RESUMO
Pregnancy induces dramatic metabolic changes in females; yet, the intricacies of this metabolic reprogramming remain poorly understood, especially in primates. Using cynomolgus monkeys, we constructed a comprehensive multi-tissue metabolome atlas, analyzing 273 samples from 23 maternal tissues during pregnancy. We discovered a decline in metabolic coupling between tissues as pregnancy progressed. Core metabolic pathways that were rewired during primate pregnancy included steroidogenesis, fatty acid metabolism, and arachidonic acid metabolism. Our atlas revealed 91 pregnancy-adaptive metabolites changing consistently across 23 tissues, whose roles we verified in human cell models and patient samples. Corticosterone and palmitoyl-carnitine regulated placental maturation and maternal tissue progenitors, respectively, with implications for maternal preeclampsia, diabetes, cardiac hypertrophy, and muscle and liver regeneration. Moreover, we found that corticosterone deficiency induced preeclampsia-like inflammation, indicating the atlas's potential clinical value. Overall, our multi-tissue metabolome atlas serves as a framework for elucidating the role of metabolic regulation in female health during pregnancy.
Assuntos
Metabolômica , Gravidez , Animais , Feminino , Humanos , Gravidez/metabolismo , Corticosterona/metabolismo , Metaboloma/fisiologia , Placenta/metabolismo , Pré-Eclâmpsia , Primatas/metabolismoRESUMO
The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization. Morphological, histological, and single-cell RNA-sequencing analyses demonstrate that ex utero cultured monkey embryos largely recapitulated key events of in vivo development. With this platform, we were able to delineate lineage trajectories and genetic programs involved in neural induction, lateral plate mesoderm differentiation, yolk sac hematopoiesis, primitive gut, and primordial germ-cell-like cell development in monkeys. Our embedded 3D culture system provides a robust and reproducible platform for growing monkey embryos from blastocysts to early organogenesis and studying primate embryogenesis ex utero.
Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Animais , Macaca fascicularis , Blastocisto , Organogênese , PrimatasRESUMO
Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.
Assuntos
Defeitos do Tubo Neural , Neurulação , Técnicas de Cultura de Tecidos , Animais , Humanos , Blastocisto , Embrião de Mamíferos , Desenvolvimento Embrionário , Macaca fascicularis , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Técnicas de Cultura de Tecidos/métodosRESUMO
Definition of the specific germline immunoglobulin (Ig) alleles present in an individual is a critical first step to delineate the ontogeny and evolution of antigen-specific antibody responses. Rhesus and cynomolgus macaques are important animal models for pre-clinical studies, with four main sub-groups being used: Indian- and Chinese-origin rhesus macaques and Mauritian and Indonesian cynomolgus macaques. We applied the (Ig) gene inference tool IgDiscover and performed extensive Sanger sequencing-based genomic validation to define germline VDJ alleles in these 4 sub-groups, comprising 45 macaques in total. There was allelic overlap between Chinese- and Indian-origin rhesus macaques and also between the two macaque species, which is consistent with substantial admixture. The island-restricted Mauritian cynomolgus population displayed the lowest number of alleles of the sub-groups, yet maintained high individual allelic diversity. These comprehensive databases of germline IGH alleles for rhesus and cynomolgus macaques provide a resource toward the study of B cell responses in these important pre-clinical models.
Assuntos
Genótipo , Mutação em Linhagem Germinativa/genética , Cadeias Pesadas de Imunoglobulinas/genética , Alelos , Animais , Bases de Dados Genéticas , Modelos Animais de Doenças , Epitopos , Imunidade Humoral , Macaca fascicularis , Macaca mulatta , Filogenia , Polimorfismo Genético , Especificidade da Espécie , Recombinação V(D)JRESUMO
Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.
Assuntos
Astenozoospermia , Tupaia , Animais , Masculino , Macaca fascicularis , Primatas , Sêmen , Motilidade dos Espermatozoides , TupaiidaeRESUMO
The spermatogonial compartment maintains spermatogenesis throughout the reproductive lifespan. Single-cell RNA sequencing (scRNA-seq) has revealed the presence of several spermatogonial clusters characterized by specific molecular signatures. However, it is unknown whether the presence of such clusters can be confirmed in terms of protein expression and whether protein expression in the subsets overlaps. To investigate this, we analyzed the expression profile of spermatogonial markers during the seminiferous epithelial cycle in cynomolgus monkeys and compared the results with human data. We found that in cynomolgus monkeys, as in humans, undifferentiated spermatogonia are largely quiescent, and the few engaged in the cell cycle were immunoreactive to GFRA1 antibodies. Moreover, we showed that PIWIL4+ spermatogonia, considered the most primitive undifferentiated spermatogonia in scRNA-seq studies, are quiescent in primates. We also described a novel subset of early differentiating spermatogonia, detectable from stage III to stage VII of the seminiferous epithelial cycle, that were transitioning from undifferentiated to differentiating spermatogonia, suggesting that the first generation of differentiating spermatogonia arises early during the epithelial cycle. Our study makes key advances in the current understanding of male germline premeiotic expansion in primates.
Assuntos
Espermatogênese , Espermatogônias , Adulto , Humanos , Animais , Masculino , Macaca fascicularis , Primatas , Ciclo CelularRESUMO
BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.
Assuntos
Células-Tronco Pluripotentes Induzidas , Macaca fascicularis , Infarto do Miocárdio , Miócitos Cardíacos , Esferoides Celulares , Animais , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Miócitos Cardíacos/transplante , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Esferoides Celulares/transplante , Regeneração , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Masculino , Transplante de Células-Tronco/métodos , Modelos Animais de DoençasRESUMO
TIGIT is a negative immune checkpoint receptor associated with T cell exhaustion in cancer and HIV. TIGIT upregulation in virus-specific CD8+ T cells and NK cells during HIV/SIV infection results in dysfunctional effector capabilities. In vitro studies targeting TIGIT on CD8+ T cells suggest TIGIT blockade as a viable strategy to restore SIV-specific T cell responses. Here, we extend these studies in vivo using TIGIT blockage in nonhuman primates in an effort to reverse T cell and NK cell exhaustion in the setting of SIV infection. We demonstrate that in vivo administration of a humanized anti-TIGIT monoclonal antibody (mAb) is well tolerated in both cynomolgus macaques and rhesus macaques. Despite sustained plasma concentrations of anti-TIGIT mAb, we observed no consistent improvement in NK or T cell cytolytic capacity. TIGIT blockade minimally enhanced T cell proliferation and virus-specific T cell responses in both magnitude and breadth though plasma viral loads in treated animals remained stable indicating that anti-TIGIT mAb treatment alone was insufficient to increase anti-SIV CD8+ T cell function. The enhancement of virus-specific T cell proliferative responses observed in vitro with single or dual blockade of TIGIT and/or PD-1 highlights TIGIT as a potential target to reverse T cell dysfunction. Our studies, however, reveal that targeting the TIGIT pathway alone may be insufficient in the setting of viremia and that combining immune checkpoint blockade with other immunotherapeutics may be a future path forward for improved viral control or elimination of HIV.IMPORTANCEUpregulation of the immune checkpoint receptor TIGIT is associated with HIV-mediated T cell dysfunction and correlates with HIV disease progression. Compelling evidence exists for targeting immune checkpoint receptor pathways that would potentially enhance immunity and refocus effector cell efforts toward viral clearance. In this report, we investigate TIGIT blockade as an immunotherapeutic approach to reverse immune exhaustion during chronic SIV/SHIV infection in a nonhuman primate model of HIV infection. We show that interfering with the TIGIT signaling axis alone is insufficient to improve viral control despite modest improvement in T cell immunity. Our data substantiate the use of targeting multiple immune checkpoint receptors to promote synergy and ultimately eliminate HIV-infected cells.
Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Macaca fascicularis , Macaca mulatta , Receptores Imunológicos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Carga Viral , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Receptores Imunológicos/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Carga Viral/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologiaRESUMO
Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.
Assuntos
Células Endoteliais , Ovário , Feminino , Animais , Ovário/metabolismo , Células Endoteliais/metabolismo , Neurotensina/metabolismo , Junções Aderentes/metabolismo , Permeabilidade Capilar , Caderinas/genética , Caderinas/metabolismo , Macaca/metabolismo , Permeabilidade , Endotélio Vascular/metabolismo , Mamíferos/metabolismoRESUMO
The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCß) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gß1γ, PKCα, PKCε, CaMKII, GSK3ß, ß-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.
Assuntos
Núcleo Caudado , Etanol , Macaca fascicularis , Putamen , Receptores Acoplados a Proteínas G , Animais , Masculino , Putamen/metabolismo , Putamen/efeitos dos fármacos , Núcleo Caudado/metabolismo , Núcleo Caudado/efeitos dos fármacos , Etanol/farmacologia , Etanol/administração & dosagem , Receptores Acoplados a Proteínas G/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Depressores do Sistema Nervoso Central/administração & dosagem , AutoadministraçãoRESUMO
Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.
Assuntos
Infecções por Alphavirus , Alphavirus , Genótipo , Macaca fascicularis , RNA Viral , Viremia , Animais , Macaca fascicularis/virologia , Alphavirus/genética , Alphavirus/patogenicidade , Alphavirus/classificação , Alphavirus/isolamento & purificação , Infecções por Alphavirus/virologia , Infecções por Alphavirus/veterinária , Viremia/virologia , RNA Viral/genética , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Modelos Animais de Doenças , Filogenia , Citocinas/genética , Citocinas/sangueRESUMO
Trophoblast stem cells (TSCs), derived from the trophectoderm of the blastocyst, are used as an in vitro model to reveal the mechanisms underlying placentation in mammals. In humans, suitable culture conditions for TSC derivation have recently been established. The established human TSCs (hTSCs) differentiate efficiently toward two trophoblast subtypes: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). However, the efficiency of differentiation is lower in macaque TSCs than in hTSCs. Here, we demonstrate that the activation of Wnt signaling downregulated the expression of inhibitory G protein and induced trophoblastic lineage switching to the STB progenitor state. The treatment of macaque TSCs with a GSK-3 inhibitor, CHIR99021, upregulated STB progenitor markers and enhanced proliferation. Under the Wnt signaling-activated conditions, macaque TSCs effectively differentiated to STBs upon dbcAMP and forskolin treatment. RNA-seq analyses revealed the downregulation of inhibitory G protein, which may make macaque TSCs responsive to forskolin. Interestingly, this lineage switching appeared to be reversible as the macaque TSCs lost responsiveness to forskolin upon the removal of CHIR99021. The ability to regulate the direction of macaque TSC differentiation would be advantageous in elucidating the mechanisms underlying placentation in non-human primates.
RESUMO
BACKGROUND: Atipamezole, an α-2 adrenergic receptor antagonist, reverses the α-2 agonist anesthetic effects. There is a dearth of information on the physiological effects of these drugs in cynomolgus macaques (Macaca fascicularis). We assessed atipamezole's physiologic effects. We hypothesized atipamezole administration would alter anesthetic parameters. METHODS: Five cynomolgus macaques were sedated with ketamine/dexmedetomidine intramuscularly, followed 45 min later with atipamezole (0.5 mg/kg). Anesthetic parameters (heart rate, blood pressure [systolic (SAP), diastolic (DAP), and mean (MAP) blood pressure], body temperature, respiratory rate, and %SpO2) were monitored prior to and every 10 min (through 60 min) post atipamezole injection. RESULTS: While heart rate was significantly increased for 60 min; SAP, DAP, MAP, and temperature were significantly decreased at 10 min. CONCLUSIONS: This study indicates subcutaneous atipamezole results in increased heart rate and transient blood pressure decrease. These findings are clinically important to ensure anesthetist awareness to properly support and treat patients as needed.
Assuntos
Anestésicos , Ketamina , Animais , Macaca fascicularis , Imidazóis/farmacologia , Ketamina/farmacologia , Anestésicos/farmacologia , Frequência CardíacaRESUMO
BACKGROUND: The significantly increasing incidence of type 2 diabetes mellitus (T2DM) over the last few decades triggers the demands of T2DM animal models to explore the pathogenesis, prevention, and therapy of the disease. The altered lipid metabolism may play an important role in the pathogenesis and progression of T2DM. However, the characterization of molecular lipid species in fasting serum related to T2DM cynomolgus monkeys is still underrecognized. METHODS: Untargeted and targeted LC-mass spectrometry (MS)/MS-based lipidomics approaches were applied to characterize and compare the fasting serum lipidomic profiles of T2DM cynomolgus monkeys and the healthy controls. RESULTS: Multivariate analysis revealed that 196 and 64 lipid molecules differentially expressed in serum samples using untargeted and targeted lipidomics as the comparison between the disease group and healthy group, respectively. Furthermore, the comparative analysis of differential serum lipid metabolites obtained by untargeted and targeted lipidomics approaches, four common serum lipid species (phosphatidylcholine [18:0_22:4], lysophosphatidylcholine [14:0], phosphatidylethanolamine [PE] [16:1_18:2], and PE [18:0_22:4]) were identified as potential biomarkers and all of which were found to be downregulated. By analyzing the metabolic pathway, glycerophospholipid metabolism was associated with the pathogenesis of T2DM cynomolgus monkeys. CONCLUSION: The study found that four downregulated serum lipid species could serve as novel potential biomarkers of T2DM cynomolgus monkeys. Glycerophospholipid metabolism was filtered out as the potential therapeutic target pathway of T2DM progression. Our results showed that the identified biomarkers may offer a novel tool for tracking disease progression and response to therapeutic interventions.
Assuntos
Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Lipidômica/métodos , Macaca fascicularis , Biomarcadores , Lipídeos , GlicerofosfolipídeosRESUMO
BACKGROUND: Cervical cancer is an abnormal growth of cervical tissue epithelial cells due to persistent human papilloma virus (HPV) infection. Cynomolgus monkeys (Macaca fascicularis) can be naturally and spontaneously infected with M. fascicularis Papillomavirus Type 3 (MfPV3), a virus that is phylogenetically closely related to human oncogenic HPV (HPV-16 and HPV-34), and therefore a potentially beneficial for modeling HPV disease. This study aims to evaluate the expression of the integrin alpha 6 (ITGα6) receptor in cynomolgus monkeys spontaneously infected with MfPV3, which this receptor also found in human infected with HPV. METHODS: The study was done on archived Formalin-fixed Paraffin-Embedded (FFPE) samples of uterine and cervix tissue of cynomolgus monkeys. Immunohistochemistry was also performed to quantify the expression levels of ITGα6. RESULTS: The results showed 80% of the samples positive Cervical Intraepithelial Neoplasia (CIN) and increased expression of ITGα6 significantly in Positive-MfPV3 group than negative-MfPV3 group. CONCLUSIONS: This indicated the potential of cynomolgus monkeys as a spontaneous oncogenesis model of PV infection type.
Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Colo do Útero/metabolismo , Macaca fascicularis , Infecções por Papillomavirus/veterinária , Neoplasias do Colo do Útero/química , Neoplasias do Colo do Útero/metabolismo , Papillomaviridae , Integrinas/análiseRESUMO
Acute gastric dilatation (AGD) is one of the most prevalent and life-threatening diseases in nonhuman primates worldwide. However, the etiology of this syndrome has not been determined. Recently, sudden death occurred in a 7-year-old female cynomolgus monkey with a history of fecal microbiota transplantation using diarrheic stools. The monkey had undergone surgery previously. On necropsy, gastric dilatation and rupture demonstrated a tetrad arrangement on histopathologic examination. On 16S rRNA sequencing, a high population of Clostridium ventriculi was identified in the duodenum adjacent to stomach but not in the colon. This paper is the first report of Clostridium ventriculi infection in a cynomolgus macaque with acute gastric dilatation and rupture.
Assuntos
Clostridium , Dilatação Gástrica , Feminino , Animais , Macaca fascicularis , Dilatação Gástrica/veterinária , Dilatação Gástrica/patologia , RNA Ribossômico 16SRESUMO
A captive 17-year-old male cynomolgus monkey (Macaca fascicularis) developed diffuse large B-cell lymphoma (DLBCL). This was the first report of DLBCL presenting with a mandible mass and violation of the paranasal sinus in a cynomolgus monkey. The neoplasm showed marked microscopical malignant aspects. Immunohistochemical staining showed strong positive expression of CD20. These features may contribute to the diagnosis and therapeutics of DLBCL in NHPs.
Assuntos
Linfoma Difuso de Grandes Células B , Macaca fascicularis , Doenças dos Macacos , Animais , Masculino , Linfoma Difuso de Grandes Células B/veterinária , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/diagnóstico , Doenças dos Macacos/patologia , Doenças dos Macacos/diagnósticoRESUMO
BACKGROUND: Type 2 diabetes mellitus (T2DM) is widely recognized as a serious global public health concern with a substantial economic burden on patients, their families, and society. Accumulating evidence suggests that an etiologic role for serum microbiota and circulating metabolites in the pathogenesis of T2DM. This study aims to characterize the serum microbiota and circulating metabolites in cynomolgus monkeys with spontaneous T2DM, and provide a reference for the diagnosis and treatment of clinical T2DM. METHODS: We collected serum samples of the 14 cynomolgus monkeys (15-20 years old, male) for serum microbiota analysis by 16S rRNA gene V3-V4 region amplicon sequencing and circulating metabolites analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry, of which seven were spontaneous T2DM cynomolgus monkeys and seven were healthy controls. RESULTS: Our results showed that the serum microbiota abundance and diversity were significantly increased in cynomolgus monkeys with spontaneous T2DM compared to healthy controls, the phyla of Cyanobacteria and Chloroflexi and the genera of Lactobacillus, rhodobacter and collinsella were also significantly increased. A total of 114 serum differentially expressed metabolites (DEMs) were identified, of which 22 were selected as potential biomarkers candidates related to spontaneous T2DM in cynomolgus monkeys by multivariate data analysis. In addition, serum levels of total SCFAs, acetate, butyrate, caproate, isobutyrate, and isovalerate were also significantly increased in the present study. The correlation network analyses have selected certain key DEMs, such as D-Psicose, 4-Oxoproline, D-Glutamine, and Hydroxyphenyllactic acid, which may serve as potential biomarkers for distinguishing between T2DM and healthy controls. CONCLUSION: Our results provide preliminary insights on perturbed serum microbiota and circulating metabolites of cynomolgus monkeys with spontaneous T2DM. These findings would be useful to develop microbiota-based strategies for T2DM prevention and control.
Assuntos
Diabetes Mellitus Tipo 2 , Macaca fascicularis , Microbiota , Animais , Macaca fascicularis/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/veterinária , Diabetes Mellitus Tipo 2/microbiologia , Masculino , RNA Ribossômico 16S , Biomarcadores/sangue , Bactérias/classificaçãoRESUMO
This review on cynomolgus monkey (Macaca fascicularis) blastoids discusses a breakthrough in modeling early non-human primate embryogenesis, offering insights into embryonic development and implantation processes. It acknowledges ethical challenges and animal welfare considerations in developmental biology, suggests potential applications in human reproductive medicine, and highlights the need for ongoing ethical and technical refinement.
Assuntos
Biologia do Desenvolvimento , Primatas , Gravidez , Feminino , Animais , Macaca fascicularisRESUMO
The novel anti-Parkinson disease drug, FLZ, had a complicated drug absorption and metabolise process reported in single-dose studies. A multi-peak absorption peak phenomenon was found.This study focused on the multi-dose pharmacokinetics (PK) characteristics of FLZ, T1, and T2 in cynomolgus monkeys and raised discussion on its multi-peak absorption situation. Different doses of FLZ ranging from 75 to 300 mg/kg were administered orally to 16 cynomolgus monkeys. The whole treatment period lasted for 42 days with FLZ once a day.The primary metabolites of FLZ were Target1 (T1) and Target2 (T2), which had plasma exposure (calculated as AUC0-24, day 42) approximately 2 and 10 times higher than the parent drug. The proportion of plasma exposure increase was lower than the proportion of dose increase in FLZ, T1, and T2.Gender influenced its exposure (AUC0-24) with approximately 3-fold higher in males than females. There was no significant accumulation of T1 and T2. Enterohepatic Circulation (EHC) and gastrointestinal (GI) tract absorption may be involved in the mechanism of multi-peak characteristics.