Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 230(1): e171-e181, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052736

RESUMO

BACKGROUND: Bacterial vaginosis (BV) is a condition marked by high vaginal bacterial diversity. Gardnerella vaginalis has been implicated in BV but is also detected in healthy women. The Gardnerella genus has been expanded to encompass 6 validly named species and several genomospecies. We hypothesized that particular Gardnerella species may be more associated with BV. METHODS: Quantitative polymerase chain reaction (PCR) assays were developed targeting the cpn60 gene of species groups including G. vaginalis, G. piotii/pickettii, G. swidsinskii/greenwoodii, and G. leopoldii. These assays were applied to vaginal swabs from individuals with (n = 101) and without BV (n = 150) attending a sexual health clinic in Seattle, Washington. Weekly swabs were collected from 42 participants for up to 12 weeks. RESULTS: Concentrations and prevalence of each Gardnerella species group were significantly higher in participants with BV; 91.1% of BV-positive participants had 3 or more Gardnerella species groups detected compared to 32.0% of BV-negative participants (P < .0001). BV-negative participants with 3 or more species groups detected were more likely to develop BV within 100 days versus those with fewer (60.5% vs 3.7%, P < .0001). CONCLUSIONS: These results suggest that BV reflects a state of high Gardnerella species diversity. No Gardnerella species group was a specific marker for BV.


Assuntos
Gardnerella , Vaginose Bacteriana , Humanos , Vaginose Bacteriana/microbiologia , Feminino , Adulto , Gardnerella/isolamento & purificação , Gardnerella/genética , Adulto Jovem , Vagina/microbiologia , Washington/epidemiologia , Gardnerella vaginalis/isolamento & purificação , Gardnerella vaginalis/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Adolescente , Prevalência , Pessoa de Meia-Idade , DNA Bacteriano/genética , Chaperonina 60/genética , Reação em Cadeia da Polimerase em Tempo Real
2.
Subcell Biochem ; 101: 213-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520309

RESUMO

Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.


Assuntos
Chaperonina 10 , Chaperoninas , Humanos , Chaperonina 10/química , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonina 60/química , Dobramento de Proteína , Chaperoninas do Grupo II/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Can J Microbiol ; 68(6): 457-464, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230911

RESUMO

The cpn60 barcode sequence has been established as an informative target for microbial species identification. Applications of cpn60 barcode sequencing are supported by the availability of "universal" PCR primers for amplification and a curated reference database of cpn60 sequences, cpnDB. A recent reclassification of lactobacilli involving the definition of 23 new genera provided an opportunity to update cpnDB and to determine if the cpn60 barcode could be used for accurate identification of species consistent with the new framework. Analysis of 275 cpn60 sequences representing 258/269 of the validly named species in Lactobacillus, Paralactobacillus, and the 23 newer genera showed that cpn60-based sequence relationships were generally consistent with whole-genome-based phylogeny. Aligning or mapping full-length barcode sequences or a 150 bp subsequence resulted in accurate and unambiguous species identification in almost all cases. Taken together, our results show that the combination of available reference sequence data, "universal" barcode amplification primers, and the inherent sequence diversity within the cpn60 barcode makes it a useful target for the detection and identification of lactobacilli, as defined by the latest taxonomic framework.


Assuntos
Chaperonina 60 , Lactobacillaceae , Chaperonina 60/genética , Primers do DNA , Lactobacillus , Filogenia , Reação em Cadeia da Polimerase/métodos
4.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L803-L813, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431396

RESUMO

Chaperonin 60.1 (Cpn60.1) is a protein derived from Mycobacterium tuberculosis that has been shown, along with its peptide fragment IRL201104, to have beneficial effects in models of allergic inflammation. To further investigate the anti-inflammatory properties of Cpn60.1 and IRL201104, we have investigated these molecules in a model of nonallergic lung inflammation. Mice were treated with Cpn60.1 (0.5-5,000 ng/kg) or IRL201104 (0.00025-2.5 ng/kg), immediately before intranasal instillation of bacterial lipopolysaccharide (LPS). Cytokine levels and cell numbers in mouse bronchoalveolar lavage (BAL) fluid were measured 4 h after LPS administration. In some experiments, mice were depleted of lung-resident phagocytes. Cells from BAL fluid were analyzed for inflammasome function. Human umbilical vein endothelial cells (HUVECs) were analyzed for adhesion molecule expression. Human neutrophils were analyzed for integrin expression, chemotaxis, and cell polarization. Cpn60.1 and IRL201104 significantly inhibited neutrophil migration into the airways, independently of route of administration. This effect of the peptide was absent in TLR4 and annexin A1 knockout mice. Intravital microscopy revealed that IRL201104 reduced leukocyte adhesion and migration into inflamed tissues. However, IRL201104 did not significantly affect adhesion molecule expression in HUVECs or integrin expression, chemotaxis, or polarization of human neutrophils at the studied concentrations. In phagocyte-depleted animals, the anti-inflammatory effect of IRL201104 was not significant. IRL201104 significantly reduced IL-1ß and NLRP3 expression and increased A20 expression in BAL cells. This study shows that Cpn60.1 and IRL201104 potently inhibit LPS-induced neutrophil infiltration in mouse lungs by a mechanism dependent on tissue-resident phagocytes and to a much lesser extent, the proresolving factor annexin A1.


Assuntos
Anti-Inflamatórios/farmacologia , Chaperonina 60/farmacologia , Chaperoninas/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Pneumonia/prevenção & controle , Animais , Anexina A1/genética , Líquido da Lavagem Broncoalveolar/química , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrinas/biossíntese , Interleucina-1beta/biossíntese , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/biossíntese , Neutrófilos/imunologia , Receptor 4 Toll-Like/genética
5.
Plant J ; 98(5): 798-812, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735603

RESUMO

The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60ß1 and CPN60ß2 and the co-chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo-oligomers and all possible other chloroplast co-chaperonin hetero-oligomers are functional, but only that consisting of CPN11/20/23-CPN60αß1ß2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60ß1:CPN60ß2. The cryo-EM structures of endogenous CPN60αß1ß2/ADP and CPN60αß1ß2/co-chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero-oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero-oligomerization, the chloroplast co-chaperonin CPN11/20/23 forms seven GroES-like domains, which symmetrically interact with CPN60αß1ß2. Our structure also reveals an uneven distribution of roof-forming domains in the dome-shaped CPN11/20/23 co-chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αß1ß2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.


Assuntos
Chaperonina 60/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Chaperoninas do Grupo I/metabolismo , Chaperonina 60/química , Chaperonina 60/ultraestrutura , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/ultraestrutura , Cloroplastos/ultraestrutura , Microscopia Crioeletrônica/métodos , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/ultraestrutura , Fotossíntese , Dobramento de Proteína , Multimerização Proteica , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
6.
BJOG ; 127(2): 250-259, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498547

RESUMO

OBJECTIVE: To compare the vaginal microbiota of women living with HIV (WLWH) with the vaginal microbiota of women with recurrent bacterial vaginosis (BV) and healthy women without HIV to determine if there are differences in the vaginal microbiome, what factors influence these differences, and to characterise HIV clinical parameters including viral load and CD4 count in relation to the vaginal microbiome. DESIGN: Observational cohort study. SETTING: Canada. POPULATION: Women aged 18-49 years who were premenopausal and not pregnant were recruited into three cohorts: healthy women, WLWH and women with recurrent BV. METHODS: Demographic and clinical data were collected via interviews and medical chart reviews. Vaginal swabs were collected for Gram-stain assessment and microbiome profiling using the cpn60 barcode sequence. MAIN OUTCOME MEASURES: To compare overall community composition differences, we used compositional data analysis methods, hierarchical clustering and Kruskal-Wallis tests where appropriate. RESULTS: Clinical markers such as odour and abnormal discharge, but not irritation, were associated with higher microbial diversity. WLWH with unsuppressed HIV viral loads were more likely than other groups to have non-Gardnerella-dominated microbiomes. HIV was associated with higher vaginal microbial diversity and this was related to HIV viral load, with unsuppressed women demonstrating significantly higher relative abundance of Megasphaera genomosp. 1, Atopobium vaginae and Clostridiales sp. (all P < 0.05) compared with all other groups. CONCLUSIONS: In WLWH, unsuppressed HIV viral loads were associated with a distinct dysbiotic profile consisting of very low levels of Lactobacillus and high levels of anaerobes. TWEETABLE ABSTRACT: Vaginal microbiomes in WLWH with viral load >50 copies/ml have distinct dysbiotic profiles with high levels of anaerobes.


Assuntos
Infecções por HIV/microbiologia , Infecções por HIV/virologia , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Carga Viral , Adulto , Anaerobiose , Canadá , Estudos de Coortes , Feminino , Infecções por HIV/fisiopatologia , Humanos , Pessoa de Meia-Idade , Recidiva , Vaginose Bacteriana/fisiopatologia
7.
Proc Natl Acad Sci U S A ; 112(13): 4152-7, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775508

RESUMO

The chloroplast ATP synthase, a multisubunit complex in the thylakoid membrane, catalyzes the light-driven synthesis of ATP, thereby supplying the energy for carbon fixation during photosynthesis. The chloroplast ATP synthase is composed of both nucleus- and chloroplast-encoded proteins that have required the evolution of novel mechanisms to coordinate the biosynthesis and assembly of chloroplast ATP synthase subunits temporally and spatially. Here we have elucidated the assembly mechanism of the α3ß3γ core complex of the chloroplast ATP synthase by identification and functional characterization of a key assembly factor, PAB (protein in chloroplast atpase biogenesis). PAB directly interacts with the nucleus-encoded γ subunit and functions downstream of chaperonin 60 (Cpn60)-mediated CF1γ subunit folding to promote its assembly into the catalytic core. PAB does not have any recognizable motifs or domains but is conserved in photosynthetic eukaryotes. It is likely that PAB evolved together with the transfer of chloroplast genes into the nucleus to assist nucleus-encoded CF1γ assembly into the CF1 core. Such coordination might represent an evolutionarily conserved mechanism for folding and assembly of nucleus-encoded proteins to ensure proper assembly of multiprotein photosynthetic complexes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperonina 60/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cloroplastos/metabolismo , Chaperonas Moleculares/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Domínio Catalítico , ATPases de Cloroplastos Translocadoras de Prótons/genética , Endopeptidase K/química , Proteínas de Fluorescência Verde/metabolismo , Fenótipo , Fotossíntese , Folhas de Planta/metabolismo , Dobramento de Proteína , Tilacoides/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Infect Immun ; 85(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28069816

RESUMO

Mycobacterium tuberculosis is the causal agent of tuberculosis. Tumor necrosis factor alpha (TNF-α), transforming growth factor ß (TGF-ß), and gamma interferon (IFN-γ) secreted by activated macrophages and lymphocytes are considered essential to contain Mycobacterium tuberculosis infection. The CD43 sialomucin has been reported to act as a receptor for bacilli through its interaction with the chaperonin Cpn60.2, facilitating mycobacterium-macrophage contact. We report here that Cpn60.2 induces both human THP-1 cells and mouse-derived bone marrow-derived macrophages (BMMs) to produce TNF-α and that this production is CD43 dependent. In addition, we present evidence that the signaling pathway leading to TNF-α production upon interaction with Cpn60.2 requires active Src family kinases, phospholipase C-γ (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38, and Jun N-terminal protein kinase (JNK), both in BMMs and in THP-1 cells. Our data highlight the role of CD43 and Cpn60.2 in TNF-α production and underscore an important role for CD43 in the host-mycobacterium interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonina 60/metabolismo , Leucossialina/metabolismo , Mycobacterium tuberculosis/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , Linhagem Celular , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
9.
Microb Ecol ; 72(4): 917-930, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26566933

RESUMO

Natural microbial communities undergo selection-driven succession with changes in environmental conditions and available nutrients. In a previous study of the pig faecal Enterococcus community, we demonstrated that cpn60 universal target (UT) sequences could resolve phenotypically and genotypically distinct ecotypes of Enterococcus spp. that emerged over time in the faecal microbiome of growing pigs. In this study, we characterized genomic diversity in the identified Enterococcus hirae ecotypes in order to define further the nature and degree of genome content differences between taxa resolved by cpn60 UT sequences. Genome sequences for six representative isolates (two from each of three ecotypes) were compared. Differences in phosphotransferase systems and amino acid metabolism pathways for glutamine, proline and selenocysteine were observed. Differences in the lac family phosphotransferase system corresponded to lactose utilization phenotypes of the isolates. Competitive fitness of the E. hirae ecotypes was evaluated by in vitro growth competition assays in pig faecal extract medium. Isolates from E. hirae-1 and E. hirae-2 ecotypes were able to out-compete isolates from the E. hirae-3 ecotype, consistent with the relatively low abundance of E. hirae-3 relative to E. hirae-1 and E. hirae-2 previously observed in the pig faecal microbiome, and with observed differences between the ecotypes in gene content related to biosynthetic capacity. Results of this study provide a genomic basis for the definition of ecotypes within E. hirae and confirm the utility of the cpn60 UT sequence for high-resolution profiling of complex microbial communities.


Assuntos
Chaperonina 60/genética , Ecótipo , Streptococcus faecium ATCC 9790/genética , Genoma Bacteriano/genética , Interações Microbianas/genética , Animais , Streptococcus faecium ATCC 9790/classificação , Streptococcus faecium ATCC 9790/isolamento & purificação , Fezes/microbiologia , Variação Genética , Glutamina/metabolismo , Prolina/metabolismo , Selenocisteína/metabolismo , Suínos/microbiologia , Doenças dos Suínos/microbiologia
10.
Protein Expr Purif ; 109: 29-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655203

RESUMO

A frequent problem of recombinant protein production is their insolubility. To address this issue, engineered Escherichiacoli strains like Arctic Express that produce an exogenous chaperone facilitating protein folding, have been designed. A drawback is the frequent contamination of the protein by chaperones. A simple method, using urea at a sub-denaturing concentration, allows unbinding of Cpn60 from expressed protein. This method was successfully used to purify 2 proteins, an enzyme and a viral protein. The enzyme was fully active. The nature of interaction forces between enzyme and Cpn60 was investigated. The method is likely applicable to purify other proteins.


Assuntos
Bioquímica/métodos , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Engenharia Genética , Proteínas Recombinantes/metabolismo , Difusão Dinâmica da Luz , Eletroforese em Gel de Poliacrilamida , Cinética
11.
New Phytol ; 202(2): 542-553, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24444052

RESUMO

In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera.


Assuntos
Bactérias/isolamento & purificação , Brassica/microbiologia , Fungos/isolamento & purificação , Interações Microbianas , Microbiota , Sementes/microbiologia , Triticum/microbiologia , Alternaria/genética , Bactérias/genética , Chaperonina 60/genética , Ecossistema , Fungos/genética , Pantoea/genética
12.
Front Plant Sci ; 15: 1386824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011307

RESUMO

The occurring temperature increase in crop production areas worldwide is generating conditions of heat stress that negatively affect crop productivity. Tomato (Solanum lycopersicum), a major vegetable crop, is highly susceptible to elevated temperatures. Under such conditions, fruit set is dramatically reduced, leading to significant yield losses. Solanum pimpinellifolium, a wild species closely related to the cultivated tomato, was shown to have beneficial attributes under various abiotic stress growth conditions. We have utilized a new population of backcross inbred lines originated from a cross between S. pimpinellifolium and S. lycopersicum, in order to evaluate its potential as a new genetic resource for improvement of reproductive performance of cultivated tomato under heat stress conditions. This population was screened for various heat stress-related traits, under controlled heat stress and non-stress conditions. Our results show that significant variation exists for all the heat stress related traits that were examined and point at individual lines with better reproductive performance under heat stress conditions that share a common introgression from the wild S. pimpinellifolium parent, suggesting several candidate genes as potential drivers of thermotolerance. Thus, our results place this population as a valuable new resource for the discovery of heat stress related genetic loci for the future development of heat stress tolerant tomato cultivars.

13.
Microorganisms ; 11(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37764030

RESUMO

Bacterial vaginosis (BV) is the most common infection of the lower reproductive tract among women of reproductive age. Recurrent infections and antibiotic resistance associated with biofilms remain significant challenges for BV treatment. Gardnerella species are commonly found in women with and without BV, indicating that genetic differences among Gardnerella isolates may distinguish pathogenic from commensal subgroups. This study isolated 11 Gardnerella strains from vaginal samples obtained from women with BV before or after treatment. The biofilm formation ability of each strain was examined by crystal violet staining. Eight strains were selected using phylogenetic analysis of the cpn60 sequences and classified as subgroups A (6/8), B (1/8), and D (1/8). The biofilm formation ability and antibiotic resistance profile of these strains was compared among the subgroups. Subgroup D had the strongest biofilm formation ability. Six of the planktonic strains exhibited resistance to the first-line BV drug, metronidazole, and one to clindamycin. Moreover, biofilm formation in vitro increased strain resistance to clindamycin. Two strains with strong biofilm ability, S20 and S23, and two with weak biofilm ability, S24 and S25, were selected for comparative genomic analysis. S20 and S23 were found to contain four key genes associated with biofilm formation and more genes involved in carbohydrate synthesis and metabolism than S24 and S25. Identifying differences in the expression of virulence factors between Gardnerella subgroups could inform the development of novel treatments for BV.

14.
Front Cell Infect Microbiol ; 13: 1144254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065202

RESUMO

Birth mode has been implicated as a major factor influencing neonatal gut microbiome development, and it has been assumed that lack of exposure to the maternal vaginal microbiome is responsible for gut dysbiosis among caesarean-delivered infants. Consequently, practices to correct dysbiotic gut microbiomes, such as vaginal seeding, have arisen while the effect of the maternal vaginal microbiome on that of the infant gut remains unknown. We conducted a longitudinal, prospective cohort study of 621 Canadian pregnant women and their newborn infants and collected pre-delivery maternal vaginal swabs and infant stool samples at 10-days and 3-months of life. Using cpn60-based amplicon sequencing, we defined vaginal and stool microbiome profiles and evaluated the effect of maternal vaginal microbiome composition and various clinical variables on the development of the infant stool microbiome. Infant stool microbiomes showed significant differences in composition by delivery mode at 10-days postpartum; however, this effect could not be explained by maternal vaginal microbiome composition and was vastly reduced by 3 months. Vaginal microbiome clusters were distributed across infant stool clusters in proportion to their frequency in the overall maternal population, indicating independence of the two communities. Intrapartum antibiotic administration was identified as a confounder of infant stool microbiome differences and was associated with lower abundances of Escherichia coli, Bacteroides vulgatus, Bifidobacterium longum and Parabacteroides distasonis. Our findings demonstrate that maternal vaginal microbiome composition at delivery does not affect infant stool microbiome composition and development, suggesting that practices to amend infant stool microbiome composition focus factors other than maternal vaginal microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Recém-Nascido , Humanos , Lactente , Gravidez , Feminino , Microbioma Gastrointestinal/genética , Estudos Prospectivos , Canadá , Fezes/microbiologia
15.
Biomolecules ; 12(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35327642

RESUMO

Bacterial extracellular proteins participate in the host cell communication by virtue of the modulation of pathogenicity, commensalism and mutualism. Studies on the microbiome of cervical mucus of the water buffalo (Bubalus bubalis) have shown the occurrence of Staphylococcus pasteuri and that the presence of this bacterium is indicative of various physiological and reproductive states in the host. Recently, S. pasteuri has been isolated from the cervical mucus of the buffalo during the different phases of estrous cycle, and has proved to be much more pronounced during the estrus phase. The basis underlying the availability of a significantly increased S. pasteuri population, specifically during the estrus phase, is not known. Consequently, it is important to determine the significance of the specific abundance of S. pasteuri during the estrus phase of the buffalo host, particularly from the perspective of whether this bacterial species is capable of contributing to sexual communication via its extracellular proteins and volatiles. Therefore, the relevance of S. pasteuri exoproteome in the buffalo cervical mucus during the estrus phase was analyzed using LC-MS/MS. As many as 219 proteins were identified, among which elongation factor Tu (EF-Tu), 60-kDa chaperonin (Cpn60), enolase, fructose-bisphosphate aldolase class 1 (FBP aldolase), enoyl-[acyl-carrier-protein] reductase [NADPH] (ENR) and lipoprotein (Lpp) were the functionally important candidates. Most of the proteins present in the exoproteome of S. pasteuri were those involved in cellular-metabolic functions, as well as catalytic- and binding activities. Moreover, computational studies of Lpp have shown enhanced interaction with volatiles such as acetic-, butanoic-, isovaleric- and valeric acids, which were identified in the cervical mucus S. pasteuri culture supernatant. The present findings suggest that S. pasteuri extracellular proteins may play an important role in buffalo sexual communication during the estrus phase.


Assuntos
Búfalos , Muco do Colo Uterino , Animais , Cromatografia Líquida , Estro , Feminino , Staphylococcus , Espectrometria de Massas em Tandem
16.
Front Immunol ; 13: 974195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726972

RESUMO

Most cervicovaginal microbiome-immunology studies to date have relied on 16S rDNA microbial profiling which does not resolve the molecular subgroups of Gardnerella, believed to be central to the pathogenesis of bacterial vaginosis (BV) and subsequent risk of HIV acquisition. Here we used the cpn60 universal target which in addition to other microbial taxa, resolves four Gardnerella subgroups, for cervicovaginal microbial profiling in a longitudinal cohort of Kenyan women to examine associations with cellular and soluble markers of inflammation and HIV susceptibility. Participants (N = 41) were sampled, contributing 362 samples for microbiome analysis. All non-Lactobacillus dominant microbial communities were associated with high pro-inflammatory cytokine levels. Divergent associations were observed among different Gardnerella subgroup dominated communities with respect to the chemokine IP-10. Specifically, Gardnerella subgroup A dominant and polymicrobial communities were associated with reduced concentrations of IP-10 in adjusted linear mixed models (p<0.0001), compared to microbial communities dominated by Lactobacillus (non-iners) species. However, these associations did not translate to significant differences in the proportion or absolute number of CCR5, HLA-DR and CD38 expressed on cervical CD4+ T- cells. These findings suggest that some associations between Gardnerella subgroup dominant microbiomes and mucosal immunity differ and are relevant for the study of BV-pathogenesis and understanding the mechanisms of BV-associated HIV risk.


Assuntos
Gardnerella , Microbiota , Vaginose Bacteriana , Feminino , Humanos , Quimiocina CXCL10 , Infecções por HIV , Imunidade , Quênia/epidemiologia , Lactobacillus/genética , Vagina/imunologia , Vagina/microbiologia
17.
Front Cell Infect Microbiol ; 12: 858155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402309

RESUMO

Bacterial vaginosis (BV) is the most common infectious disease of the reproductive tract in women of childbearing age. It often manifests as an imbalance in the vaginal microbiome, including a decrease in Lactobacillus and an increase in anaerobic bacteria. While Gardnerella spp. are considered a major cause of BV, they are also detected in the vaginal microbiome of healthy women. G. vaginalis was the only recognized species of Gardnerella until a recent study characterized three new species, G. leopoldii, G. piotii, and G. swidsinskii. This review describes the different types and genetic diversity of Gardnerella, as well as new findings on the correlation between different Gardnerella spp. and BV.


Assuntos
Microbiota , Vaginose Bacteriana , Feminino , Gardnerella , Gardnerella vaginalis/genética , Humanos , Microbiota/genética , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
18.
Microbiol Spectr ; 9(2): e0006721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34585952

RESUMO

Detection of bacterial DNA within meconium is often cited as evidence supporting in utero colonization. However, many studies fail to adequately control for contamination. We aimed to define the microbial content of meconium under properly controlled conditions. DNA was extracted from 141 meconium samples and subjected to cpn60-based microbiome profiling, with controls to assess contamination throughout. Total bacterial loads of neonatal meconium, infant stool, and controls were compared by 16S rRNA quantitative PCR (qPCR). Viable bacteria within meconium were cultured, and isolate clonality was assessed by pulsed-field gel electrophoresis (PFGE). Meconium samples did not differ significantly from controls with respect to read numbers or taxonomic composition. Twenty (14%) outliers with markedly higher read numbers were collected significantly later after birth and appeared more like transitional stool than meconium. Total bacterial loads were significantly higher in stool than in meconium, which did not differ from that of sequencing controls, and correlated well with read numbers. Cultured isolates were most frequently identified as Staphylococcus epidermidis, Enterococcus faecalis, or Escherichia coli, with PFGE indicating high intraspecies diversity. Our findings highlight the importance of robust controls in studies of low microbial biomass samples and argue against meaningful bacterial colonization in utero. Given that meconium microbiome profiles could not be distinguished from sequencing controls, and that viable bacteria within meconium appeared uncommon and largely consistent with postnatal skin colonization, there does not appear to be a meconium microbiota. IMPORTANCE Much like the recent placental microbiome controversy, studies of neonatal meconium reporting bacterial communities within the fetal and neonatal gut imply that microbial colonization begins prior to birth. However, recent work has shown that placental microbiomes almost exclusively represent contamination from lab reagents and the environment. Here, we demonstrate that prior studies of neonatal meconium are impacted by the same issue, showing that the microbial content of meconium does not differ from negative controls that have never contained any biological material. Our culture findings similarly supported this notion and largely comprised bacteria normally associated with healthy skin. Overall, our work adds to the growing body of evidence against the in utero colonization hypothesis.


Assuntos
Bactérias/classificação , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Mecônio/microbiologia , Microbiota/genética , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Carga Bacteriana , Biomassa , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Enterococcus faecalis/genética , Enterococcus faecalis/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Pele/microbiologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação
19.
Methods Enzymol ; 659: 145-170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752283

RESUMO

Expression of heterologous genes in Escherichia coli is a routine technology for recombinant protein production, but the predictable recovery of properly folded and uniformly bioactive material remains a challenge. Misfolded proteins typically accumulate as insoluble inclusion bodies, and a variety of strategies have been employed in efforts to increase the yield of soluble product. One technique is the overexpression of E. coli protein chaperones during recombinant protein induction, in an effort to increase the folding capacity of the bacterial host. We have developed an alternative approach, by supplementing the host protein folding machinery with chaperones from other species. Extremophiles have evolved under conditions (extremes of temperature, salinity, pressure, and/or pH) that make them attractive candidates for possessing chaperones with novel folding activities. The green fluorescent protein (GFP) of Aequorea victoria, which is predominantly insoluble under typical recombinant expression culture conditions, was employed as an in vivo indicator of protein folding activity for chaperone homologs from a variety of extremophiles. For a subset of the chaperones tested, co-expression with GFP promoted an increase in both fluorescence signal intensity as well as the amount of GFP recovered in the soluble protein fraction. Several archaeal chaperones were also found to be able to refold soluble Lyt_Orn C40 peptidase from inclusion bodies in vitro. In particular, Pf Cpn(MA), a mutant chaperonin which exhibited significant refolding activity, is also shown to deconstruct the morphology and structure of inclusion bodies (Kurouski et al., 2012). Hence, the simple and rapid GFP assay provides a tool to screen for extremophilic chaperones that exhibit folding activity under E. coli growth conditions, and suggests that increasing the repertoire of heterologous chaperones might provide a partial but general solution to the problem of recombinant protein insolubility.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/metabolismo
20.
Pathogens ; 10(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804525

RESUMO

The description of Gardnerella vaginalis was recently updated and three new species, including nine genome species within Gardnerella, were defined using whole genome sequences and matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. A fast and simple method based on readily available techniques would be of immense use to identify Gardnerella species in research and clinical practice. Here we show that 34 previously characterized Gardnerella isolates were assigned to the species using partial chaperonin cpn60 sequences. The MALDI Biotyper from Bruker Daltonik GmbH demonstrated the capability to differentiate the phylogenetically diverse groups composed of G. vaginalis/G. piotii and G. leopoldii/G. swidsinskii. Among the phenotypic properties that characterize Gardnerella species are sialidase and ß-galactosidase activities. Our data confirmed that the NanH3 enzyme is responsible for sialidase activity in Gardnerella spp. isolates. Almost all G. piotii isolates displayed a sialidase positive phenotype, whereas the majority of G. vaginalis strains were sialidase negative. G. leopoldii and G. swidskinskii displayed a sialidase negative phenotype. ß-galactosidase is produced exclusively in G. vaginalis strains. Earlier determined phenotypic characteristics associated with virulence of Gardnerella isolates now assigned to the defined species may provide insights on how diverse species contribute to shaping the vaginal microbiome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA