Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Microbiol ; 75: 269-290, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343018

RESUMO

Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of Escherichia coli, which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Bactérias , Biofilmes , Biologia , Escherichia coli/genética , Matriz Extracelular/química
2.
Infect Immun ; : e0026624, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133016

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) infection triggers an inflammatory response that changes the concentration of metabolites in the gut impacting the luminal environment. Some of these environmental adjustments are conducive to S. Typhimurium growth, such as the increased concentrations of nitrate and tetrathionate or the reduced levels of Clostridia-produced butyrate. We recently demonstrated that S. Typhimurium can form biofilms within the host environment and respond to nitrate as a signaling molecule, enabling it to transition between sessile and planktonic states. To investigate whether S. Typhimurium utilizes additional metabolites to regulate its behavior, our study delved into the impact of inflammatory metabolites on biofilm formation. The results revealed that lactate, the most prevalent metabolite in the inflammatory environment, impedes biofilm development by reducing intracellular c-di-GMP levels, suppressing the expression of curli and cellulose, and increasing the expression of flagellar genes. A transcriptomic analysis determined that the expression of the de novo purine pathway increases during high lactate conditions, and a transposon mutagenesis genetic screen identified that PurA and PurG, in particular, play a significant role in the inhibition of curli expression and biofilm formation. Lactate also increases the transcription of the type III secretion system genes involved in tissue invasion. Finally, we show that the pyruvate-modulated two-component system BtsSR is activated in the presence of high lactate, which suggests that lactate-derived pyruvate activates BtsSR system after being exported from the cytosol. All these findings propose that lactate is an important inflammatory metabolite used by S. Typhimurium to transition from a biofilm to a motile state and fine-tune its virulence.IMPORTANCEWhen colonizing the gut, Salmonella enterica serovar Typhimurium (S. Typhimurium) adopts a dynamic lifestyle that alternates between a virulent planktonic state and a multicellular biofilm state. The coexistence of biofilm formers and planktonic S. Typhimurium in the gut suggests the presence of regulatory mechanisms that control planktonic-to-sessile transition. The signals triggering the transition of S. Typhimurium between these two lifestyles are not fully explored. In this work, we demonstrated that in the presence of lactate, the most dominant host-derived metabolite in the inflamed gut, there is a reduction of c-di-GMP in S. Typhimurium, which subsequently inhibits biofilm formation and induces the expression of its invasion machinery, motility genes, and de novo purine metabolic pathway genes. Furthermore, high levels of lactate activate the BtsSR two-component system. Collectively, this work presents new insights toward the comprehension of host metabolism and gut microenvironment roles in the regulation of S. Typhimurium biology during infection.

3.
Biochemistry (Mosc) ; 89(3): 523-542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648770

RESUMO

Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.


Assuntos
Amiloide , Microbioma Gastrointestinal , Doença de Parkinson , Sinucleinopatias , alfa-Sinucleína , Humanos , Sinucleinopatias/metabolismo , Sinucleinopatias/microbiologia , Sinucleinopatias/patologia , Amiloide/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , alfa-Sinucleína/metabolismo , Animais , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34413194

RESUMO

Growing evidence indicates that gut microbiota play a critical role in regulating the progression of neurodegenerative diseases such as Parkinson's disease. The molecular mechanism underlying such microbe-host interaction is unclear. In this study, by feeding Caenorhabditis elegans expressing human α-syn with Escherichia coli knockout mutants, we conducted a genome-wide screen to identify bacterial genes that promote host neurodegeneration. The screen yielded 38 genes that fall into several genetic pathways including curli formation, lipopolysaccharide assembly, and adenosylcobalamin synthesis among others. We then focused on the curli amyloid fibril and found that genetically deleting or pharmacologically inhibiting the curli major subunit CsgA in E. coli reduced α-syn-induced neuronal death, restored mitochondrial health, and improved neuronal functions. CsgA secreted by the bacteria colocalized with α-syn inside neurons and promoted α-syn aggregation through cross-seeding. Similarly, curli also promoted neurodegeneration in C. elegans models of Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease and in human neuroblastoma cells.


Assuntos
Amiloide/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Genoma Bacteriano , Interações entre Hospedeiro e Microrganismos , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans , Proteínas de Escherichia coli/genética , Estudo de Associação Genômica Ampla , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
5.
Foodborne Pathog Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593459

RESUMO

Escherichia coli are present in the human and animal microbiome as facultative anaerobes and are viewed as an integral part of the whole gastrointestinal environment. In certain circumstances, some species can also become opportunistic pathogens responsible for severe infections in humans. These infections are caused by the enterotoxinogenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli and the enterohemorrhagic E. coli species, frequently present in food products and on food matrices. Severe human infections can be caused by consumption of meat contaminated upon exposure to animal feces, and as such, farm animals are considered to be a natural reservoir. The mechanisms by which these four major species of E. coli adhere and persist in meat postslaughter are of major interest to public health and food processors given their frequent involvement in foodborne outbreaks. This review aims to structure and provide an update on the mechanistic roles of environmental factors, curli, type I and type IV pili on E. coli adherence/interaction with meat postslaughter. Furthermore, we emphasize on the importance of bacterial surface structures, which can be used in designing interventions to enhance food safety and protect public health by reducing the burden of foodborne illnesses.

6.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273173

RESUMO

Escherichia coli O157:H7 (E. coli O157) is known for causing severe foodborne illnesses such as hemorrhagic colitis and hemolytic uremic syndrome. Although E. coli O157 is typically regarded as an extracellular pathogen and a weak biofilm producer, some E. coli O157 strains, including a clinical strain ATCC 43895, exhibit a notable ability to invade bovine crypt cells and other epithelial cells, as well as to form robust biofilm. This invasive strain persists in the bovine host significantly longer than non-invasive strains. Various surface-associated factors, including lipopolysaccharides (LPS), flagella, and other adhesins, likely contribute to this enhanced invasiveness and biofilm formation. In this study, we constructed a series of LPS-core deletion mutations (waaI, waaG, waaF, and waaC) in E. coli O157 ATCC 43895, resulting in stepwise truncations of the LPS. This approach enabled us to investigate the effects on the biosynthesis of key surface factors, such as flagella and curli, and the ability of this invasive strain to invade host cells. We confirmed the LPS structure and found that all LPS-core mutants failed to form biofilms, highlighting the crucial role of core oligosaccharides in biofilm formation. Additionally, the LPS inner-core mutants ΔwaaF and ΔwaaC lost the ability to produce flagella and curli. Furthermore, these inner-core mutants exhibited a dramatic reduction in adherence to and invasion of epithelial cells (MAC-T), showing an approximately 100-fold decrease in cell invasion compared with the outer-core mutants (waaI and waaG) and the wild type. These findings underscore the critical role of LPS-core truncation in impairing flagella and curli biosynthesis, thereby reducing the invasion capability of E. coli O157 ATCC 43895.


Assuntos
Biofilmes , Escherichia coli O157 , Flagelos , Lipopolissacarídeos , Flagelos/metabolismo , Flagelos/genética , Lipopolissacarídeos/biossíntese , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Escherichia coli O157/fisiologia , Biofilmes/crescimento & desenvolvimento , Animais , Bovinos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Aderência Bacteriana , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo
7.
Appl Environ Microbiol ; 89(7): e0045623, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310210

RESUMO

Pellicles are biofilms that form at the air-liquid interface. We demonstrated that specific strains of Escherichia coli formed pellicles in single cultures when cocultured with Carnobacterium maltaromaticum and E. coli O157:H7 but not with Aeromonas australiensis. Therefore, a combination of comparative genomic, mutational, and transcriptome analyses were applied to identify the unique genes in pellicle formation and investigate gene regulation under different growth phases. Here, we report that pellicle-forming strains do not harbor unique genes relative to non-pellicle-forming strains; however, the expression level of biofilm-related genes differed, especially for the genes encoding curli. Further, the regulatory region of curli biosynthesis is phylogenetically different among pellicle- and non-pellicle-forming strains. The disruption on modified cellulose and regulatory region of curli biosynthesis abolished pellicle formation in strains of E. coli. Besides, the addition of quorum sensing molecules (C4-homoserine lactones [C4-HSL]), synthesized by Aeromonas species, to pellicle formers abolished pellicle formation and implied a role of quorum sensing on pellicle formation. The deletion of autoinducer receptor sdiA in E. coli did not restore pellicle formation when cocultured with A. australiensis but modulated expression level of genes for curli and cellulose biosynthesis, resulting in a thinner layer of pellicle. Taken together, this study identified genetic determinants for pellicle formation and characterized the switching between pellicle to surface-associated biofilm in a dual-species environment, facilitating better understanding of the mechanisms for pellicle formation in E. coli and related organisms. IMPORTANCE To date, most attention has focused on biofilm formation on solid surfaces. By comparison, the knowledge on pellicle formation at the air-liquid interface is more limited and few studies document how bacteria decide on whether to form biofilms on solid surfaces or pellicles at the air-liquid interface to the surface-associated biofilms at the bottom. In this report, we characterized the regulation of biofilm-related genes during pellicle formation and document that interspecies communication via quorum sensing contributes to regulating the switch from pellicle to surface-associated biofilm. The discoveries expand the current view of regulatory cascades associated with pellicle formation.


Assuntos
Aeromonas , Escherichia coli O157 , Biofilmes , Aeromonas/metabolismo , Escherichia coli O157/fisiologia , Genômica , Celulose/metabolismo
8.
BMC Microbiol ; 23(1): 230, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612630

RESUMO

BACKGROUND: Bacteria in nature live together in communities called biofilms, where they produce a matrix that protects them from hostile environments. The components of this matrix vary among species, with Salmonella enterica serovar Typhimurium (STm- WT) primarily producing curli and cellulose, which are regulated by the master regulator csgD. Interactions between bacteria can be competitive or cooperative, with cooperation more commonly observed among the kin population. This study refers to STm- WT as the generalist which produces all the matrix components and knockout strains that are defective in either curli or cellulose as the specialists, which produces one of the matrix components but not both. We have asked whether two different specialists will cooperate and share matrix components during biofilm formation to match the ability of the generalist which produces both components. RESULTS: In this study, the response of the specialists and generalist to physical, chemical, and biological stress during biofilm formation is also studied to assess their abilities to cooperate and produce biofilms like the generalist. STm WT colony biofilm which produces both the major biofilm matrix component were protected from stress whereas the non-matrix producer (∆csgD), the cellulose, and curli alone producers ∆csgA, ∆bcsA respectively were affected. During the exposure to various stresses, the majority of killing occurred in ∆csgD. Whereas the co-culture (∆csgA: ∆bcsA) was able to resist stress like that of the STm WT. Phenotypic and morphological characteristics of the colonies were typed using congo red assay and the Influence of matrix on the architecture of biofilms was confirmed by scanning electron microscopy. CONCLUSION: Our results show that matrix aids in survival during antibiotic, chlorine, and predatory stress. And possible sharing of the matrix is occurring in co-culture, with one counterbalancing the inability of the other when confronted with stress.


Assuntos
Antibacterianos , Biofilmes , Sorogrupo , Antibacterianos/farmacologia , Celulose , Salmonella typhimurium/genética
9.
Antonie Van Leeuwenhoek ; 116(8): 829-843, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243862

RESUMO

The biofilm formation by bacteria is a complex process that is strongly mediated by various genetic and environmental factors. Biofilms contribute to disease infestation, especially in chronic infections. It is, therefore important to understand the factors affecting biofilm formation. This study reports the role of a functional amyloid curli in biofilm formation at various abiotic surfaces, including medical devices, by an environmental isolate of Enterobacter cloacae (SBP-8) which has been known for its pathogenic potential. A knockout mutant of csgA, the gene encoding the major structural unit of curli, was created to study the effect of curli on biofilm formation by E. cloacae SBP-8. Our findings confirm the production of curli at 25 °C and 37 °C in the wild-type strain. We further investigated the role of curli in the attachment of E. cloacae SBP-8 to glass, enteral feeding tube, and foley latex catheter. Contrary to the previous studies reporting the curli production below 30 °C in the majority of biofilm-forming bacterial species, we observed its production in E. cloacae SBP-8 at 37 °C. The formation of more intense biofilm in wild-type strain on various surfaces compared to curli-deficient strain (ΔcsgA) at both 25 °C and 37 °C suggested a prominent role of curli in biofilm formation. Further, electron and confocal microscopy studies demonstrated the formation of diffused monolayers of microbial cells on the abiotic surfaces by ΔcsgA strain as compared to the thick biofilm by respective wild-type strain, indicating the involvement of curli in biofilm formation by E. cloacae SBP-8. Overall, our findings provide insight into biofilm formation mediated by curli in E. cloacae SBP-8. Further, we show that it can be expressed at a physiological temperature on all surfaces, thereby indicating the potential role of curli in pathogenesis.


Assuntos
Enterobacter cloacae , Proteínas de Escherichia coli , Enterobacter cloacae/genética , Biofilmes , Proteínas Amiloidogênicas , Fímbrias Bacterianas/genética , Proteínas de Escherichia coli/genética , Proteínas de Bactérias/genética
10.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901788

RESUMO

Curli fimbriae are amyloids-found in bacteria (Escherichia coli)-that are involved in solid-surface adhesion and bacterial aggregation during biofilm formation. The curli protein CsgA is coded by a csgBAC operon gene, and the transcription factor CsgD is essential to induce its curli protein expression. However, the complete mechanism underlying curli fimbriae formation requires elucidation. Herein, we noted that curli fimbriae formation was inhibited by yccT-i.e., a gene that encodes a periplasmic protein of unknown function regulated by CsgD. Furthermore, curli fimbriae formation was strongly repressed by CsgD overexpression caused by a multicopy plasmid in BW25113-the non-cellulose-producing strain. YccT deficiency prevented these CsgD effects. YccT overexpression led to intracellular YccT accumulation and reduced CsgA expression. These effects were addressed by deleting the N-terminal signal peptide of YccT. Localization, gene expression, and phenotypic analyses revealed that YccT-dependent inhibition of curli fimbriae formation and curli protein expression was mediated by the two-component regulatory system EnvZ/OmpR. Purified YccT inhibited CsgA polymerization; however, no intracytoplasmic interaction between YccT and CsgA was detected. Thus, YccT-renamed CsgI (curli synthesis inhibitor)-is a novel inhibitor of curli fimbriae formation and has a dual role as an OmpR phosphorylation modulator and CsgA polymerization inhibitor.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Aderência Bacteriana/genética , Polimerização , Transativadores/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica
11.
Indian J Microbiol ; 63(4): 632-644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38034905

RESUMO

Surface-growing antibiotic-resistant pathogenic Salmonella is emerging as a global health challenge due to its high economic loss in the poultry industry. Their pathogenesis, increasing antimicrobial resistance, and biofilm formation make them challenging to treat with traditional therapy. The identification of antimicrobial herbal ingredients may provide valuable solutions to solve this problem. Therefore, our aim is to evaluate the potency of nano garlic as the  alternative of choice against multidrug-resistant (MDR) Salmonella isolates using disc diffusion and microdilution assays. Then, checkerboard titration in trays was applied, and FIC was measured to identify the type of interaction between the two antimicrobials. A disc diffusion assay revealed that neomycin was the drug of choice. The range of nano garlic MIC was 12.5-25 µg/ml, while the neomycin MIC range was 32-64 µg/ml. The FIC index established a synergistic association between the two tested drugs in 85% of isolates. An experimental model was used including nano garlic and neomycin alone and in combination against Salmonella infection. The combination therapy significantly improved body productivity and inhibited biofilm formation by more than 50% down regulating the CsgBAD, motB, and sipA operons, which are responsible for curli fimbriae production and biofilm formation in Salmonella serotypes.

12.
Appl Environ Microbiol ; 88(2): e0189121, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788062

RESUMO

Prophage-encoded Escherichia coli O157:H7 transcription factor (TF), PchE, inhibits biofilm formation and attachment to cultured epithelial cells by reducing curli fimbriae expression and increasing flagella expression. To identify pchE regulators that might be used in intervention strategies to reduce environmental persistence or host infections, we performed a computational search of O157:H7 strain PA20 pchE promoter sequences for binding sites used by known TFs. A common site shared by MarA/SoxS/Rob TFs was identified and the typical MarA/Rob inducers, salicylate and decanoate, were tested for biofilm and motility effects. Sodium salicylate, a proven biofilm inhibitor, but not sodium decanoate, strongly reduced O157:H7 biofilms by a pchE-independent mechanism. Both salicylate and decanoate enhanced O157:H7 motility dependent on pchE using media and incubation temperatures optimum for culturing human epithelial cells. However, induction of pchE by salicylate did not activate the SOS response. MarA/SoxS/Rob inducers provide new potential agents for controlling O157:H7 interactions with the host and its persistence in the environment. IMPORTANCE There is a need to develop E. coli serotype O157:H7 nonantibiotic interventions that do not precipitate the release and activation of virulence factor-encoded prophage and transferrable genetic elements. One method is to stimulate existing regulatory pathways that repress bacterial persistence and virulence genes. Here we show that certain inducers of MarA and Rob have that ability, working through both pchE-dependent and pschE-independent pathways.


Assuntos
Biofilmes , Decanoatos , Escherichia coli O157 , Proteínas de Escherichia coli , Salicilatos , Biofilmes/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Decanoatos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/fisiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Salicilatos/farmacologia , Sorogrupo , Transativadores/genética
13.
Lett Appl Microbiol ; 75(5): 1246-1253, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35871754

RESUMO

Fresh cucumbers have been recognized as a vehicle in foodborne disease outbreaks since several multistate outbreaks of salmonellosis linked to fresh cucumbers occurred in the United States. Little is known about how microbial cell surface characteristics that are known to affect adhesion can influence bacterial cross-contamination and transfer. This study investigated the role of S. Newport cell surface components on bacterial attachment and transfer in cucumbers. Wild type Salmonella Newport and its transposon mutants were used to inoculate cucumbers. Attachment strength of S. Newport wild type to cucumber was not significantly different than that of mutants. Log10 percent transfer of mutant strains to edible flesh was not different from the wild type. Significantly less wild type Salmonella remained on the peel and transferred to the peeler than one mutant did, but not the other. Our results suggest that while curli and cellulose enhance Salmonella attachment to surface of cucumbers, there appear to be other mechanisms and factors that govern Salmonella transfer in cucumbers.


Assuntos
Cucumis sativus , Intoxicação Alimentar por Salmonella , Estados Unidos , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia , Salmonella/genética , Celulose/metabolismo
14.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499141

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder involving the accumulation of alpha-synuclein (α-syn)/Lewy bodies in the brain and -enteric nervous system. The etiology of the disease is not well understood, but bacterial and viral infections may contribute to the pathogenesis of PD. It has been suggested that the gastrointestinal (GI) complications observed in PD patients may arise from bacterial dysbiosis, leading to curli/α-syn deposits in the enteric nervous system. Enteric bacteria secrete curli, a functional amyloid peptide involved in adhesion to surfaces, cell invasion, and biofilm formation. However, these bacterial amyloids can initiate additional α-syn deposits through immune system activation and cross-seeding. In this study, we investigate the humoral response against α-syn, curli peptides, and various bacterial and viral immunogen peptides in PD patients, and compare them with those in healthy controls (HCs). Polyclonal IgG antibodies (Abs) were detected against peptides derived from α-syn (α-syn100−114), curli (Curli133−141), Porphyromonas gingivalis Pg (RgpA800−812, Kpg328−339), Aggregatibacter actinomycetemcomitans (LtxA1429−445, LtxA264−80), Mycobacterium avium subsp. paratuberculosis (MAP3865c125−133, MAP1,4-a-gbp157−173 and MAP_402718−32), Epstein−Barr virus (EBNA1400−413, BOLF1305−320), and Herpes Simplex virus 1 (UI4222−36), as investigated by indirect ELISA of 51 serum samples from PD and 58 sex and age-matched HCs. Significant differences in OD (optical density) values and Abs positivity between PD patients and HCs were observed for Kpg (82.3% vs. 10.3%), followed by RgpA (60.7% vs. 24.1%), curli (51% vs. 22.4%), and UI42 (43.1% vs. 25.8%) in PD, compared to HCs sera (p < 0.001). No significant difference was found in the ODs obtained from other tested peptides in PD patients, compared to HCs. Significant positive correlations between OD values obtained by ELISA were observed for UI42 and curli (r = 0.811, p < 0.0001), Kpg and RgpA (r = 0.659, p < 0.0001), followed by LtxA1 and LtxA2 (r = 0.653, p < 0.0001). The correlation between the HY scale (Hoehn and Yahr Scale) and LtxA1 (r = 0.306, p < 0.028) and HY and Kpg (r = 0.290, p < 0.038) were significantly positive. This study reports a significantly increased humoral response against curli, Pg, and HSV-1 in PD patients, implying that they could be important factors in the pathogenesis of the disease. In addition, the high positive correlation between UI42 and curli may suggest the involvement of HSV-1 in GI dysbiosis. Therefore, the role of each individual pathogen and curli in PD needs to be further investigated.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 1 , Mycobacterium avium subsp. paratuberculosis , Doença de Parkinson , Animais , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Anticorpos , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 4 , Doença de Parkinson/metabolismo , Peptídeos , Proteínas Virais
15.
Molecules ; 27(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807329

RESUMO

Functional amyloid is produced by many organisms but is particularly well understood in bacteria, where proteins such as CsgA (E. coli) and FapC (Pseudomonas) are assembled as functional bacterial amyloid (FuBA) on the cell surface in a carefully optimized process. Besides a host of helper proteins, FuBA formation is aided by multiple imperfect repeats which stabilize amyloid and streamline the aggregation mechanism to a fast-track assembly dominated by primary nucleation. These repeats, which are found in variable numbers in Pseudomonas, are most likely the structural core of the fibrils, though we still lack experimental data to determine whether the repeats give rise to ß-helix structures via stacked ß-hairpins (highly likely for CsgA) or more complicated arrangements (possibly the case for FapC). The response of FuBA fibrillation to denaturants suggests that nucleation and elongation involve equal amounts of folding, but protein chaperones preferentially target nucleation for effective inhibition. Smart peptides can be designed based on these imperfect repeats and modified with various flanking sequences to divert aggregation to less stable structures, leading to a reduction in biofilm formation. Small molecules such as EGCG can also divert FuBA to less organized structures, such as partially-folded oligomeric species, with the same detrimental effect on biofilm. Finally, the strong tendency of FuBA to self-assemble can lead to the formation of very regular two-dimensional amyloid films on structured surfaces such as graphite, which strongly implies future use in biosensors or other nanobiomaterials. In summary, the properties of functional amyloid are a much-needed corrective to the unfortunate association of amyloid with neurodegenerative disease and a testimony to nature's ability to get the best out of a protein fold.


Assuntos
Escherichia coli , Doenças Neurodegenerativas , Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas de Bactérias/metabolismo , Biofilmes , Escherichia coli/metabolismo , Humanos , Pseudomonas/metabolismo
16.
J Bacteriol ; 203(21): e0027721, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34398664

RESUMO

Acinetobacter baumannii is emerging as a multidrug-resistant (MDR) nosocomial pathogen of increasing threat to human health worldwide. The recent MDR urinary isolate UPAB1 carries the plasmid pAB5, a member of a family of large conjugative plasmids (LCPs). LCPs encode several antibiotic resistance genes and repress the type VI secretion system (T6SS) to enable their dissemination, employing two TetR transcriptional regulators. Furthermore, pAB5 controls the expression of additional chromosomally encoded genes, impacting UPAB1 virulence. Here, we show that a pAB5-encoded H-NS transcriptional regulator represses the synthesis of the exopolysaccharide PNAG and the expression of a previously uncharacterized three-gene cluster that encodes a protein belonging to the CsgG/HfaB family. Members of this protein family are involved in amyloid or polysaccharide formation in other species. Deletion of the CsgG homolog abrogated PNAG production and chaperone-usher pathway (CUP) pilus formation, resulting in a subsequent reduction in biofilm formation. Although this gene cluster is widely distributed in Gram-negative bacteria, it remains largely uninvestigated. Our results illustrate the complex cross-talks that take place between plasmids and the chromosomes of their bacterial host, which in this case can contribute to the pathogenesis of Acinetobacter. IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii displays the highest reported rates of multidrug resistance among Gram-negative pathogens. Many A. baumannii strains carry large conjugative plasmids like pAB5. In recent years, we have witnessed an increase in knowledge about the regulatory cross-talks between plasmids and bacterial chromosomes. Here, we show that pAB5 controls the composition of the bacterial extracellular matrix, resulting in a drastic reduction in biofilm formation. The association between biofilm formation, virulence, and antibiotic resistance is well documented. Therefore, understanding the factors involved in the regulation of biofilm formation in Acinetobacter has remarkable therapeutic potential.


Assuntos
Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Plasmídeos/genética , Proteínas de Bactérias/genética , Biofilmes , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo
17.
Biopolymers ; 112(1): e23395, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894594

RESUMO

Bacterial biofilms are communities of bacteria entangled in a self-produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid-polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum-of-the-parts 13 C solid-state nuclear magnetic resonance (NMR) analysis to define the curli-to-pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well-studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid-air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic-associated) and the strain itself.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Celulose/química , Matriz Extracelular/química , Biomassa , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Etanolaminas/química
18.
Proc Natl Acad Sci U S A ; 115(40): 10106-10111, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30232265

RESUMO

Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections, employing numerous molecular strategies to contribute to adhesion, colonization, and persistence in the bladder niche. Identifying strategies to prevent adhesion and colonization is a promising approach to inhibit bacterial pathogenesis and to help preserve the efficacy of available antibiotics. This approach requires an improved understanding of the molecular determinants of adhesion to the bladder urothelium. We designed experiments using a custom-built live cell monolayer rheometer (LCMR) to quantitatively measure individual and combined contributions of bacterial cell surface structures [type 1 pili, curli, and phosphoethanolamine (pEtN) cellulose] to bladder cell adhesion. Using the UPEC strain UTI89, isogenic mutants, and controlled conditions for the differential production of cell surface structures, we discovered that curli can promote stronger adhesive interactions with bladder cells than type 1 pili. Moreover, the coproduction of curli and pEtN cellulose enhanced adhesion. The LCMR enables the evaluation of adhesion under high-shear conditions to reveal this role for pEtN cellulose which escaped detection using conventional tissue culture adhesion assays. Together with complementary biochemical experiments, the results support a model wherein cellulose serves a mortar-like function to promote curli association with and around the bacterial cell surface, resulting in increased bacterial adhesion strength at the bladder cell surface.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Celulose/efeitos adversos , Células Epiteliais/metabolismo , Etanolaminas/efeitos adversos , Bexiga Urinária/metabolismo , Escherichia coli Uropatogênica/metabolismo , Urotélio/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Celulose/farmacologia , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Etanolaminas/farmacologia , Humanos , Bexiga Urinária/microbiologia , Bexiga Urinária/ultraestrutura , Escherichia coli Uropatogênica/patogenicidade , Escherichia coli Uropatogênica/ultraestrutura , Urotélio/microbiologia , Urotélio/ultraestrutura
19.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066237

RESUMO

CsgA is an aggregating protein from bacterial biofilms, representing a class of functional amyloids. Its amyloid propensity is defined by five fragments (R1-R5) of the sequence, representing non-perfect repeats. Gate-keeper amino acid residues, specific to each fragment, define the fragment's propensity for self-aggregation and aggregating characteristics of the whole protein. We study the self-aggregation and secondary structures of the repeat fragments of Salmonella enterica and Escherichia coli and comparatively analyze their potential effects on these proteins in a bacterial biofilm. Using bioinformatics predictors, ATR-FTIR and FT-Raman spectroscopy techniques, circular dichroism, and transmission electron microscopy, we confirmed self-aggregation of R1, R3, R5 fragments, as previously reported for Escherichia coli, however, with different temporal characteristics for each species. We also observed aggregation propensities of R4 fragment of Salmonella enterica that is different than that of Escherichia coli. Our studies showed that amyloid structures of CsgA repeats are more easily formed and more durable in Salmonella enterica than those in Escherichia coli.


Assuntos
Amiloide/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Salmonella enterica/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Agregados Proteicos , Conformação Proteica , Salmonella enterica/genética , Salmonella enterica/crescimento & desenvolvimento , Homologia de Sequência
20.
J Bacteriol ; 202(18)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32601073

RESUMO

Biofilms exist in complex environments, including the intestinal tract, as a part of the gastrointestinal microbiota. The interaction of planktonic bacteria with biofilms can be influenced by material properties of the biofilm. During previous confocal studies, we observed that amyloid curli-containing Salmonella enterica serotype Typhimurium and Escherichia coli biofilms appeared rigid. In these studies, Enterococcus faecalis, which lacks curli-like protein, showed more fluid movement. To better characterize the material properties of the biofilms, a four-dimensional (4D) model was designed to track the movement of 1-µm glyoxylate beads in 10- to 20-µm-thick biofilms over approximately 20 min using laser-scanning confocal microscopy. Software was developed to analyze the bead trajectories, the amount of time they could be followed (trajectory life span), the velocity of movement, the surface area covered (bounding boxes), and cellular density around each bead. Bead movement was found to be predominantly Brownian motion. Curli-containing biofilms had very little bead movement throughout the low- and high-density regions of the biofilm compared to E. faecalis and isogenic curli mutants. Curli-containing biofilms tended to have more stable bead interactions (longer trajectory life spans) than biofilms lacking curli. In biofilms lacking curli, neither the velocity of bead movement nor the bounding box volume was strictly dependent on cell density, suggesting that other material properties of the biofilms were influencing the movement of the beads and flexibility of the material. Taken together, these studies present a 4D method to analyze bead movement over time in a 3D biofilm and suggest curli confers rigidity to the extracellular matrix of biofilms.IMPORTANCE Mathematical models are necessary to understand how the material composition of biofilms can influence their physical properties. Here, we developed a 4D computational toolchain for the analysis of bead trajectories, which laid the groundwork for establishing critical parameters for mathematical models of particle movement in biofilms. Using this open-source trajectory analyzer, we determined that the presence of bacterial amyloid curli changes the material properties of a biofilm, making the biofilm matrix rigid. This software is a powerful tool to analyze treatment- and environment-induced changes in biofilm structure and cell movement in biofilms. The open-source analyzer is fully adaptable and extendable in a modular fashion using VRL-Studio to further enhance and extend its functions.


Assuntos
Amiloide/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Imagem Óptica/métodos , Enterococcus faecalis/fisiologia , Escherichia coli/fisiologia , Salmonella typhimurium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA