, GRR = 135.71; winter: R0 = 80.62, r = 0.1672, λ = 1.1820, GRR = 131.26), and the mean generation times (summer: T = 14.73 days, winter: T = 22.01 days) of F. intonsa were significantly shorter than those of M. usitatus (summer: T = 16.11 days, winter: T = 26.25 days). These results may contribute to a better understanding of the bioecology of different thrips species, especially the interspecific competition between two economically important cowpea thrips with the same ecological niche in a changing environment.


Assuntos
Tisanópteros , Vigna , Masculino , Feminino , Animais , Tábuas de Vida , Reprodução , Biologia
14.
Chem Biodivers ; 20(2): e202200048, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36576750

RESUMO

Vigna unguiculata (L. Walp) or Cowpea pod methanolic extracts phytochemical analysis, total phenolic content (TPC), and secondary metabolite profiling were determined using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-mass spectrometry (LC/MS) analysis. GC/MS analysis revealed twenty compounds in the extract, while LC/MS analysis identified twenty-four compounds. GC/MS chromatogram analysis suggested the presence of opioid α-N-Normethadol a major constituent found in methanolic extract and fatty acid esters carotenoid is found second major constituent. LC/MS chromatogram and the mass spectral analysis demonstrated the presence of flavonoids, carotenoids, and alkaloids as major phytochemicals. We investigated the antibacterial, anti-fungal, and anti-oxidant activity of pod methanolic extract. The extract was found equally effective against E. coli, S. pyogenes, and P. aeruginosa with MIC 100 µg/mL similar to the standard Ampicillin (MIC 100 µg/mL). C. albicans were found to be most susceptible to Vign unguiculata pods methanolic extract with a MIC of 250 µg/mL. The pod extract showed significant DPPH scavenging activity (IC50 =78.38±0.15) which suggests its antioxidant potential.


Assuntos
Vigna , Vigna/química , Cromatografia Gasosa-Espectrometria de Massas , Escherichia coli , Espectrometria de Massas , Compostos Fitoquímicos/química , Cromatografia Líquida , Extratos Vegetais/química , Antioxidantes/química , Metanol
15.
Plant Dis ; 107(11): 3383-3388, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37330631

RESUMO

Root-knot nematodes (RKNs) cause significant economic damage to crop plants, spurring demand for safe, affordable, and sustainable nematicides. A previous study by our research team showed that the combination of two nematicidal secondary metabolites (SMs) derived from Photorhabdus bacteria, trans-cinnamic acid (t-CA), and (4E)-5-phenylpent-4-enoic acid (PPA) have a synergistic effect against RKNs in vitro. In this study, we considered in planta assays to assess the effects of this SM mixture on the virulence and reproductive fitness of the RKN Meloidogyne incognita in a cowpea. Factorial combinations of five t-CA + PPA concentrations (0, 9.0, 22.9, 57.8, and 91.0 µg/ml) and two nematode inoculation conditions (presence or absence) were evaluated in 6-week growth chamber experiments. Results from this study showed that a single root application of the t-CA + PPA mixture significantly reduced the penetration of M. incognita infective juveniles (J2s) into the cowpea roots. The potential toxicity of t-CA + PPA on RKN-susceptible cowpea seedlings was also investigated. The effect of t-CA + PPA × nematode inoculation interactions and the t-CA + PPA mixture did not show significant phytotoxic effects, nor did it adversely affect plant growth parameters or alter leaf chlorophyll content. Total leaf chlorophyll and chlorophyll b content were significantly reduced (by 15 and 22%, respectively) only by the nematode inoculum and not by any of the SM treatments. Our results suggest that a single root application of a mixture of t-CA and PPA reduces M. incognita J2's ability to infect the roots without impairing plant growth or chlorophyll content.


Assuntos
Photorhabdus , Tylenchoidea , Vigna , Animais , Antinematódeos/farmacologia , Clorofila
16.
Plant Dis ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105447

RESUMO

Cowpea (Vigna unguiculata L.) is a legume consumed as a high-quality plant protein source in many parts of the world. In August 2023, it was observed that a plant disease affected cowpea growth in Yiyang (28.34°N, 112.55°E), China. The average disease incidence was 10%, resulting in 8.5% economic losses in approximately 3,000 m2. The symptoms initially appeared as brown lesions near the stem-soil interface and the lesions were colonized by white mycelia. As the disease progressed, the disease symptoms included constriction and brown staining at the base of the stem, covered with a small amount of white mycelia. Eventually, the entire plants withered and collapsed and many sclerotia were scattered on the ground around the diseased stem. Twenty samples (10 sclerotia and 10 diseased tissue fragments) were collected from symptomatic plants for causal agent isolation. Samples were disinfected with 70% ethanol for 30 s, 5% NaClO for 1 min, rinsed three times with sterile water, dried and placed on potato dextrose agar (PDA) plates at 28℃ in the dark. In total, 20 isolates were obtained by the hyphal tip method (Terrones et al. 2022) and showed a consistent phenotype of white cottony mycelia on PDA with an growth rate of 12.9 to 21.3 mm/day (n = 20). Sclerotia formed at five to eight days post inoculation, were initially whitish, turning beige and eventually dark brown. The diameter of mature sclerotia ranged from 0.89 to 2.13 mm (mean = 1.64±0.29 mm; n =50). For pathogen identification, ITS1/ITS4 (White et al. 1990) and EF1-983F/EF1-2218R (Rehner and Buckley 2005) primers were used to amplify the internal transcribed spacer regions (ITS) and translation elongation factor-1 alpha gene (TEF-1α), respectively. The sequences of all 20 isolates showed 99% to 100% similarity with Agroathelia rolfsii sequences from GenBank by BLAST analysis. The sequences of two representative strains, ID1 and ID4, were deposited in GenBank. The ITS sequences of ID1 (OR689482) and ID4 (OR689481) were >99% similar to A. rolfsii strain QJ7 (593/596 bp; MZ750983) and A. rolfsii strain Kale078 (565/568 bp; MN872304), respectively. Also, TEF-1α sequences of ID1 (OR713735) and ID4 (OR713736) were >99% similar to the sequences of A. rolfsii strain HS-Sr (1073/1073 bp; OL416131) and A. rolfsii strain MSB1-2 (1070/1075 bp; MN702790), respectively. Phylogenetic analysis based on ITS and TEF1-α sequences indicated that ID1 and ID4 clustered into the A. rolfsii clade. Based on morphology and sequence analyses, the isolates ID1 and ID4 were identified as A. rolfsii (anamorph Sclerotium rolfsii). Pathogenicity tests were conducted three times on healthy 30-day-old cowpea seedlings. Five plants were inoculated with 6-day-old mycelial discs (6 mm) of ID1 or ID4 at the base of the seedlings (n = 30) while four plants were inoculated with a sterile PDA disc as a control (n = 12). All seedlings were cultivated in a greenhouse with a temperature of 26°C to 28°C and relative humidity 60% to 80% with a 14/10 h light/dark photoperiod. Eight days later, all the fungal inoculated seedlings showed symptoms including brown necrosis and collapse of the stems, and eventual withering of the seedlings. Control plants remained asymptomatic. The causal pathogens were reisolated in PDA plates and identified by ITS sequence analysis, completing Koch's postulates. To our knowledge, this is the first report of A. rolfsii causing southern blight on cowpea in China. Early accurate diagnosis will help farmers to adopt suitable practices to control disease outbreaks and reduce losses.

17.
Plant Dis ; 107(5): 1522-1528, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36350729

RESUMO

Meloidogyne floridensis is of particular concern because it reproduces on tomato, pepper, corn, and tobacco cultivars that have resistance to the common tropical root-knot nematode (RKN) species (i.e., Meloidogyne incognita, M. arenaria, and M. javanica). During a survey of 436 randomly selected vegetable fields in Georgia in 2018, 6 M. floridensis-infested fields were found and cultured from single egg-mass isolates on a susceptible tomato (cultivar Rutgers), and speciated using molecular analyses. Five isolates of M. floridensis were identified from collard, cowpea, cucumber, watermelon, and tomato fields by DNA sequence-based identification targeting mitochondrial genes (cytochrome c oxidase subunit II, transfer RNAHis, large subunit ribosomal RNA, and NADH dehydrogenase subunit 5). Two greenhouse trials determined the host preference and reproduction level for each M. floridensis isolate. Evaluations were conducted on Rutgers tomato, a resistant tomato (cultivar Skyway, carrying the Mi-1.2 gene), and vegetable crops associated with the origin of M. floridensis populations. This study confirmed that most associated vegetables, except collards, were good hosts to M. floridensis, having a reproduction factor >1. All isolates were able to reproduce aggressively on the resistant tomato. We found variations among M. floridensis isolates in pathogenicity and reproduction levels on the vegetable crops tested which should be considered when using or developing host resistance.


Assuntos
Tylenchoidea , Verduras , Animais , Virulência , Tylenchoidea/genética , Produtos Agrícolas , Georgia
18.
Nano Lett ; 22(13): 5348-5356, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35713326

RESUMO

We have previously shown the plant virus Cowpea mosaic virus (CPMV) to be an efficacious in situ cancer vaccine, providing elimination of tumors and tumor-specific immune memory. Additionally, we have shown that CPMV recruits Natural Killer (NK) cells within the tumor microenvironment. Here we aimed to determine whether a combination of CPMV and anti-4-1BB monoclonal antibody agonist to stimulate tumor-resident and CPMV-recruited NK cells is an effective dual therapy approach to improve NK cell function and in situ cancer vaccination efficacy. Using murine models of metastatic colon carcinomatosis and intradermal melanoma, intratumorally administered CPMV + anti-4-1BB dual therapy provided a robust antitumor response, improved elimination of primary tumors, and reduced mortality compared to CPMV and anti-4-1BB monotherapies. Additionally, on tumor rechallenge there was significant delay/prevention of tumor development and improved survival, highlighting that the CPMV + anti-4-1BB dual therapy enables potent and durable antitumor efficacy.


Assuntos
Comovirus , Melanoma , Animais , Humanos , Células Matadoras Naturais , Camundongos , Microambiente Tumoral , Vacinação
19.
Nutr Health ; : 2601060231181606, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338526

RESUMO

Background: Osteoporosis (OS) is a pathological condition that makes bones susceptible to fractures by affecting the balance between bone formation and resorption. Recent literature uncovered the possible potential of bioactive compounds with antioxidant mechanisms to counter the issue. Cowpea (CP) isoflavones based on our previous study, vitamin D and natural antioxidant ß-carotene for its pleotropic protective effects were assessed alone and in combination. Aim: The study aims to assess the antioxidant and osteoblast differentiation abilities of cowpea isoflavones alone and in combination of vitamin D (VD) and ß-carotene (BC) in the human osteosarcoma cell line Saos2. Methods: Saos2 cells were maintained in cell culture conditions and concentrations of CP extract (genistein + daidzein), BC and VD required to increase cell proliferation were estimated using MTT assay. Upon treating cells with the EC50 concentrations, lysates were prepared and levels of alkaline phosphatase (ALP) and osteocalcin were evaluated using ELISA. Oxidative stress parameters and osteoblast differentiation markers were evaluated. Results: CP extract (genistein + daidzein), BC and VD concentrations which enhanced the cell proliferation rate were determined and elevated levels of ALP and osteocalcin upon treatment was observed. Anti-oxidant stress parameters studied showed an increase in cells upon treatment compared to control. Significant alterations in levels of protein involved in osteoblast differentiation are observed upon treatment. Conclusion: Cowpea isoflavones has shown a significant activity against OS by elevating antioxidant parameters and inducing osteoblast differentiation in the present study.

20.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894961

RESUMO

Cowpea (Vigna unguiculata (L.) Walp.) is a diploid legume crop used for human consumption, feed for livestock, and cover crops. Earlier reports have shown that salinity has been a growing threat to cowpea cultivation. The objectives of this study were to conduct a genome-wide association study (GWAS) to identify SNP markers and to investigate candidate genes for salt tolerance in cowpea. A total of 331 cowpea genotypes were evaluated for salt tolerance by supplying a solution of 200 mM NaCl in our previous work. The cowpea panel was genotyped using a whole genome resequencing approach, generating 14,465,516 SNPs. Moreover, 5,884,299 SNPs were used after SNP filtering. GWAS was conducted on a total of 296 cowpea genotypes that have high-quality SNPs. BLINK was used for conducting GWAS. Results showed (1) a strong GWAS peak on an 890-bk region of chromosome 2 for leaf SPAD chlorophyll under salt stress in cowpea and harboring a significant cluster of nicotinamide adenine dinucleotide (NAD) dependent epimerase/dehydratase genes such as Vigun02g128900.1, Vigun02g129000.1, Vigun02g129100.1, Vigun02g129200.1, and Vigun02g129500.1; (2) two GWAS peaks associated with relative tolerance index for chlorophyll were identified on chromosomes 1 and 2. The peak on chromosome 1 was defined by a cluster of 10 significant SNPs mapped on a 5 kb region and was located in the vicinity of Vigun01g086000.1, encoding for a GATA transcription factor. The GWAS peak on chromosome 2 was defined by a cluster of 53 significant SNPs and mapped on a 68 bk region of chromosome 2, and (3) the highest GWAS peak was identified on chromosome 3, and this locus was associated with leaf score injury. This peak was within the structure of a potassium channel gene (Vigun03g144700.1). To the best of our knowledge, this is one the earliest reports on the salt tolerance study of cowpea using whole genome resequencing data.


Assuntos
Vigna , Humanos , Vigna/genética , Plântula/genética , Estudo de Associação Genômica Ampla , Tolerância ao Sal/genética , Clorofila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA