Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884800

RESUMO

Many psychoactive compounds have been shown to primarily interact with high-affinity and low-capacity solute carrier 6 (SLC6) monoamine transporters for norepinephrine (NET; norepinephrine transporter), dopamine (DAT; dopamine transporter) and serotonin (SERT; serotonin transporter). Previous studies indicate an overlap between the inhibitory capacities of substances at SLC6 and SLC22 human organic cation transporters (SLC22A1-3; hOCT1-3) and the human plasma membrane monoamine transporter (SLC29A4; hPMAT), which can be classified as high-capacity, low-affinity monoamine transporters. However, interactions between central nervous system active substances, the OCTs, and the functionally-related PMAT have largely been understudied. Herein, we report data from 17 psychoactive substances interacting with the SLC6 monoamine transporters, concerning their potential to interact with the human OCT isoforms and hPMAT by utilizing radiotracer-based in vitro uptake inhibition assays at stably expressing human embryonic kidney 293 cells (HEK293) cells. Many compounds inhibit substrate uptake by hOCT1 and hOCT2 in the low micromolar range, whereas only a few substances interact with hOCT3 and hPMAT. Interestingly, methylphenidate and ketamine selectively interact with hOCT1 or hOCT2, respectively. Additionally, 3,4-methylenedioxymethamphetamine (MDMA) is a potent inhibitor of hOCT1 and 2 and hPMAT. Enantiospecific differences of R- and S-α-pyrrolidinovalerophenone (R- and S-α-PVP) and R- and S-citalopram and the effects of aromatic substituents are explored. Our results highlight the significance of investigating drug interactions with hOCTs and hPMAT, due to their role in regulating monoamine concentrations and xenobiotic clearance.


Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Psicotrópicos/farmacologia , 3,4-Metilenodioxianfetamina/análogos & derivados , 3,4-Metilenodioxianfetamina/farmacologia , Linhagem Celular , Sistema Nervoso Central/efeitos dos fármacos , Citalopram/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Células HEK293 , Humanos , Pirrolidinas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
2.
Clin Exp Pharmacol Physiol ; 47(5): 790-797, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883280

RESUMO

In the present study, we investigated whether mood stabilizer lithium (Li) protects against d-amphetamine (AMP)-induced mania-like behaviours via modulating the novel proinflammatory potential. Repeated treatment with AMP resulted in significant increases in proinflammatory cyclooxygenase-2 (COX-2) and indolemaine-2,3-dioxygenase-1 (IDO)-1 expression in the prefrontal cortex (PFC) of mice. However, AMP treatment did not significantly change IDO-2 and 5-lipoxygenase (5-LOX) expression, suggesting that proinflammatory parameters such as COX-2 and IDO-1 are specific for AMP-induced behaviours. AMP-induced initial expression of COX-2 (15 minutes post-AMP) was earlier than that of IDO-1 (1 hour post-AMP). Mood stabilizer Li and COX-2 inhibitor meloxicam significantly attenuated COX-2 expression 15 minutes post-AMP, whereas IDO-1 inhibitor 1-methyl-DL-tryptophan (1-MT) did not affect COX-2 expression. However, AMP-induced IDO-1 expression was significantly attenuated by Li, meloxicam or 1-MT, suggesting that COX-2 is an upstream molecule for the induction of IDO-1 caused by AMP. Consistently, co-immunoprecipitation between COX-2 and IDO-1 was observed at 30 minutes, 1, 3, and 6 hours after the final AMP treatment. This interaction was also significantly inhibited by Li, meloxicam or 1-MT. Furthermore, AMP-induced hyperlocomotion was significantly attenuated by Li, meloxicam or 1-MT. We report, for the first time, that mood stabilizer Li attenuates AMP-induced mania-like behaviour via attenuation of interaction between COX-2 and IDO-1, and that the interaction of COX-2 and IDO-1 may be critical for the therapeutic intervention mediated by mood stabilizer.


Assuntos
Antimaníacos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cloreto de Lítio/farmacologia , Locomoção/efeitos dos fármacos , Mania/prevenção & controle , Córtex Pré-Frontal/efeitos dos fármacos , Anfetamina , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Modelos Animais de Doenças , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Masculino , Mania/induzido quimicamente , Mania/enzimologia , Mania/psicologia , Meloxicam/farmacologia , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/enzimologia , Córtex Pré-Frontal/fisiopatologia , Transdução de Sinais , Triptofano/análogos & derivados , Triptofano/farmacologia
3.
Synapse ; 72(9): e22037, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29876970

RESUMO

Studies in nonhuman primates and humans have demonstrated that amphetamine-induced dopamine release in the cortex can be measured with [11 C]FLB 457 and PET imaging. This technique has been successfully used in recent clinical studies to show decreased dopamine transmission in the prefrontal cortex in schizophrenia and alcohol dependence. Here, we present data from a cohort of twelve healthy controls in whom an oral amphetamine challenge (0.5 mg kg-1 ) did not lead to a significant reduction in [11 C]FLB 457 BPND (i.e., binding potential relative to non-displaceable uptake). Two factors that likely contributed to the inability to displace [11 C]FLB 457 BPND in this cohort relative to successful cohorts are: (a) the acquisition of the baseline and post-amphetamine scans on different days as opposed to the same day and (b) the initiation of the post-amphetamine [11 C]FLB 457 scan at ∼5 hours as opposed to ∼3 hours following oral amphetamine. Furthermore, we show [11 C]FLB 457 reproducibility data from a legacy dataset to support greater variability in cortical BPND when the test and retest scans are acquired on different days as compared to the same day. These results highlight the methodological challenges that continue to plague the field with respect to imaging dopamine release in the cortex.


Assuntos
Anfetamina/farmacologia , Encéfalo , Antagonistas de Dopamina/farmacocinética , Inibidores da Captação de Dopamina/farmacologia , Tomografia por Emissão de Pósitrons , Pirrolidinas/farmacocinética , Salicilamidas/farmacocinética , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Mapeamento Encefálico , Radioisótopos de Carbono/sangue , Radioisótopos de Carbono/farmacocinética , Antagonistas de Dopamina/sangue , Feminino , Humanos , Masculino , Pirrolidinas/sangue , Salicilamidas/sangue , Adulto Jovem
4.
Traffic ; 16(9): 919-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25951902

RESUMO

Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Citoesqueleto/metabolismo , Plasticidade Neuronal , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Humanos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia
5.
J Neurosci ; 35(10): 4113-30, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762659

RESUMO

Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is phosphorylated on several residues in response to numerous stimuli. Although commonly used as a marker for neuronal activity, its upstream mechanisms of regulation are poorly studied and its role in protein synthesis remains largely debated. Here, we demonstrate that the psychostimulant d-amphetamine (d-amph) markedly increases rpS6 phosphorylation at Ser235/236 sites in both crude and synaptoneurosomal preparations of the mouse striatum. This effect occurs selectively in D1R-expressing medium-sized spiny neurons (MSNs) and requires the cAMP/PKA/DARPP-32/PP-1 cascade, whereas it is independent of mTORC1/p70S6K, PKC, and ERK signaling. By developing a novel assay to label nascent peptidic chains, we show that the rpS6 phosphorylation induced in striatonigral MSNs by d-amph, as well as in striatopallidal MSNs by the antipsychotic haloperidol or in both subtypes by papaverine, is not correlated with the translation of global or 5' terminal oligopyrimidine tract mRNAs. Together, these results provide novel mechanistic insights into the in vivo regulation of the post-translational modification of rpS6 in the striatum and point out the lack of a relationship between PKA-dependent rpS6 phosphorylation and translation efficiency.


Assuntos
Corpo Estriado/citologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Proteína S6 Ribossômica/metabolismo , Substância Negra/citologia , Animais , Corpo Estriado/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Harringtoninas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Puromicina/farmacologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Substância Negra/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
6.
J Neurosci ; 34(18): 6286-93, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790199

RESUMO

The associative processes that support free-operant instrumental avoidance behavior are still unknown. We used a revaluation procedure to determine whether the performance of an avoidance response is sensitive to the current value of the aversive, negative reinforcer. Rats were trained on an unsignaled, free-operant lever press avoidance paradigm in which each response avoided or escaped shock and produced a 5 s feedback stimulus. The revaluation procedure consisted of noncontingent presentations of the shock in the absence of the lever either paired or unpaired with systemic morphine and in a different cohort with systemic d-amphetamine. Rats were then tested drug free during an extinction test. In both the d-amphetamine and morphine groups, pairing of the drug and shock decreased subsequent avoidance responding during the extinction test, suggesting that avoidance behavior was sensitive to the current incentive value of the aversive negative reinforcer. Experiment 2 used central infusions of D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO), a mu-opioid receptor agonist, in the periacqueductal gray and nucleus accumbens shell to revalue the shock. Infusions of DAMGO in both regions replicated the effects seen with systemic morphine. These results are the first to demonstrate the impact of revaluation of an aversive reinforcer on avoidance behavior using pharmacological agents, thereby providing potential therapeutic targets for the treatment of avoidance behavior symptomatic of anxiety disorders.


Assuntos
Analgésicos Opioides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Dextroanfetamina/farmacologia , Reação de Fuga/efeitos dos fármacos , Morfina/farmacologia , Animais , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiologia , Ratos , Reforço Psicológico
7.
Synapse ; 69(10): 505-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26089243

RESUMO

A major goal in neuroscience is the measurement of neurotransmitters in living human brain. To date this has only been done reliably with dopamine using certain PET and SPECT radiotracers. The use of this technique has greatly advanced our understanding of dopamine and the dopaminergic system in normal and abnormal brain function. Transferring this technology to other neurotransmitter systems has proved less fruitful. The serotonergic system (5-HT) is one such system. 5-HT has been implicated in a wide range of brain functions and their disorders. The ability to measure 5-HT using this technique would be invaluable. In this article, we explore the key pharmacological features of current radiotracers for 5-HT receptors that might be sensitive to endogenous 5-HT. We also estimate the likely brain concentrations of the current available tranche of agents that might be used to enhance synaptic 5-HT concentration, so taking into account the potential for these to interact with the receptors directly and produce a spurious displacement signal.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Serotonina/metabolismo , Humanos
8.
Ann Pharmacother ; 49(10): 1096-104, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26228939

RESUMO

BACKGROUND: Recently, a case report described a decrease in frequency of stuttering after intake of methylphenidate (MPH). OBJECTIVE: This study was undertaken to investigate if this effect could again be reproduced in a population of young healthy male adult persons with developmental stuttering. METHODS: A double-blind randomized crossover trial, with a 2-week washout period, including 15 Dutch-speaking young healthy persons with developmental stuttering, assessed the effects of a single dose of 20 mg MPH compared with placebo on stuttering. Dependent and 1-sample t tests were used to detect significant differences. The end point was the number of stutter moments and self-perceived improvement. RESULTS: MPH yielded a significant decrease in the number of stutter moments when reading and speaking (P = 0.002), which was not the case with placebo (P = 0.090). There was a significant improvement from baseline after intake of MPH as compared with placebo (P = 0.003). Self-perceived improvement with MPH was not significantly better as compared with placebo (P = 0.28). CONCLUSIONS: This study showed that the participants had an objective statistically significant decrease in the frequency of stuttering with MPH, and this was not the case with placebo. This was also the case for a reduction in stutter moments when reading out loud and speaking spontaneously. However, this result was not subjectively perceived by the participants.


Assuntos
Estimulantes do Sistema Nervoso Central/uso terapêutico , Metilfenidato/uso terapêutico , Gagueira/tratamento farmacológico , Adulto , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Leitura , Fala , Gagueira/fisiopatologia , Resultado do Tratamento , Adulto Jovem
9.
Exp Neurol ; 374: 114718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336285

RESUMO

Executive function, including working memory, attention and inhibitory control, is crucial for decision making, thinking and planning. Lisdexamfetamine, the prodrug of d-amphetamine, has been approved for treating attention-deficit hyperactivity disorder and binge eating disorder, but whether it improves executive function under non-disease condition, as well as the underlying pharmacokinetic and neurochemical properties, remains unclear. Here, using trial unique non-matching to location task and five-choice serial reaction time task of rats, we found lisdexamfetamine (p.o) enhanced spatial working memory and sustained attention under various cognitive load conditions, while d-amphetamine (i.p) only improved these cognitive performances under certain high cognitive load condition. Additionally, lisdexamfetamine evoked less impulsivity than d-amphetamine, indicating lower adverse effect on inhibitory control. In vivo pharmacokinetics showed lisdexamfetamine produced a relative stable and lasting release of amphetamine base both in plasma and in brain tissue, whereas d-amphetamine injection elicited rapid increase and dramatical decrease in amphetamine base levels. Microdialysis revealed lisdexamfetamine caused lasting release of dopamine within the medial prefrontal cortex (mPFC), whereas d-amphetamine produced rapid increase followed by decline to dopamine level. Moreover, lisdexamfetamine elicited more obvious efflux of noradrenaline than that of d-amphetamine. The distinct neurochemical profiles may be partly attributed to the different action of two drugs to membranous catecholamine transporters level within mPFC, detecting by Western Blotting. Taken together, due to its certain pharmacokinetic and catecholamine releasing profiles, lisdexamfetamine produced better pharmacological action to improving executive function. Our finding provided valuable evidence on the ideal pharmacokinetic and neurochemical characteristics of amphetamine-type psychostimulants in cognition enhancement.


Assuntos
Estimulantes do Sistema Nervoso Central , Dimesilato de Lisdexanfetamina , Ratos , Animais , Dimesilato de Lisdexanfetamina/farmacologia , Função Executiva , Dopamina , Estimulantes do Sistema Nervoso Central/efeitos adversos , Dextroanfetamina/efeitos adversos , Dextroanfetamina/farmacocinética , Anfetamina/farmacologia , Catecolaminas , Cognição
10.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 6017-6035, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38386042

RESUMO

Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.


Assuntos
Antioxidantes , Doxiciclina , Hipocampo , Mania , Neurônios , Animais , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Antioxidantes/farmacologia , Mania/induzido quimicamente , Mania/tratamento farmacológico , Doxiciclina/farmacologia , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Anfetamina/farmacologia , Anfetamina/toxicidade , Modelos Animais de Doenças , Estimulantes do Sistema Nervoso Central/toxicidade , Monoaminas Biogênicas/metabolismo , Dextroanfetamina/farmacologia , Dextroanfetamina/toxicidade , Antimaníacos/farmacologia , Fármacos Neuroprotetores/farmacologia
11.
Expert Rev Neurother ; 24(5): 457-464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38630024

RESUMO

INTRODUCTION: The dextroamphetamine transdermal system (d-ATS) is a stimulant patch recently approved by the United States (U.S.) Food and Drug Administration for the treatment of attention-deficit/hyperactivity disorder (ADHD). AREAS COVERED: The composition of the d-ATS, pharmacokinetics, and metabolism are presented along with data from dermal trials evaluating the tolerability of patch application at various skin sites. Efficacy and safety data from a laboratory classroom study in children and adolescents including effect sizes are assessed. Pharmacokinetic-pharmacodynamic modeling of variable wear times is also discussed. EXPERT OPINION: Although stimulants are recommended as first-line treatment for ADHD in the U.S. some patients may have difficulty swallowing intact tablets and capsules, or dislike the taste or texture of chewable, oral disintegrating, or liquid formulations. The d-ATS fills an unmet need for those with ADHD who are unable or prefer not to take medication orally. Varying wear time of the d-ATS also gives flexibility in length of stimulant effect which may be useful for patients with changing schedules. However, dermal discomfort must be considered in addition to the usual amphetamine side effects when prescribing the d-ATS. Patient and provider experience will determine how frequent the use of d-ATS becomes.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Adolescente , Adulto , Humanos , Criança , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Anfetamina/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Dextroanfetamina/uso terapêutico
12.
Synapse ; 67(9): 586-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23504964

RESUMO

Dopamine D2 receptor positron emission tomography (PET) radioligands have proven useful for indirect assessment of the endogenous dopamine concentration in the living brain. On the contrary, dopamine D1 receptor antagonist radioligands have shown no sensitivity to changes in the dopamine concentration. A recent approach to enhance the sensitivity of radioligands to the dopamine concentration has been the development of dopamine D2 receptor agonist radioligands. The aim of this study was to evaluate the dopamine sensitivity of a dopamine D1 receptor agonist radioligand. For this purpose, we developed (S)-[¹¹C]N-methyl-NNC 01-0259 ((S)-[¹¹C]1) and characterized the receptor binding of (S)-[¹¹C]1 using in vitro receptor binding assays and in vivo PET measurements in monkeys. In vitro, both enantiomers of 1 were partial dopamine D1 receptor agonists, with (S)-1 having a 10-50 times higher affinity than (R)-1. PET studies in monkey confirmed the stereoselectivity of [¹¹C]1 in vivo. In monkey, administration of the dopamine D1-like receptor antagonist (R)-(+)-SCH 23390 decreased the striatal binding potential of (S)-[¹¹C]1 by 97%, but administration of the dopamine concentration enhancer d-amphetamine did not affect (S)-[¹¹C]1 binding. We conclude that the agonist (S)-[¹¹C]1 provides specific binding to dopamine D1-like receptors, possibly representing binding to the high-affinity state of the receptors. The partial dopamine D1 receptor agonist radioligand has, however, no enhanced sensitivity to endogenous dopamine concentrations in comparison with antagonist radioligands.


Assuntos
Benzazepinas/farmacologia , Benzofuranos/farmacologia , Encéfalo/diagnóstico por imagem , Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia , Receptores de Dopamina D1/agonistas , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Macaca fascicularis , Ligação Proteica , Receptores de Dopamina D1/metabolismo
13.
Addict Biol ; 18(6): 985-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22129527

RESUMO

Learned associations between drugs and the places they are used are critical to the development of drug addiction. Contextual conditioning has long been studied in animals as an indirect measure of drug reward, but little is known about the process in humans. Here, we investigated de novo contextual conditioning with d-amphetamine in healthy humans (n = 34). Volunteers underwent four conditioning sessions conducted in two testing rooms with double-blind, alternating d-amphetamine (20 mg) and placebo administration. Before conditioning procedures began, they rated the two rooms to examine pre-existing preferences. One group (Paired, n = 19) always received d-amphetamine in their least preferred room and placebo in the other during conditioning sessions. Another group (Unpaired, n = 15) received d-amphetamine and placebo in both rooms. Subjective drug effects were monitored at repeated times. At a separate re-exposure test, preference ratings for the drug-associated room were increased among the Paired group only, and more subjects in the Paired than the Unpaired group switched their preference to their initially least preferred room. Also, ratings of d-amphetamine drug liking independently predicted room liking at test among the Paired group only. Further, Paired group subjects reported greater stimulation and drug craving after d-amphetamine on the second administration, relative to the first. This study supports preliminary findings that humans, like animals, develop a preference for a place associated with d-amphetamine that is related to its subjective effects. These findings also suggest that experiencing d-amphetamine in a consistent environment produces context-dependent changes in its subjective effects, including an enhanced rewarding efficacy and abuse potential.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Dextroanfetamina/farmacologia , Recompensa , Adolescente , Adulto , Afeto , Análise de Variância , Animais , Área Sob a Curva , Aprendizagem por Associação/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Método Duplo-Cego , Meio Ambiente , Feminino , Humanos , Modelos Logísticos , Masculino , Placebos , Adulto Jovem
14.
Drug Alcohol Depend ; 248: 109906, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216808

RESUMO

BACKGROUND: Nicotine is commonly co-used with other psychostimulants. These high co-use rates have prompted much research on interactions between nicotine and psychostimulant drugs. These studies range from examination of illicitly used psychostimulants such as cocaine and methamphetamine to prescription psychostimulants used to treat attention deficit hyperactivity disorder (ADHD) such as methylphenidate (Ritalin™) and d-amphetamine (active ingredient of Adderall™). However, previous reviews largely focus on nicotine interactions with illicitly used psychostimulants with sparse mention of prescription psychostimulants. The currently available epidemiological and laboratory research, however, suggests high co-use between nicotine and prescription psychostimulants, and that these drugs interact to modulate use liability of either drug. The present review synthesizes epidemiological and experimental human and pre-clinical research assessing the behavioral and neuropharmacological interactions between nicotine and prescription psychostimulants that may contribute to high nicotine-prescription psychostimulant co-use. METHODS: We searched databases for literature investigating acute and chronic nicotine and prescription psychostimulant interactions. Inclusion criteria were that participants/subjects had to experience nicotine and a prescription psychostimulant compound at least once in the study, in addition to assessment of their interaction. RESULTS AND CONCLUSIONS: Nicotine clearly interacts with d-amphetamine and methylphenidate in a variety of behavioral tasks and neurochemical assays assessing co-use liability across preclinical, clinical, and epidemiological research. The currently available research suggests research gaps examining these interactions in women/female rodents, in consideration of ADHD symptoms, and how prescription psychostimulant exposure influences later nicotine-related outcomes. Nicotine has been less widely studied with alternative ADHD pharmacotherapy bupropion, but we also discuss this research.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Feminino , Humanos , Nicotina/farmacologia , Nicotina/uso terapêutico , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Dextroanfetamina/uso terapêutico , Prescrições
15.
Artigo em Inglês | MEDLINE | ID: mdl-37532129

RESUMO

BACKGROUND: While the exploration of serotonergic psychedelics as psychiatric medicines deepens, so does the pressure to better understand how these compounds act on the brain. METHODS: We used a double-blind, placebo-controlled, crossover design and administered lysergic acid diethylamide (LSD), 3,4-methylenedioxymethamphetamine (MDMA), and d-amphetamine in 25 healthy participants. By using spectral dynamic causal modeling, we mapped substance-induced changes in effective connectivity between the thalamus and different cortex types (unimodal vs. transmodal) derived from a previous study with resting-state functional magnetic resonance imaging data. Due to the distinct pharmacological modes of action of the 3 substances, we were able to investigate specific effects mainly driven by different neurotransmitter systems on thalamocortical and corticothalamic interactions. RESULTS: Compared with placebo, all 3 substances increased the effective connectivity from the thalamus to specific unimodal cortices, whereas the influence of these cortices on the thalamus was reduced. These results indicate increased bottom-up and decreased top-down information flow between the thalamus and some unimodal cortices. However, for the amphetamines, we found the opposite effects when examining the effective connectivity with transmodal cortices, including parts of the salience network. Intriguingly, LSD increased the effective connectivity from the thalamus to both unimodal and transmodal cortices, indicating a breach in the hierarchical organization of ongoing brain activity. CONCLUSIONS: The results advance our knowledge about the action of psychedelics on the brain and refine current models aiming to explain the underlying neurobiological processes.

16.
Front Psychiatry ; 13: 885574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558431

RESUMO

D-amphetamine has been used to enhance cognitive performance over the last few decades. Due to the rapid absorption after administration, d-amphetamine shows narrow effective window and severe abuse potential. Lisdexamfetamine, a prodrug of d-amphetamine, reduces the magnitude of plasma d-amphetamine concentration and prolongs the action duration when compared with immediate-release d-amphetamine at equimolar doses. However, the differences of these two drugs, which produce distinct pharmacokinetic characteristics, in cognition improvement still unclear. In present study, we compared the effects of d-amphetamine (i.p) and lisdexamfetamine (p.o) at equimolar doses (0.2, 0.5, 1.5, 4.5, and 13.5 mg/kg of d-amphetamine base) on locomotion, spatial working memory and recognition memory in rats. Given the crucial involvement of dopamine neurotransmitter system within the medial prefrontal cortex (mPFC) in cognitive processing, microdialysis was conducted to profile the difference in neurochemical characteristics between the two drugs. In our results, d-amphetamine ranges from 0.5 to 1.5 mg/kg significantly increased locomotor activity. However, d-amphetamine ranges from 0.2 to 13.5 mg/kg failed to improve spatial working memory and recognition memory in Y-maze-based spontaneous alternation and two-trial delayed alternation tasks of rats, respectively. In contrast, lisdexamfetamine with 4.5 mg/kg significantly increased the locomotion and improved both spatial working and recognition memory. Further, microdialysis showed that lisdexamfetamine induced lower magnitude and longer duration of extracellular dopamine increase than that of d-amphetamine. These results suggest that lisdexamfetamine was more effective than d-amphetamine in improving spatial cognitive performance, which was attributed to the steady and lasting dopamine release pattern within the mPFC.

17.
Psychopharmacology (Berl) ; 239(3): 923-933, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35132440

RESUMO

The bench-to-bedside development of pro-cognitive therapeutics for psychiatric disorders has been mired by translational failures. This is, in part, due to the absence of pharmacologically sensitive cognitive biomarkers common to humans and rodents. Here, we describe a cross-species translational marker of reward processing that is sensitive to the aminergic agonist, d-amphetamine. Motivated by human electroencephalographic (EEG) findings, we recently reported that frontal midline delta-band power is an electrophysiological biomarker of reward surprise in humans and in mice. In the current series of experiments, we determined the impact of parametric doses of d-amphetamine on this reward-related EEG response from humans (n = 23) and mice (n = 28) performing a probabilistic learning task. In humans, d-amphetamine (placebo, 10 mg, 20 mg) boosted the Reward Positivity event-related potential (ERP) component as well as the spectral delta-band representations of this signal. In mice, d-amphetamine (placebo, 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg) boosted both reward and punishment ERP features, yet there was no modulation of spectral activities. In sum, the present results confirm the role of dopamine in the generation of the Reward Positivity in humans, and pave the way toward a pharmacologically valid biomarker of reward sensitivity across species.


Assuntos
Anfetamina , Reforço Psicológico , Anfetamina/farmacologia , Animais , Biomarcadores , Eletroencefalografia , Humanos , Camundongos , Recompensa
18.
Psychopharmacology (Berl) ; 239(12): 3755-3770, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357743

RESUMO

RATIONALE: D-amphetamine maintenance therapy is a promising strategy to reduce drug use in cocaine use disorder (addiction). In both male rats and human cocaine users, d-amphetamine treatment reduces cocaine-taking and -seeking. However, this has not been examined systematically in female animals, even though cocaine addiction afflicts both sexes, and the sexes can differ in their response to cocaine. OBJECTIVES: We determined how d-amphetamine maintenance therapy during cocaine self-administration influences cocaine use in female rats. METHODS: In experiment 1, two groups of female rats received 14 intermittent access (IntA) cocaine self-administration sessions. One group received concomitant d-amphetamine maintenance treatment (COC + A rats; 5 mg/kg/day, via minipump), the other group did not (COC rats). After discontinuing d-amphetamine treatment, we measured responding for cocaine under a progressive ratio schedule, responding under extinction, and cocaine-primed reinstatement of drug-seeking. In experiment 2, we assessed the effects of d-amphetamine maintenance on these measures in already IntA cocaine-experienced rats. Thus, rats first received 14 IntA cocaine self-administration sessions without d-amphetamine. They then received 14 more IntA sessions, now either with (COC/COC + A rats) or without (COC/COC rats) concomitant d-amphetamine treatment. RESULTS: In both experiments, d-amphetamine treatment did not significantly influence ongoing cocaine self-administration behaviour. After d-amphetamine treatment cessation, cocaine-primed reinstatement of cocaine-seeking was also unchanged. However, after d-amphetamine treatment cessation, rats responded less for cocaine both under progressive ratio and extinction conditions. CONCLUSIONS: D-amphetamine treatment can both prevent and reverse increases in the motivation to take and seek cocaine in female animals.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Ratos , Animais , Masculino , Feminino , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dextroanfetamina/farmacologia , Comportamento de Procura de Droga , Autoadministração , Extinção Psicológica
19.
Artigo em Inglês | MEDLINE | ID: mdl-35500840

RESUMO

BACKGROUND: Patients with psychotic disorders present alterations in thalamocortical intrinsic functional connectivity as measured by resting-state functional magnetic resonance imaging. Specifically, thalamic intrinsic functional connectivity is increased with sensorimotor cortices (hyperconnectivity) and decreased with prefrontal limbic cortices (hypoconnectivity). Psychedelics such as lysergic acid diethlyamide (LSD) elicit similar thalamocortical hyperconnectivity with sensorimotor areas in healthy volunteers. It is unclear whether LSD also induces thalamocortical hypoconnectivity with prefrontal limbic cortices, because current findings are equivocal. Thalamocortical hyperconnectivity was associated with psychotic symptoms in patients and substance-induced altered states of consciousness in healthy volunteers. Thalamocortical dysconnectivity is likely evoked by altered neurotransmission, e.g., via dopaminergic excess in psychotic disorders and serotonergic agonism in psychedelic-induced states. It is unclear whether thalamocortical dysconnectivity is also elicited by amphetamine-type substances, broadly releasing monoamines (i.e., dopamine, norepinephrine) but producing fewer perceptual effects than psychedelics. METHODS: We administrated LSD, d-amphetamine, and 3,4-methylenedioxymethamphetamine (MDMA) in 28 healthy volunteers and investigated their effects on thalamic intrinsic functional connectivity with 2 brain networks (auditory-sensorimotor and salience networks, corresponding to sensorimotor and prefrontal limbic cortices, respectively), using a double-blind, placebo-controlled, crossover design. RESULTS: All active substances elicited auditory-sensorimotor-thalamic hyperconnectivity compared with placebo, despite predominantly distinct pharmacological actions and subjective effects. LSD-induced effects correlated with subjective changes in perception, indicating a link between hyperconnectivity and psychedelic-type perceptual alterations. Unlike d-amphetamine and MDMA, which induced hypoconnectivity with the salience network, LSD elicited hyperconnectivity. D-amphetamine and MDMA evoked similar thalamocortical dysconnectivity patterns. CONCLUSIONS: Psychedelics, empathogens, and psychostimulants evoke thalamocortical hyperconnectivity with sensorimotor areas, akin to findings in patients with psychotic disorders.


Assuntos
Alucinógenos , Ácido Lisérgico , N-Metil-3,4-Metilenodioxianfetamina , Estudos Cross-Over , Dextroanfetamina , Método Duplo-Cego , Alucinógenos/farmacologia , Humanos , Dietilamida do Ácido Lisérgico/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia
20.
Psychopharmacology (Berl) ; 239(8): 2593-2603, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35482071

RESUMO

RATIONALE AND OBJECTIVES: Drug-seeking behavior occurs more readily in some individuals than others. This phenomenon is considered in studies of drug self-administration in which high drug-seeking/taking individuals can be identified. In contrast, studies of conditioned place preference (CPP) often involve a random sample of drug-naïve rodents that includes phenotypes not considered relevant to addiction. The main objective of the current studies was to determine if a priori identification of different conditioning phenotypes could improve the validity and sensitivity of CPP expression as a preclinical test for vulnerability to addiction. METHODS AND RESULTS: Analysis of cocaine place conditioning data from 443 Swiss-Webster mice revealed a trimodal distribution with peaks corresponding to means of k = 3 clusters. The cluster means occurred at high, low, or negative preference scores, the latter suggesting a phenotype acquiring conditioned place aversion (CPA). The same clusters were identified in mice conditioned with methamphetamine, MDPV, or amphetamine, and these clusters remained stable and reliable during three additional expression tests spaced at 24 h. A meta-analysis of effect sizes obtained from CPP literature revealed a positively skewed distribution affected by sample size, consistent with the existence of a CPA phenotype within the populations tested. A dopamine receptor antagonist, flupentixol, blocked cocaine CPP expression in a group containing all phenotypes, but sensitivity improved markedly when CPA phenotypes were excluded from the dataset. CONCLUSIONS: These studies suggest that taking phenotype into consideration when designing place conditioning studies will improve their application as a preclinical tool in addiction biology and drug discovery.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Metanfetamina , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Condicionamento Psicológico , Metanfetamina/farmacologia , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA