Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555861

RESUMO

Tetranychus urticae Koch (T. urticae) is one of the most tremendous herbivores due to its polyphagous characteristics, and is resistant to most acaricides. In this study, enzyme-linked immunosorbent assay (ELISA), transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) were carried out to analyze the mechanisms of T. urticae metabolic resistance to cyflumetofen and bifenthrin on cowpea. The enzyme activity of UDP-glucuronosyltransferases (UGTs) and carboxylesterases (CarEs) in the cyflumetofen-resistant (R_cfm) strain significantly decreased, while that of cytochrome P450 monooxygenases (P450s) significantly increased. Meanwhile, the activities of glutathione-S-transferases (GSTs), CarEs and P450s in the bifenthrin-resistant (R_bft) strain were significantly higher than those in the susceptible strain (Lab_SS). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses, in the R_cfm mite strain, two carboxyl/cholinesterase (CCE) genes and two P450 genes were upregulated and one gene was downregulated, namely CYP392E7; in the R_bft mite strain, eleven CCE, nine UGT, two P450, four GST and three ABC genes were upregulated, while four CCE and three P450 genes were downregulated. Additionally, 94 differentially expressed genes (DEGs) were common to the two resistant groups. Specifically, TuCCE46 and TuCCE70 were upregulated in both resistant groups. Furthermore, the qRT-PCR validation data were consistent with those from the transcriptome sequencing analysis. Specifically, TuCCE46 (3.37-fold) was significantly upregulated in the R_cfm strain, while in the R_bft strain, TeturUGT22 (5.29-fold), teturUGT58p (1.74-fold), CYP392A11 (2.89-fold) and TuGSTd15 (5.12-fold) were significantly upregulated and TuCCE01 (0.13-fold) and CYP392A2p (0.07-fold) were significantly downregulated. Our study indicates that TuCCE46 might play the most important role in resistance to cyflumetofen, and TuCCE01, teturUGT58p, teturUGT22, CYP392A11, TuGSTd15, TuGSTm09 and TuABCG-13 were prominent in the resistance to bifenthrin. These findings provide further insight into the critical genes involved in the metabolic resistance of T. urticae to cyflumetofen and bifenthrin.


Assuntos
Acaricidas , Piretrinas , Tetranychidae , Vigna , Animais , Piretrinas/farmacologia , Acaricidas/farmacologia , Tetranychidae/genética
2.
J UOEH ; 44(1): 101-105, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35249935

RESUMO

Pesticides are essentially toxic to living things, and, as they are used openly, it is necessary to monitor them and to prevent their adverse effects. A self-administered questionnaire survey given to a group of the greenhouse farmers told us that some of them developed dermatitis from acaricide cyflumetofen, so we conducted an interview study on dermatitis caused by cyflumetofen. The participants were affiliated with a strawberry producing group, and were interviewed at their annual health checkups in the spring of 2016 and 2017. The questions covered the status of spraying, dermatitis from cyflumetofen, and visitations to clinics/hospitals. Of 108 farmers interviewed, 20 had subjective symptoms of dermatitis from cyflumetofen. Seven of them had visited clinics/hospitals. The most affected body part was the face, especially around the eyes, followed by the hands and forearms. The subjective symptoms varied from slight (rubor and itching) to serious (swelling with aching around the eyes). Three male farmers had visited clinics/hospitals for 3-4 weeks, and had stopped using cyflumetofen. We advised them to continue avoiding the use of cyflumetofen, considering the results of an animal test: a "pesticide abstract" stated that cyflumetofen had caused skin sensitization in guinea pigs. It is necessary, therefore, to mention this skin sensitization in the safety datasheet of cyflumetofen.


Assuntos
Acaricidas , Dermatite , Exposição Ocupacional , Acaricidas/efeitos adversos , Agricultura , Animais , Fazendeiros , Cobaias , Humanos , Masculino , Propionatos , Pesquisa Qualitativa
3.
Pestic Biochem Physiol ; 173: 104799, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33771268

RESUMO

Metabolic resistance is one of the main causes of acaricide resistance. Many previous studies focused on the function of specific genes in insecticides/acaricides resistance. However, during the development of resistance, the overall dynamic of expression levels of detoxification enzyme genes in mites is still unclear. Tetranychus cinnabarinus, a major agricultural pest, which is notorious for developing resistance to acaricides rapidly. In this study, a field susceptible strain (YS) was continuously selected for 16, 25 and 32 generations, and developed to low resistance (7.83-fold, L), medium resistance (17.23-fold, M) and high resistance (86.05-fold, H), respectively. Transcriptome sequencing was performed in YS, L, M and H strains. Overall, compared with YS strain, the number of differential expression genes increased slightly with the development of cyflumetofen-resistance. As for detoxification genes, the median of fold change of up-regulated P450、CCE and GST genes was higher than those of all up-regulated genes in three resistance level, but only the number and the median of fold change of up-regulated P450 genes was increased slightly with the development of resistance. In addition, synergism experiments also proved that P450 and GST genes were the major contributors to the metabolic resistance of cyflumetofen of T. cinnabarinus. These results showed that the resistance of T. cinnabarinus to cyflumetofen was related to many resistant genes, among which P450 genes could play crucial roles in cyflumefen resistance.


Assuntos
Acaricidas , Tetranychidae , Acaricidas/farmacologia , Animais , Proteínas de Artrópodes/genética , Resistência a Medicamentos/genética , Perfilação da Expressão Gênica , Propionatos , Tetranychidae/genética
4.
Bioorg Med Chem ; 28(11): 115509, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354673

RESUMO

The application of a carbon-silicon bioisosteric replacement strategy to find new acaricides with improved properties led to the discovery of Sila-Cyflumetofen 6B, a novel and highly potent acaricide. The essential t-butyl group in the beta-ketonitrile acaricide Cyflumetofen 6A could be swapped with the bioisosteric trimethyl-silyl group with retention of high level acaricidal activity and favourable pharmacological properties. Sila-Cyflumetofen 6B was found to possess similar preferred energy-minimized conformation and electrostatic potential surface compare to Cyflumetofen 6A. Herein we also report the development and application of the first homology model of the spider mite mitochondrial electron transport complex II (succinate ubiquinone oxidoreductase; SQR) and demonstrated that the active metabolite AB-1 of Cyflumetofen 6A and its sila-analogue Sila-AB-1 bind to the Qp site in same binding pose and that both compounds form two H-bonds and a cation-π interaction with Trp 165, Tyr 433 and Arg 279, respectively. Furthermore, we also developed a new mode of action test for spider mite Complex II using cytochrome c as electron acceptor and blocking its re-oxidation by addition of KCN resulting in a sensitive and convenient colorimetric assay. This new method avoids the use of non-specific artificial electron acceptors and allows to measure SQR inhibition in crude extracts of Tetranychus urtice. In this assay Sila-AB-1, the intrinsically active metabolite of Sila-Cyflumetofen, 6A exhibited even a somewhat lower IC50 value than the metabolite of Cyflumetofen AB-1. Synthetic methodologies are described for the preparation of Sila-Cyflumetofen 6B and its active metabolite Sila-AB-1 which enable an efficient synthesis of these compounds in only 5 and 4 steps, respectively, from cheap commercial starting materials. Although the value of carbon-silicon bioisosteric replacements has already be demonstrated in the past it is to the best of our knowledge the first report of a successful application in crop protection research in the last two decades.


Assuntos
Acaricidas/farmacologia , Carbono/química , Desenho de Fármacos , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Propionatos/farmacologia , Silício/química , Acaricidas/síntese química , Acaricidas/química , Animais , Cianatos/farmacologia , Relação Dose-Resposta a Droga , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Propionatos/química , Relação Estrutura-Atividade , Tetranychidae/enzimologia
5.
Pestic Biochem Physiol ; 163: 31-38, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31973868

RESUMO

Amidase is an important hydrolytic enzyme in detoxification metabolism. Amidase hydrolyzes a wide variety of nonpeptide carbon­nitrogen bonds by attacking a cyano group or carbonyl carbon. However, little is known about the relationship between amidase and insecticides. In this study, the amidase activity was significantly higher in cyflumetofen-resistant strain (CyR) than in the susceptible strain (SS) of Tetranychus cinnabarinus, and diethyl-phosphoramidate (an amidase inhibitor) significantly decreased cyflumetofen resistance in T. cinnabarinus. More importantly, an amidase gene, TcAmidase01, was identified in T. cinnabarinus, and the TcAmidase01 overexpression was detected in both two cyflumetofen-resistant strains (CyR and YN-CyR), indicating that it is involved in cyflumetofen resistance in mites. A phylogenetic analysis showed that TcAmidase01 was clustered with deaminated glutathione amidases, which possess hydrolytic activity. The recombinant TcAmidase01 protein showed amidase activity toward succinamate, and the activity could be inhibited by cyflumetofen. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis provided evidence that recombinant TcAmidase01 could decompose cyflumetofen by hydrolysis, and the potential metabolites (2-(4-(tert-butyl) phenyl)-2-cyanoacetate and 2-(trifluoromethyl) benzoic acid) were identified. These results show that TcAmidase01 contribute to cyflumetofen-resistance in T. cinnabarinus by hydrolyzing cyflumetofen, and this is the first study to suggest that amidase has a role in insecticides resistance in arthropods.


Assuntos
Acaricidas , Tetranychidae , Amidoidrolases , Animais , Proteínas de Artrópodes , Resistência a Medicamentos , Filogenia , Propionatos
6.
Exp Appl Acarol ; 78(3): 343-360, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31250237

RESUMO

Tetranychus urticae Koch is one of the most common and harmful pests in vegetable production areas. Similar to other countries, control of T. urticae is mainly based on acaricides in Turkey. However, T. urticae rapidly develops resistance and failures in chemical control have occurred frequently. The toxicity of various acaricides was investigated in ten T. urticae populations collected from vegetable crops in Turkey. In addition, populations were screened for the presence of currently known target-site resistance mutations. It was shown that resistance to bifenthrin was the most widespread, but also half of the populations were resistant to abamectin and hexythiazox. Resistance mutations in the voltage-gated sodium channel (VGSC) and chitin synthase 1 were found in various populations. Moreover, for the first time, F1538I and L1024V VGSC mutations were reported for Turkish populations. Mutations that confer resistance to abamectin, bifenazate and METI-I acaricides such as pyridaben were not detected. These results will contribute to the design of an effective resistance management program in Turkey.


Assuntos
Acaricidas/farmacologia , Resistência a Medicamentos/genética , Ivermectina/análogos & derivados , Piretrinas/farmacologia , Tetranychidae/efeitos dos fármacos , Tiazolidinas/farmacologia , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Cadeia Alimentar , Ivermectina/farmacologia , Mutação , Tetranychidae/genética , Turquia , Verduras/crescimento & desenvolvimento
7.
Insect Mol Biol ; 27(3): 352-364, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29424082

RESUMO

microRNA-1 (miR-1) is a well-studied conservative microRNA (miRNA) involved in immune responses in mammals and insects. However, little is known about its role in pesticide resistance in arthropods. In this study, we found that a microRNA belong to miR-1 family (tci-miR-1-3p) was significantly down-regulated in a cyflumetofen-resistant strain (CYR) of Tetranychus cinnabarinus compared with its homologous susceptible strain (SS), indicating an involvement of miR-1 in cyflumetofen resistance in mites. One glutathione S-transferase (GST) gene (TCGSTM4, a mu class GST gene), a candidate target gene of tci-miR-1-3p, was found to be significantly down-regulated when tci-miR-1-3p was over-expressed. The specific interaction between tci-miR-1-3p and the target sequence in the 3' untranslated region of TCGSTM4 was confirmed. A decrease or increase in tci-miR-1-3p abundance through feeding miRNA inhibitors or mimics significantly increased or decreased TCGSTM4 expressions at the mRNA and protein levels, respectively. In addition, an over-expression of tci-miR-1-3p resulted in a decrease in the tolerance of T. cinnabarinus to cyflumetofen in both SS and CYR strains, and vice versa. After decreasing TCGSTM4 transcription via RNA interference, T. cinnabarinus became more sensitive to cyflumetofen in both resistant and susceptible mites, and the change in mortality was greater in CYR than that in SS. Moreover, the recombinant TCGSTM4 could significantly decompose cyflumetofen, indicating that TCGSTM4 is a functional gene responsible for cyflumetofen resistance in mites.


Assuntos
Acaricidas/farmacologia , Proteínas de Artrópodes/genética , Resistência a Medicamentos/genética , Glutationa Transferase/genética , Propionatos/farmacologia , Tetranychidae/efeitos dos fármacos , Animais , Proteínas de Artrópodes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glutationa Transferase/metabolismo , Tetranychidae/genética
8.
Pestic Biochem Physiol ; 148: 28-33, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891374

RESUMO

As a new acaricide, cyflumetofen can effectively control Tetranychus, Panonychus, as well as other phytophagous mites. But its risk and the way of genetic and resistant inheritance in mites are not clear. In this study, two cyflumetofen-resistant strains (CyR and YN-CyR) were selected for 104 and 12 generations, and developed 104.7-fold and 25.6-fold resistance, respectively. Three crossing groups (CyR_80 × SS, CyR_104 × SS, YN-CyR × SS) were conducted to explore the resistant inheritance of cyflumetofen in T. cinnabarinus changed along with resistant level or not. The results of reciprocal crosses and backcrosses revealed that the incomplete recessive and multiple genes trait involved in two resistant strains. The different stage of resistance also has a same genetic trait. A cross-resistance study revealed that there was no cross-resistance between cyflumetofen and other four acaricides including avermectin, fenpropathrin, propargite and bifenazate respectively, but the cross-resistance to pyridaben reached a high level with 63.8-fold, which indicates an underlying mechanism that can both mediate cyflumetofen- and pyridaben-resistance in T. cinnabarinus.


Assuntos
Acaricidas/farmacologia , Resistência a Inseticidas/genética , Propionatos/farmacologia , Tetranychidae/efeitos dos fármacos , Animais , Bioensaio , Cruzamentos Genéticos , Feminino , Genes de Insetos , Tetranychidae/genética
9.
Molecules ; 23(5)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724046

RESUMO

Ultra-performance convergence chromatography is an environmentally-friendly analytical method that uses dramatically reduced amounts of organic solvents. In addition, a robust and highly sensitive chiral separation method was developed for the novel chiral acaricide cyflumetofen by using ultra-performance convergence chromatography coupled with tandem mass spectrometry, which shows that stereoisomer recoveries determined for various apple parts ranged from 78.3% to 119.9%, with the relative standard deviations being lower than 14.0%. The half-lives of (−)-cyflumetofen and (+)-cyflumetofen obtained under 5-fold applied dosage equal to 22.13 and 22.23 days, respectively. For 1.5-fold applied dosage, the respective values were determined as 22.42 and 23.64 days, i.e., the degradation of (−)-cyflumetofen was insignificantly favored over that of its enantiomer. Importantly, cyflumetofen was unevenly distributed in apples, with its relative contents in apple peel, peduncle, and pomace equal to 50%, 22%, and 16%, respectively. The proposed method can be used to efficiently separate and quantify chiral pesticide with advantages of a shorter analysis time, greater sensitivity, and better environmental compatibility. Additionally, the consumption of apples with residue of cyflumetofen did not pose a health risk to the population if the cyflumetofen applied under satisfactory agricultural practices after the long-term dietary risk assessment.


Assuntos
Análise de Alimentos/métodos , Frutas/química , Malus/química , Propionatos/análise , Humanos , Medição de Risco
10.
J Sep Sci ; 39(7): 1363-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26834082

RESUMO

Little data on the enantioselective separation of cyflumetofen exists, despite the fact that such data are essential to the assessment of the fate and potential toxic effects of cyflumetofen enantiomers. To address this issue, a simple and sensitive method for the enantioselective determination of cyflumetofen enantiomers in soil has been established using ultra performance convergence chromatography tandem triple quadrupole mass spectrometry. The effects of the chiral stationary phases, mobile phase, auto backpressure regulator pressure, column temperature, flow rate of the mobile phase, and compensation pump solvent were evaluated. The proposed method was applied to the study of the pharmacokinetic dissipation of cyflumetofen stereoisomers in soil under greenhouse conditions. The estimated half-life of cyflumetofen isomers ranged from 12.2 to 13.6 days, and statistically significant enantioselective degradation was observed. This study not only demonstrates that there is an efficient and sensitive method for cyflumetofen enantioseparation, but also provides the first experimental evidence of the pharmacokinetic dissipation of cyflumetofen stereoisomers in the environment.

11.
Pestic Biochem Physiol ; 131: 87-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27265830

RESUMO

Carboxylesterases (CarEs) play important roles in metabolism and detoxification of dietary and environmental xenobiotics in insects and mites. On the basis of the Tetranychuscinnabarinus transcriptome dataset, 23 CarE genes (6 genes are full sequence and 17 genes are partial sequence) were identified. Synergist bioassay showed that CarEs were involved in acaricide detoxification and resistance in fenpropathrin- (FeR) and cyflumetofen-resistant (CyR) strains. In order to further reveal the relationship between CarE gene's expression and acaricide-resistance in T. cinnabarinus, we profiled their expression in susceptible (SS) and resistant strains (FeR, and CyR). There were 8 and 4 over-expressed carboxylesterase genes in FeR and CyR, respectively, from which the over-expressions were detected at mRNA level, but not DNA level. Pesticide induction experiment elucidated that 4 of 8 and 2 of 4 up-regulated genes were inducible with significance in FeR and CyR strains, respectively, but they could not be induced in SS strain, which indicated that these genes became more enhanced and effective to withstand the pesticides' stress in resistant T. cinnabarinus. Most expression-changed and all inducible genes possess the Abhydrolase_3 motif, which is a catalytic domain for hydrolyzing. As a whole, these findings in current study provide clues for further elucidating the function and regulation mechanism of these carboxylesterase genes in T. cinnabarinus' resistance formation.


Assuntos
Acaricidas/farmacologia , Carboxilesterase/genética , Ácaros/enzimologia , Animais , Carboxilesterase/efeitos dos fármacos , Resistência a Medicamentos/genética , Feminino , Duplicação Gênica/genética , Expressão Gênica , Genes/genética , Ácaros/efeitos dos fármacos , Ácaros/genética , Propionatos/farmacologia , Piretrinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
12.
Pestic Biochem Physiol ; 121: 12-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26047107

RESUMO

Acaricides are one of the cornerstones of an efficient control program for phytophagous mites. An analysis of the global acaricide market reveals that spider mites such as Tetranychus urticae, Panonychus citri and Panonychus ulmi are by far the most economically important species, representing more than 80% of the market. Other relevant mite groups are false spider mites (mainly Brevipalpus), rust and gall mites and tarsonemid mites. Acaricides are most frequently used in vegetables and fruits (74% of the market), including grape vines and citrus. However, their use is increasing in major crops where spider mites are becoming more important, such as soybean, cotton and corn. As revealed by a detailed case study of the Japanese market, major shifts in acaricide use are partially driven by resistance development and the commercial availability of compounds with novel mode of action. The importance of the latter cannot be underestimated, although some compounds are successfully used for more than 30 years. A review of recent developments in mode of action research is presented, as such knowledge is important for devising resistance management programs. This includes spirocyclic keto-enols as inhibitors of acetyl-CoA carboxylase, the carbazate bifenazate as a mitochondrial complex III inhibitor, a novel class of complex II inhibitors, and the mite growth inhibitors hexythiazox, clofentezine and etoxazole that interact with chitin synthase I.


Assuntos
Acaricidas , Acaricidas/economia , Acaricidas/farmacologia , Animais , Produtos Agrícolas/economia , Economia , Ácaros/efeitos dos fármacos , Ácaros/metabolismo , Pesquisa
13.
Pestic Biochem Physiol ; 111: 24-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24861930

RESUMO

The carmine spider mite, Tetranychus cinnabarinus is an important crop and vegetable plants pest mite. As a novel acaricide, cyflumetofen is effective against Tetranychus and Panonychus mites, but its risk and biochemical mechanism of resistance in mites is not clear. In this study, the resistance against cyflumetofen was selected and its biochemical mechanisms were studied in T. cinnabarinus. After selection the susceptibility and resistance against cyflumetofen in T. cinnabarinus, the final resistance ratio reached 21.33 at LC50 (CyR-43/CyS). All the collected field populations showed low resistance against cyflumetofen, although it had never been used in China. The activity of detoxifying enzymes CarE, MFO and GSTs were significantly increased in the final selected resistance strain (CyR-43), especially that for GSTs increased more than 7-folds after selection. The resistance against cyflumetofen developed slowly when selected from the susceptible strain in laboratory, but the resistant genes already existed in field populations, and the GSTs was the most important detoxifying enzyme conferring resistance against cyflumetofen in T. cinnabarinus. These results would provide the valuable information for designing appropriate strategies for the practical application of cyflumetofen in the field and delaying resistance development.


Assuntos
Acaricidas/farmacologia , Resistência a Medicamentos , Propionatos/farmacologia , Tetranychidae/efeitos dos fármacos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Tetranychidae/enzimologia , Tetranychidae/genética
14.
Pest Manag Sci ; 80(9): 4675-4685, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38775471

RESUMO

BACKGROUND: Tetranychus cinnabarinus is one of the most common polyphagous arthropod herbivores, and is primarily controlled by the application of acaricides. The heavy use of acaricides has led to high levels of resistance to acaricides such as cyflumetofen, which poses a threat to global resistance management programs. Cyflumetofen resistance is caused by an increase in metabolic detoxification; however, the role of uridine diphosphate (UDP)-glycosyltransferase (UGT) genes in cyflumetofen resistance remains to be determined. RESULTS: Synergist 5-nitrouracil (5-Nul) significantly enhanced cyflumetofen toxicity in T. cinnabarinus, which indicated that UGTs are involved in the development of cyflumetofen resistance. Transcriptomic analysis and quantitative (q)PCR assays demonstrated that the UGT genes, especially UGT201H1, were highly expressed in the YN-CyR strain, compared to those of the YN-S strain. The RNA interference (RNAi)-mediated knockdown of UGT201H1 expression diminished the levels of cyflumetofen resistance in YN-CyR mites. The findings additionally revealed that the recombinant UGT201H1 protein plays a role in metabolizing cyflumetofen. Our results also suggested that the aromatic hydrocarbon receptor (AhR) probably regulates the overexpression of the UGT201H1 detoxification gene. CONCLUSION: UGT201H1 is involved in cyflumetofen resistance, and AhR may regulates the overexpression of UGT201H1. These findings provide deeper insights into the molecular mechanisms underlying UGT-mediated metabolic resistance to chemical insecticides. © 2024 Society of Chemical Industry.


Assuntos
Acaricidas , Resistência a Medicamentos , Tetranychidae , Animais , Tetranychidae/genética , Tetranychidae/efeitos dos fármacos , Acaricidas/farmacologia , Resistência a Medicamentos/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Propionatos/farmacologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo
15.
J Hazard Mater ; 465: 133496, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38227999

RESUMO

Elucidating the fate characteristics of cyflumetofen and its main metabolite 2-TFMBA in tomato from cultivation to processing is crucial for safeguarding the environment and humans from hazardous effects. Cyflumetofen and 2-TFMBA could exist stably in tomato matrices for at least 343 days under frozen and dark conditions according to UHPLC-MS/MS, with a limit of quantitation of 0.001 mg/kg and retention time within 2.12 min. The occurrence, dissipation, and concentration variation of cyflumetofen were reflected by original depositions of 0.02-0.44 mg/kg, half-lives of 1.7-7.2 days, and terminal magnitudes of 0.005-0.30 mg/kg, respectively, with various influencing factors, e.g., climate conditions and tomato cultivars. Additionally, 13.5-59.3% of cyflumetofen was metabolized to 2-TFMBA, showing significant toxicological effects ranging from cultivation to processing. When the concentration decreased by 0.06 mg/kg, cyflumetofen was effectively removed by peeling, while washing was the recommended method for removing 2-TFMBA with a processing factor of 0.70. The comparative dietary risks of sum cyflumetofen were assessed for all life cycle populations using deterministic and probabilistic models. The risk quotients decreased to 1.3-4.8 times during the preparation of home canning tomato paste. Despite the low exposure risk, the potential health hazards of sum cyflumetofen should be considered, given its ubiquity and cumulative effects.


Assuntos
Solanum lycopersicum , Espectrometria de Massas em Tandem , Tolueno/análogos & derivados , Humanos , Propionatos/metabolismo
16.
Chemosphere ; 325: 138431, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933840

RESUMO

Cyflumetofen (CYF), a novel chiral acaricide, exert enantiomer-specific effects on target organisms by binding to glutathione S-transferase. However, there is limited knowledge regarding the response of non-target organisms to CYF, including enantioselective toxicity. In this study, we investigated the effects of racemic CYF (rac-CYF) and its two enantiomers (+)-CYF and (-)-CYF on MCF-7 cells and non-target (honeybees) and target (bee mites and red spider mites) organisms. The results showed that similar to estradiol, 1 µM (+)-CYF promoted the proliferation and disturbed the redox homeostasis of MCF-7 cells, whereas at high concentrations (≥100 µM) it exerted a negative effect on cell viability that was substantially stronger than that of (-)-CYF or rac-CYF. (-)-CYF and rac-CYF at 1 µM concentration did not significantly affect cell proliferation, but caused cell damage at high concentrations (≥100 µM). Analysis of acute CYF toxicity against non-target and target organisms revealed that for honeybees, all CYF samples had high lethal dose (LD50) values, indicating low toxicity. In contrast, for bee mites and red spider mites, LD50 values were low, whereas those of (+)-CYF were the lowest, suggesting higher toxicity of (+)-CYF than that of the other CYF samples. Proteomics profiling revealed potential CYF-targeted proteins in honeybees related to energy metabolism, stress responses, and protein synthesis. Upregulation of estrogen-induced FAM102A protein analog indicated that CYF might exert estrogenic effects by dysregulating estradiol production and altering estrogen-dependent protein expression in bees. Our findings suggest that CYF functions as an endocrine disruptor in non-target organisms in an enantiomer-specific manner, indicating the necessity for general ecological risk assessment for chiral pesticides.


Assuntos
Acaricidas , Praguicidas , Abelhas , Animais , Acaricidas/toxicidade , Estereoisomerismo , Praguicidas/química , Propionatos/análise , Proteínas
17.
J Hazard Mater ; 452: 131300, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37002996

RESUMO

Cyflumetofen was widely applied in agriculture with its excellent acaricidal effect. However, the impact of cyflumetofen on the soil non-target organism earthworm (Eisenia fetida) is unclear. This study aimed to elucidate the bioaccumulation of cyflumetofen in soil-earthworm systems and the ecotoxicity of earthworms. The highest concentration of cyflumetofen enriched by earthworms was found on the 7th day. Long-term exposure of earthworms to the cyflumetofen (10 mg/kg) could suppress protein content and increases Malondialdehyde content leading to severe peroxidation. Transcriptome sequencing analysis demonstrated that catalase and superoxide-dismutase activities were significantly activated while genes involved in related signaling pathways were significantly upregulated. In terms of detoxification metabolic pathways, high concentrations of cyflumetofen stimulated the number of Differentially-Expressed-Genes involved in the detoxification pathway of the metabolism of glutathione. Identification of three detoxification genes (LOC100376457, LOC114329378, and JGIBGZA-33J12) had synergistic detoxification. Additionally, cyflumetofen promoted disease-related signaling pathways leading to higher disease risk, affecting the transmembrane capacity and cell membrane composition, ultimately causing cytotoxicity. Superoxide-Dismutase in oxidative stress enzyme activity contributed more to detoxification. Carboxylesterase and glutathione-S-transferase activation play a major detoxification role in high-concentration treatment. Altogether, these results contribute to a better understanding of toxicity and defense mechanisms involved in long-term cyflumetofen exposure in earthworms.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Solo , Oligoquetos/metabolismo , Superóxidos/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Poluentes do Solo/metabolismo , Malondialdeído/metabolismo
18.
Insect Sci ; 30(4): 1129-1148, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36380571

RESUMO

Changes in gene expression are associated with the evolution of pesticide resistance in arthropods. In this study, transcriptome sequencing was performed in 3 different resistance levels (low, L; medium, M; and high, H) of cyflumetofen-resistant strain (YN-CyR). A total of 1 685 genes, including 97 detoxification enzyme genes, were upregulated in all 3 stages, of which 192 genes, including 11 detoxification enzyme genes, showed a continuous increase in expression level with resistance development (L to H). RNA interference experiments showed that overexpression of 7 genes (CYP392A1, TcGSTd05, CCE06, CYP389A1, TcGSTz01, CCE59, and CYP389C2) is involved in the development of cyflumetofen resistance in Tetranychus cinnabarinus. The recombinant CYP392A1 can effectively metabolize cyflumetofen, while CCE06 can bind and sequester cyflumetofen in vitro. We compared 2 methods for rapid screening of resistance molecular markers, including short-term induction and 1-time high-dose selection. Two detoxification enzyme genes were upregulated in the field susceptible strain (YN-S) by induction with 20% lethal concentration (LC20 ) of cyflumetofen. However, 16 detoxification enzyme genes were upregulated by 1-time selection with LC80 of cyflumetofen. Interestingly, the 16 genes were overexpressed in all 3 resistance stages. These results indicated that 1 685 genes that were upregulated at the L stage constituted the basis of cyflumetofen resistance, of which 192 genes in which upregulation continued to increase were the main driving force for the development of resistance. Moreover, the 1-time high-dose selection is an efficient way to rapidly obtain the resistance-related genes that can aid in the development of resistance markers and resistance management in mites.


Assuntos
Acaricidas , Ácaros , Tetranychidae , Animais , Acaricidas/farmacologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/farmacologia , Tetranychidae/genética
19.
J Agric Food Chem ; 70(4): 1068-1078, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35072460

RESUMO

As a newly recognized type of noncoding RNA, circular RNA can mediate a variety of physiological changes in mammals by regulating the post-transcriptional expression level of genes. However, the function of circRNA in the evolution of pesticide resistance in arthropods is still unknown. In this study, 2546 circRNAs were identified in Tetranychus cinnabarinus by transcriptome sequencing. The differentially expressed gene analysis indicated that 44 circRNAs were overexpressed in a cyflumetofen-resistant strain, of which a circRNA (named circ1-3p) was found to contain the response elements of miR-1-3p, an miRNA that is involved in cyflumetofen resistance by targeting TcGSTm04. The circular structure of circ1-3p was further determined using a divergent primer. The results of different molecular assays in vitro and in vivo showed that circ1-3p can compete with TcGSTm04 in miR-1-3p binding. The colocalization of circ1-3p and miR-1-3p was found using fluorescence in situ hybridization, suggesting that circ1-3p can directly sponge miR-1-3p in T. cinnabarinus. In addition, silencing the expression of circ1-3p resulted in the upregulation of miR-1-3p and the downregulation of TcGSTm04 as well as a significant increase in the sensitivity of T. cinnabarinus to cyflumetofen. All these pieces of evidence indicates that overexpressed circ1-3p promotes the expression of TcGSTm04 through sponging miR-1-3p, thereby involving in the evolution of cyflumetofen resistance in T. cinnabarinus.


Assuntos
Acaricidas , MicroRNAs , Animais , Proteínas de Artrópodes/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , Propionatos , RNA Circular
20.
J Agric Food Chem ; 70(36): 11063-11074, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35575634

RESUMO

Bioisosteric replacement has been proven to be a powerful strategy in life science research. In this review, general aspects of carbon-silicon bioisosteric substitution and its applications in pharmaceutical and crop protection research are described. Carbon and their silicon analogues possess similar intrinsic properties. Replacing carbon with silicon in pharmaceuticals and pesticides has shown to result in positive effects on efficacy and selectivity, physicochemical properties, and bioavailability and also to eliminate or improve human or environmental safety properties as well as to provide novelty and new intellectual property in many cases. Furthermore, the application of carbon-silicon substitution in the search for new complex II acaricides is highlighted. This research led to the discovery of sila-cyflumetofen 23a and other silicon-containing analogues of cyflumetofen that match or exceed the acaricidal activity of cyflumetofen. The molecular design strategy, synthetic aspects, biological activity, computational modeling work, and structure-activity relationships will be discussed.


Assuntos
Acaricidas , Tetranychidae , Acaricidas/farmacologia , Animais , Carbono/farmacologia , Humanos , Propionatos , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA