Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38668744

RESUMO

A Gram-stain-negative bacterium, designated LG-4T, was isolated from sediment of Qiantang River in Zhejiang Province, PR China. Cells were strictly aerobic, non-spore-forming, non-motile and short-rod-shaped (1.0-1.2 µm long and 0.7-0.8 µm wide). Growth occurred at 15-42 °C (optimum, 30 °C), at pH 5.0-9.0 (pH 7.0) and at 0-2.0 % (w/v) NaCl (optimum, 0.5 % NaCl). Strain LG-4T showed 95.75-96.90 % 16S rRNA gene sequence similarity to various type strains of the genera Tabrizicola, Pseudotabrizicola, Phaeovulum, Rhodobacter and Wagnerdoeblera of the family Paracoccaceae, and the most closely related strain was Tabrizicola soli ZQBWT (96.90 % similarity). The phylogenomic tree showed that strain LG-4T clustered in the family Paracoccaceae and was positioned outside of the clade composed of the genera Wagnerdoeblera and Falsigemmobacter. The average nucleotide identity and digital DNA-DNA hybridization values between strain LG-4T and the related type strains were in the range of 74.19-77.56 % and 16.70-25.80 %, respectively. The average amino acid identity (AAI) values between strain LG-4T and related type strains of the family Paracoccaceae were 60.94-69.73 %, which are below the genus boundary (70 %). The evolutionary distance (ED) values between LG-4T and the related genera of the family Paracoccaceae were 0.21-0.34, which are within the recommended standard (≥0.21-0.23) for defining a novel genus in the family Paracoccaceae. The predominant cellular fatty acids were C18 : 1 ω7c, C19 : 0 cyclo ω8c, C18 : 0 and C16 : 0, the isoprenoid quinone was Q-10, and the major polar lipids were phospholipid, phosphatidylglycerol, phosphatidylcholine, aminolipid and two unknown polar lipids. The genome size was 4.7 Mb with 68.6 mol% G+C content. On the basis of distinct phylogenetic relationships, low AAI values and high ED values, and differential phenotypic, physiological and biochemical characteristics, strain LG-4T represents a novel species of a new genus in the family Paracoccaceae, for which the name Ruixingdingia sedimenti gen. nov., sp. nov. is proposed. The type strain is LG-4T (=MCCC 1K08849T=KCTC 8136T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Rios , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Ácidos Graxos/análise , DNA Bacteriano/genética , China , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Fosfolipídeos/análise , Ubiquinona/análogos & derivados
2.
Artigo em Inglês | MEDLINE | ID: mdl-38767617

RESUMO

A Gram-stain-negative bacterium, designated LG-2T, was isolated from sludge collected at a pesticide-manufacturing factory in Jiangsu Province, PR China. Cells of strain LG-2T were strictly aerobic, non-motile and spherical. Growth was observed at 15-42 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.0) and 0-3.0 % (w/v) NaCl (optimum, 1.0 %). LG-2T showed 95.5-96.9 % 16S rRNA sequence similarity to type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas of the family Alcaligenaceae. The phylogenomic tree indicated that strain LG-2T was clustered in the family Alcaligenaceae and formed a clade with Paracandidimonas soli IMT-305T, while the phylogenetic trees based on 16S rRNA gene sequences indicated that strain LG-2T formed a distinct clade within the family Alcaligenaceae. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between LG-2T and its closely related type strains in the genera Pusillimonas, Bordetella, Parapusillimonas, Candidimonas and Paracandidimonas were 70.8-75.3, 18.9-23.7 and 59.6 %-69.3 %, respectively. The major cellular fatty acids were C16 : 0, C17 : 0 cyclo, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and summed feature 2 (C12 : 0 aldehyde and/or unknown 10.928). The predominant menaquinone was Q-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, three aminolipids and nine unknown polar lipids. The genome size of strain LG-2T was 3.2 Mb and the DNA G+C content was 63.4 mol%. On the basis of the phenotypic, phylogenetic and genomic results from this study, strain LG-2T represents a novel species of a new genus in the family Alcaligenaceae, for which the name Yanghanlia caeni gen. nov., sp. nov. is proposed, with strain LG-2T (=KCTC 8084T= CCTCC AB 2023123T) as the type strain.


Assuntos
Alcaligenaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Esgotos , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Ácidos Graxos/análise , DNA Bacteriano/genética , China , Esgotos/microbiologia , Alcaligenaceae/genética , Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Praguicidas , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-38393318

RESUMO

During the analysis of a collection of Pseudomonas strains linked to an outbreak in an intensive care unit at King Faisal Specialist Hospital and Research Center in 2019, one isolate (CFS3442T) was identified phenotypically as Pseudomonas aeruginosa. However, whole-genome sequencing revealed its true identity as a member of the genus Stenotrophomonas, distinct from both P. aeruginosa and Stenotrophomonas maltophilia. The isolate demonstrated: (i) a significant phylogenetic distance from P. aeruginosa; (ii) considerable genomic differences from several S. maltophilia reference strains and other Stenotrophomonas species; and (iii) unique phenotypic characteristics. Based on the combined geno- and phenotypic data, we propose that this isolate represents a novel species within the genus Stenotrophomonas, for which the name Stenotrophomonas riyadhensis sp. nov. is proposed. The type strain is CFS3442T (=NCTC 14921T=LMG 33162T).


Assuntos
Ácidos Graxos , Stenotrophomonas , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Composição de Bases , Técnicas de Tipagem Bacteriana , Hospitais
4.
Antonie Van Leeuwenhoek ; 118(1): 18, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387927

RESUMO

The taxonomy of the Listeriaceae family has undergone substantial revisions, expanding the Listeria genus from 6 to 29 species since 2009. However, these classifications have relied on 16S rRNA gene sequences and conventional polyphasic taxonomy, with limited use of genomic approaches. This study aimed to employ genomic tools, including phylogenomics, Overall Genomic Relatedness Indices (OGRIs), and core-genome phylogenomic analyses, to reevaluate the taxonomy of the Listeriaceae family. The analyses involved the construction of phylogenetic and phylogenomic trees based on 16S rRNA gene sequences and core genomes from 34 type strain genomes belonging to Listeriaceae family. OGRIs, which encompass Average Amino acid Identity (AAI), core-proteome AAI (cAAI), and Percentage of Conserved Proteins (POCP), were calculated, and specific threshold values of 70%, 87%, and 72-73% were established, respectively, to delimitate genera in the Listeriaceae family. These newly proposed OGRI thresholds unveiled distinct evolutionary lineages. The outcomes of this taxonomic re-evaluation were: (i): the division of the Listeria genus into an emended Listeria genus regrouping only Listeria senso stricto species; (ii): the remaining Listeria senso lato species were transferred into three newly proposed genera: Murraya gen. nov., Mesolisteria gen. nov., and Paenilisteria gen. nov. within Listeriaceae; (iii): Brochothrix was transferred to the newly proposed family Brochothricaceae fam. nov. within the Caryophanales order; (iiii): Listeria ivanovii subsp. londonensis was elevated to the species level as Listeria londonensis sp. nov.; and (iiiii): Murraya murrayi comb. nov. was reclassified as a later heterotypic synonym of Murraya grayi comb. nov. This taxonomic framework enables more precise identification of pathogenic Listeriaceae species, with significant implications for important areas such as food safety, clinical diagnostics, epidemiology, and public health.


Assuntos
Genoma Bacteriano , Listeria , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Listeria/genética , Listeria/classificação , DNA Bacteriano/genética , Genômica , Análise de Sequência de DNA , Apoio Familiar
5.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38015206

RESUMO

A Gram-reaction-negative, strictly aerobic, pale yellow, non-gliding, rod-shaped bacterium, designated DT-LB-19T, was isolated from the sediment of East Taihu Lake in Jiangsu Province, PR China. Strain DT-LB-19T showed the highest 16S rRNA gene sequence similarities to members of the genera Algoriella, Chishuiella and Empedobacter (94.84-95.77 %) in the family Weeksellaceae. In phylogenetic trees based on genomes, strain DT-LB-19T clustered within the genus Empedobacter but formed a separate subclade with a high bootstrap value. The average nucleotide identity and digital DNA-DNA hybridization values between DT-LB-19T and the closely related type strains were in the range of 82.5-86.9 % and 25.8-32.3 %, respectively. The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 1 ω5c, C16 : 0, summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 03-OH. The predominant menaquinone was menaquinone-6. The polar lipid profile consisted of phosphatidylethanolamine, one glycolipid, two aminophospholipids and five unidentified lipids. The DNA G+C content was 31.8 mol%. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic results, we propose that strain DT-LB-19T represents a novel species of the genus Empedobacter, for which the name Empedobacter sedimenti sp. nov. is proposed, with strain DT-LB-19T (=KCTC 82330T=CCTCC AB 2023026T= JSACC 11448T) as the type strain.


Assuntos
Ácidos Graxos , Lagos , Filogenia , RNA Ribossômico 16S/genética , Vitamina K 2 , Composição de Bases , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias Aeróbias
6.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38018813

RESUMO

Four yellow-coloured strains (zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826) were isolated from the intestinal contents of Marmota himalayana and assigned to the 'Arthrobacter citreus group'. The four strains grew optimally on brain heart infusion agar with 5 % defibrinated sheep blood plate at 30 °C, pH 7.0 and with 0.5 % NaCl (w/v). Comparative analysis of their 16S rRNA genes indicated that the two strain pairs belong to the genus Arthrobacter, showing the highest similarity to Arthrobacter yangruifuii 785T (99.52 %), which was further confirmed by the 16S rRNA gene and genome-based phylogenetic analysis. The comparative genomic analysis [digital DNA-DNA hybridization, (dDDH) and average nucleotide identity (ANI)] proved that the four strains are two different species (zg-Y815T/zg-Y108, 71.7 %/96.8 %; zg-Y859T/zg-Y826, 87.3 %/98.5 %) and differ from other known species within the genus Arthrobacter (zg-Y815T, 19.6-32.3 %/77.2-88.0 %; zg-Y859T, 19.5-29.3 %/77.4-86.3 %). Strain pairs zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826 had the same major cellular fatty acids (iso-C16 : 0 and anteiso-C15 : 0), with MK-8(H2) as their dominant respiratory quinone (70.6 and 61.7 %, respectively). The leading polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol. The detected amino acids and cell-wall sugars of the two new species were identical (amino acids: alanine, glutamic acid, and lysine; sugars: rhamnose, galactose, mannose, glucose, and ribose). According to the phylogenetic, phenotypic, and chemotaxonomic analyses, we concluded that the four new strains represented two different novel species in the genus Arthrobacter, for which the names Arthrobacter zhaoxinii sp. nov. (zg-Y815T= GDMCC 1.3494T = JCM 35821T) and Arthrobacter jinronghuae sp. nov. (zg-Y859T = GDMCC 1.3493T = JCM 35822T) are proposed.


Assuntos
Arthrobacter , Animais , Ovinos , Ácidos Graxos/química , Fosfolipídeos/química , Marmota , Filogenia , RNA Ribossômico 16S/genética , Vitamina K 2/química , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Aminoácidos , Hibridização Genômica Comparativa , Açúcares
7.
Artigo em Inglês | MEDLINE | ID: mdl-37232277

RESUMO

A polyphasic taxonomic characterization of two novel strain pairs (designated zg-579T/zg-578 and zg-536T/zg-ZUI104) isolated from the faeces of Marmota himalayana was conducted based on phylogenetic analysis of the nearly full-length 16S rRNA gene and genome, digital DNA-DNA hybridization, ortho-average nucleotide identity (Ortho-ANI), and phenotypic and chemotaxonomic traits. Comparative analysis of the nearly full-length 16S rRNA gene sequences showed that strain zg-579T was most closely related to Nocardioides dokdonensis FR1436T (97.57 %) and Nocardioides deserti SC8A-24T (97.36 %), whereas strain zg-536T had the highest similarity to Nocardioides caeni MN8T (98.33 %), Nocardioides convexus W2-2-3T (98.26 %) and Nocardioides daeguensis 2C1-5T (98.19 %). Low levels of DNA-DNA relatedness and Ortho-ANI values (19.8-31.0 %/78.6-88.2 %, zg-579T; 19.9-31.3 %/78.8-86.2 %, zg-536T) between the two new type strains and previously known species within the genus Nocardioides support the hypothesis that the four newly characterized strains could be considered to represent two novel species within this genus. The dominant cellular fatty acids found in strain pair zg-536T/zg-ZUI104 were iso-C16 : 0 and C18 : 1 ω9c, whereas C17 : 1 ω8c was major component in zg-579T/zg-578. Galactose and ribose were the main cell-wall sugars in these two new strain pairs. Diphosphatidylglycerol (DPG), phosphatidylcholine, phosphatidylglycerol (PG) and phosphatidylinositol (PI) were the major polar lipids in zg-579T, whereas DPG, PG and PI predominated in zg-536T. Both strain pairs had MK8(H4) as the major respiratory quinone and ll-diaminopimelic acid as the major cell-wall peptidoglycan. The optimal growth conditions for the two novel strain pairs were 30 °C, pH 7.0 and 0.5 % NaCl (w/v). Based on these polyphasic characterizations, two novel species within the genus Nocardioides are proposed, i.e. Nocardioides marmotae sp. nov. and Nocardioides faecalis sp. nov., with zg-579T (=CGMCC 4.7663T=JCM 33892T) and zg-536T (=CGMCC 4.7662T=JCM 33891T) as the type strains.


Assuntos
Actinomycetales , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , Nocardioides , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Cardiolipinas
8.
Antonie Van Leeuwenhoek ; 116(12): 1327-1335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804413

RESUMO

The present study used genome-based approaches to investigate the taxonomic relationship between Kitasatospora cineracea DSM 44780T and Kitasatospora niigatensis DSM 44781T, two species that were previously described by Tajima et al. (Int J Syst Evol Microbiol 51:1765-1771, 2001). The digital DNA-DNA hybridization (dDDH), average amino acid identity (AAI), and average nucleotide identity (ANI) values between the genomes of the two type strains were 90.3, 98.7, and 99.1%, respectively. These values exceeded the established thresholds of 70% (dDDH) and 95-96% (ANI and AAI) for bacterial species delineation, suggesting that K. cineracea and K. niigatensis should share the same taxonomic position. Furthermore, our analysis using the 'Bacterial Pan Genome Analysis' (BPGA) pipeline and the Maximum Likelihood core-genes tree inferred using FastTree2 consistently demonstrated that K. cineracea DSM 44780T and K. niigatensis DSM 44781T are closely related, as indicated by the clustering of these strains in the core-genes phylogenomic tree. Based on these findings, we propose that K. niigatensis should be considered a later heterotypic synonym of K. cineracea.


Assuntos
Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Filogenia , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana
9.
Antonie Van Leeuwenhoek ; 116(12): 1345-1357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837564

RESUMO

An auxin-producing bacterial strain, CC-SYL302T, was isolated from paddy soil in Taiwan and identified using a polyphasic taxonomic approach. The cells were observed to be aerobic, non-motile, non-spore-forming rods, and tested positive for catalase and oxidase. Produced carotenoid but flexirubin-type pigments were absent. Optimal growth of strain CC-SYL302T was observed at 25 °C, pH 7.0, and with 2% (w/v) NaCl present. Based on analysis of 16S rRNA gene sequences, it was determined that strain CC-SYL302T belongs to the genus Flavobacterium of the Flavobacteriaceae family. The closest known relatives of this strain are F. tangerinum YIM 102701-2 T (with 93.3% similarity) and F. cucumis R2A45-3 T (with 93.1% similarity). Digital DNA-DNA hybridization (dDDH) values were calculated to assess the genetic distance between strain CC-SYL302T and its closest relatives, with mean values of 21.3% for F. tangerinum and 20.4% for F. cucumis. Strain CC-SYL302T exhibited the highest orthologous average nucleotide identity (OrthoANI) values with members of the Flavobacterium genus, ranging from 67.2 to 72.1% (n = 22). The dominating cellular fatty acids (> 5%) included iso-C14:0, iso-C15:0, iso-C16:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C16:1 ω6c/C16:1 ω7c and C16:0 10-methyl/iso-C17:1 ω9c. The polar lipid profile consisted of phosphatidylethanolamine, an unidentified aminolipid, an unidentified aminophospholipid, and nine unidentified polar lipids. The genome (2.7 Mb) contained 33.6% GC content, and the major polyamines were putrescine and sym-homospermidine. Strain CC-SYL302T exhibits distinct phylogenetic, phenotypic, and chemotaxonomic characteristics, as well as unique results in comparative analysis of 16S rRNA gene sequence, OrthoANI, dDDH, and phylogenomic placement. Therefore, it is proposed that this strain represents a new species of the Flavobacterium genus, for which the name Flavobacterium agricola sp. nov. is proposed. The type strain is CC-SYL302T (= BCRC 81320 T = JCM 34764 T).


Assuntos
Flavobacteriaceae , Flavobacterium , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , DNA , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Vitamina K 2/química
10.
Plant Dis ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723957

RESUMO

Bacterial leaf streak (BLS) of barley is caused by the Gram-negative bacterial pathogen Xanthomonas translucens (Sapkota et al. 2020). In 2021, we observed multiple hill plots with BLS symptomatic plants in a barley stripe rust nursery in Vancouver, BC, Canada. We collected 29 leaf samples showing typical BLS symptoms (e.g. necrotic lesions; Fig. S1) and stored at 4 oC until bacterial isolation. Samples were surface-sterilized in 10% NaOCl for 20 sec and rinsed twice. About 1 cm2 of leaf tissue containing BLS characteristic lesions was macerated in 200 µL sterile H2O on a petri dish, incubated for 15 min, and 10 µl of the homogenates was streaked onto Wilbrink's - Boric Acid - Cephalexin (WBC) agar medium. Plates were incubated at 28-30 oC for 48 hrs. Four single colonies were obtained: BC10-1-2a (USask BC10-2a), BC10-1-2b (USask BC10-2b), UBC026 and UBC028. Colonies were grown in WBC broth and gDNA was extracted using E.Z.N.A. Bacterial DNA Kit (Omega Bio-Tek) or DNeasy Plant Pro Kit® (Qiagen) following manufacturer protocols. Genus-level identification was achieved using 16S rRNA sequencing with 27F/1492R primers (Lane 1991) of UBC026 (1,399 bp; NCBI # OP327375) and UBC028 (1,415 bp; NCBI #OP327376). Complete 16S rRNA sequences (1,533bp) of BC10-2a and BC10-2b (1,533 bp) were extracted from the draft whole-genome sequences (WGS) generated in this study. The 16S rRNA sequence homology values of 99.0-100% were recorded between the 4 strains. BLAST analyses of the 16S rRNA sequences to GenBank entries exhibited 99.5-100% similarity values (100% coverage) with the pathotype strains of Xtt DSM 18974T (LT604072) and X. translucens pv. undulosa (Xtu) CFBP 2055 (CP074361). Whole genomes of BC10-2a (JANUQY01) and BC10-2b (JANUQZ01) were sequenced (150-bp; reads 33.1 million; mean coverage 2125x) using NovaSeq Illumina, assembled (Unicycler v0.4.8; Wick et al. 2017) and analyzed to identify the strains to the species-level (Tambong et al. 2021). WGS of strains USask BC10-2a and USask BC10-2b exhibited genome-based DNA-DNA hybridization (dDDH; Meier-Kolthoff et al. 2013) and BLAST-based average nucleotide identity (ANIb; Richter et al. 2015) of 100%. The two strains also showed dDDH and ANIb of 90.4% (species-leel cut-off of 70%) and 98.780% and 98.80% (cut-off of 96%), respectively, with Xtt DSM 18974T (LT604072). In contrast, the WGS of BC10-2a and BC10-2b exhibited only 78.2% dDDH homology values with Xtu CFBP 2055T, suggesting that the strains are genetically more similar to Xtt. The assignment of these strains to Xtt is corroborated by phylogenomic analysis (Fig. S2; Meier-Kolthoff and Göker 2019) that showed the two strains clustering together (100% bootstrap) with the type strain DSM 18974T. These data suggest that these strains are taxonomically members of Xtt. Identification was also confirmed to the genus-level by LAMP assay using published X. translucens primers (Langlois et al. 2017). Pathovar-level identification was confirmed using a cbsA and S8.pep multiplex PCR diagnostic assay (Roman-Reyna et al. 2022). Koch's postulates were verified by greenhouse inoculation via leaf infiltration of UBC026 and UBC028 on 21-day old barley plants (line HB522) using an inoculum of 108 CFU ml-1 followed by re-isolation of the bacteria on WBC. The inoculated plants showed typical BLS symptoms similar to those observed in the field (Fig. S1). Water-inoculated plants had no symptoms. To our knowledge, this is the first published report of BLS of barley in British Columbia.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35103585

RESUMO

Four novel bacterial strains (zg-ZUI122T/zg-ZUI10 and zg-ZUI227T/zg-ZUI100) were isolated from the intestinal contents of Marmota himalayana and characterized using a polyphasic approach. Cells were Gram-stain- and catalase-positive, urease- and oxidase-negative. Strains grew optimally at 28-30 °C, pH 7.0, with 0.5 % NaCl (w/v). A comparative analysis of 16S rRNA gene sequences revealed that strain pairs zg-ZUI122T/zg-ZUI10 and zg-ZUI227T/zg-ZUI100 belonged to the genus Arthrobacter and were most closely related to Arthrobacter citreus DSM 20133T, with similarities of 99.6 and 99.5 %, respectively. This was further confirmed by phylogenetic analyses based on the 16S rRNA gene and genome sequences. The digital DNA-DNA hybridization and average nucleotide identity values between the two new type strains (zg-ZUI122T and zg-ZUI227T) and other species in the genus Arthrobacter were 20.0-24.4/77.2-83.4% and 19.9-25.1/77.1-83.4%, all below the thresholds. The major cellular fatty acids detected in the two novel species included iso-C15 : 0 and anteiso-C15 : 0; the predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. MK-8(H2) (77.3%) was the predominant respiratory quinone detected in strain zg-ZUI122T, while MK-8(H2) (53.7%) and MK-9(H2) (46.3%) were detected in strain zg-ZUI227T. The shared cell-wall amino acids detected in the two novel species were alanine, glutamic acid and lysine; the shared whole cell wall sugars consisted of galactose, mannose and ribose. All these analyses concluded that these four strains represent two different novel species in the genus Arthrobacter, for which the names Arthrobacter sunyaminii sp. nov. (zg-ZUI122T = GDMCC 1.2502T = KCTC 49677T) and Arthrobacter jiangjiafuii sp. nov. (zg-ZUI227T = GDMCC 1.2500T = KCTC 49676T) are proposed.


Assuntos
Arthrobacter/classificação , Marmota/microbiologia , Filogenia , Animais , Arthrobacter/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Intestinos/microbiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-35262476

RESUMO

A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped bacterium, capable of producing poly-ß-hydroxyalkanoate, designated DP3N28-2T, was isolated from the sediment collected from Daya Bay, Guangdong, PR China. Optimal growth occurred at 37-40 °C, pH 6.0 and in the presence of 4 % NaCl. The 16S rRNA gene sequences analysis revealed that DP3N28-2T showed highest similarities with Mameliella alba DSM 23384T (98.3 %), Antarctobacter jejuensis 13-2-B6T (97.2 %), Antarctobacter heliothermus El-219T (96.8 %), Maliponia aquimaris MM-10T (96.7 %), Ponticoccus litoralis CL-GR66T (96.4 %) and Aquicoccus porphyridii L1 8-17T (96.1 %). The predominant fatty acids (>10 %) were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c; 72.1 %) and C16 : 0 (11.0 %). The polar lipids contain phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, one aminophosphlipid, one phospholipid and three unidentified lipids. The respiratory quinone was Q-10. The DNA G+C content was 63.0 mol% (data from the genome sequence). The estimated genome size was 5.12 Mb. The average nucleotide identity values between the DP3N28-2T genome and the genome of M. alba was 81.1 %, while the digital DNA-DNA hybridization value was 23.4 %. The phenotypic, genotypic and chemotaxonomic differences between DP3N28-2T and its phylogenetic relatives indicates that DP3N28-2T should be regarded as representing a novel species of the genus Mameliella, for which the name Mameliella sediminis sp. nov. is proposed. The type strain is DP3N28-2T (=MCCC 1K06218T=KCTC 82804T).


Assuntos
Poli-Hidroxialcanoatos , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
13.
Artigo em Inglês | MEDLINE | ID: mdl-36107753

RESUMO

The Gram-positive genus Clavibacter is currently divided into seven species (Clavibacter michiganensis, Clavibacter nebraskensis, Clavibacter capsici, Clavibacter sepedonicus, Clavibacter tessellarius, Clavibacter insidiosus and Clavibacter zhangzhiyongii) and three subspecies (C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis and C. michiganensis subsp. phaseoli). Recent studies have indicated that the taxonomic rank of the subspecies must be re-evaluated. In this research, we assessed the taxonomic position of the three C. michiganensis subspecies and clarified the taxonomic nomenclature of other 75 Clavibacter strains. The complete genomes of the type strains of the three Clavibacter subspecies, the type strain of C. tessellarius and C. nebraskensis A6096 were sequenced using PacBio RSII technology. Application of whole-genome-based computational approaches such as average nucleotide identity (ANI), digital DNA-DNA hybridization, multi-locus sequence analysis of seven housekeeping genes (acnA, atpD, bipA, icdA, mtlD, recA and rpoB), a phylogenomic tree reconstructed from 1 028 core genes, and ANI-based phylogeny provided sufficient justification for raising C. michiganensis subsp. californiensis to the species level. These results led us to propose the establishment of Clavibacter californiensis sp. nov. as a species with its type strain C55T (=CFBP 8216T=ATCC BAA-2691T). Moreover, the orthologous and in silico dot plot analyses, along with the above described bioinformatic strategies, revealed a high degree of similarity between C. michiganensis subsp. chilensis and C. michiganensis subsp. phaseoli. Based on these analyses, we propose that both subspecies be combined into a single taxon and elevated to the species level as Clavibacter phaseoli sp. nov., with LPPA 982T (= CECT 8144T= LMG 27667T) as the type strain.


Assuntos
Clavibacter , Ácidos Graxos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Nucleotídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Artigo em Inglês | MEDLINE | ID: mdl-35796350

RESUMO

Bradyrhizobium is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains - CNPSo 4026T, WSM 1704T, WSM 1738T and WSM 4400T - previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the Bradyrhizobium elkanii supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes - atpD, dnaK, glnII, gyrB, recA and rpoB - did not cluster the strains under study as conspecific to any described Bradyrhizobium species. Average nucleotide identity and digital DNA-DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The nodC and nifH phylogenies included strains WSM 1738T and WSM 4400T in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed Bradyrhizobium species that are accordingly named as follows: Bradyrhizobium cenepequi sp. nov. (CNPSo 4026T=WSM 4798T=LMG 31653T), isolated from Vigna unguiculata; Bradyrhizobium semiaridum sp. nov. (WSM 1704T=CNPSo 4028T=LMG 31654T), isolated from Tephrosia gardneri; Bradyrhizobium hereditatis sp. nov. (WSM 1738T=CNPSo 4025T=LMG 31652T), isolated from Indigofera sp.; and Bradyrhizobium australafricanum sp. nov. (WSM 4400T=CNPSo 4015T=LMG 31648T) isolated from Glycine sp.


Assuntos
Bradyrhizobium , Fabaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fabaceae/microbiologia , Ácidos Graxos/química , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , África do Sul , Verduras , Austrália Ocidental
15.
Arch Microbiol ; 203(5): 2325-2334, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33649903

RESUMO

Two novel actinobacteria, strain PSKA28T and PSKA54T were isolated from soil sample of Kashmir-Himalaya, India (latitude 34°-01' N; longitude 74°-47' E; altitude 5328 ft). Polyphasic-taxonomic analysis revealed that these strains belong to the genus Streptomyces. The 16S rRNA gene-sequence similarity of these strain were highest (98.6%) with that of the Streptomyces torulosus NRRLB-3889T. They showed 92.1% gyrB gene-sequence similarity but 92.9 and 94.6% rpoB gene-sequence similarity, respectively, with Streptomyces torulosus NRRLB-3889T. The sequence similarities were significantly lower than the recommended threshold value for novel taxonomic position and the 16S rRNA sequence-based phylogenetic analysis indicated that these two isolates are in distinct clade. Phylogenomic analysis with their genome sequences, conferred by Type Strain Genome Server separated them from rest of the Streptomyces type strains. The cell wall contained LL-diaminopimelic acid and the whole-cell hydrolysate contained glucose and ribose. Major fatty acid methyl esters were 15:0 anteiso, 16:0 iso and 17:0 anteiso. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization (dDDH) values as well as evolutionary distance based on multilocus sequence analysis, between closely related type strains and either of the strain PSKA28T or PSKA54T, were considerably lower than the recommended threshold value (< 70% dDDH or < 95-96% ANI/AAI or > 0.007 MLSA distance). Therefore, these isolates represent a novel Streptomyces species, for which we proposed the name Streptomyces himalayensis sp. nov. Genotypic and phenotypic analyses clearly split these strains into two closely related sub-clusters. Based on this, two novel subspecies Streptomyces himalayensis subsp. himalayensis subsp. nov. and Streptomyces himalayensis subsp. aureolus subsp. nov. are proposed, with type strains JCM33755T (= MTCC12933T, MCC4145T) and JCM33759T (= MTCC12938, MCC4180), respectively.


Assuntos
Sedimentos Geológicos/microbiologia , Streptomyces/classificação , Streptomyces/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Girase/genética , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Genoma Bacteriano/genética , Índia , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Streptomyces/isolamento & purificação
16.
Arch Microbiol ; 203(4): 1601-1609, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33415367

RESUMO

A novel actinobacterium, designated Streptomyces sp strain PSKA01T, was isolated from a soil sample of Kashmir Himalaya, India (latitude:34˚-01'N; longitude:74˚-47'E; altitude: 5328 ft). The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that PSKA01T was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces venetus CMU-AB225T (99.3%), Streptomyces levis NBRC 15423 T (99.3%), Streptomyces misionensis DSM 40306 T (99.2%), Streptomyces carpinensis NRRL B-16921 T (99.2%), Streptomyces purpurascens NBRC 13077 T (99.2%), and Streptomyces phaeoluteichromatogenes NRRL 5799 T (99.2%). A phylogenomic tree based on genome sequences of the isolated strains, conferred by Type Strain Genome Server (TYGS), separated them from rest of the Streptomyces. The cell wall contained LL-diaminopimelic acid and the whole-cell hydrolysates were xylose and rhamnose. Major fatty acid methyl esters (FAME) were observed as 16:0 iso and 17:0 anteiso. In addition to the differences in phenotypic characters, the average nucleotide identity (ANI), average amino acid identity (AAI), digital DNA-DNA hybridization (dDDH) values, tetranucleotide frequency correlation coefficient (TETRA), and multilocus sequence analysis (MLSA) between PSKA01T and closely related type strains were considerably lower than the recommended threshold value; therefore, this isolate represents a novel Streptomyces species, for which the name Streptomyces cupreus sp. nov. is proposed. The type strain is PSKA01T (= JCM 33752 T = MCC 4182 T).


Assuntos
Filogenia , Microbiologia do Solo , Streptomyces , DNA Bacteriano/genética , Índia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Especificidade da Espécie , Streptomyces/classificação , Streptomyces/genética
17.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34846289

RESUMO

Six novel facultatively anaerobic, Gram-stain-positive, rod-shaped, non-haemolytic bacteria (zg-320T/zg-336, zg-917T/zg-910 and zg-913T/zg-915) isolated from animal tissues and human faeces were found to belong to the genus Corynebacterium based on the phylogenetic analyses of 16S rRNA gene and 262 core genes set. Based on the greatest degree of 16S rRNA similarity, zg-320T/zg-336 had the highest 16S rRNA gene similarity to Corynebacterium falsenii DSM 44353T (97.51 %), zg-917T/zg-910 to Corynebacterium coyleae DSM 44184T (98.68 %), and zg-913T/zg-915 to Corynebacterium afermentans subsp. lipophilum CIP 103500T (98.79 %). The three novel type strains had a relatively high DNA G+C content (61.2-64.4 mol%), low DNA relatedness and ANI values with their respective neighbours: 23.5/72.7 %, 25.0/72.3%and 22.6/73.1 % (zg-320T vs. Corynebacterium auriscanis CIP 106629T, Corynebacterium resistens DSM 45100T and Corynebacterium suicordis DSM 45110T); 24.4/82.3% and 23.7/81.3 % (zg-917T vs. C. coyleae DSM 44184T and Corynebacterium jeddahense JCBT); 26.8/83.7% and 27.7/84.4 % (zg-913T vs. Corynebacterium mucifaciens ATCC 700355T and C. afermentans subsp. lipophilum CCUG 32105T). The three novel species had C16 : 0, C18 : 0, C18 : 1 ω9c and C18 : 0 ante/C18 : 2 ω6,9c as the major cellular fatty acids; MK-8(H2) in strain zg-917T and MK-9(H2) in strains zg-320T and zg-913T were found to be the major respiratory quinones. For the three novel species, the detected major polar lipids included diphosphatidylglycerol, phosphatidyl inositol mannoside, phosphatidylglycerol and phosphatidylinositol, the cell-wall peptidoglycan was based on meso-DAP, and the whole-cell sugars mainly included ribose, arabinose and galactose. The three novel species grew optimally at 35-37 °C, 0.5 % (w/v) NaCl and pH 7.0-8.0; notably, they were tolerant of 10.5 % (w/v) NaCl. Based on the results of these comprehensive analyses, three novel species in the genus Corynebacterium are proposed, aptly named Corynebacterium zhongnanshanii sp. nov. (zg-320T = GDMCC 1.1719T = JCM 34106T), Corynebacterium lujinxingii sp. nov. (zg-917T = GDMCC 1.1707T = JCM 34094T) and Corynebacterium wankanglinii sp. nov. (zg-913T = GDMCC 1.1706T = JCM 34398T).


Assuntos
Corynebacterium/classificação , Fezes/microbiologia , Marmota , Filogenia , Traqueia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Corynebacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , Marmota/microbiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Traqueia/microbiologia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-33464198

RESUMO

Three Gram-stain-negative, rod-shaped, non-spore-forming bacteria, BA1T, Q614T and PB68.1T, isolated from the digestive system of Heterorhabditis entomopathogenic nematodes, were biochemically and molecularly characterized to clarify their taxonomic affiliations. The 16S rRNA gene sequences of these strains suggest that they belong to the Gammaproteobacteria, to the family Morganellacea, and to the genus Photorhabdus. Deeper analyses using whole genome-based phylogenetic reconstructions suggest that BA1T is closely related to Photorhabdus akhursti, that Q614T is closely related to Photorhabdus heterorhabditis, and that PB68.1T is closely related to Photorhabdus australis. In silico genomic comparisons confirm these observations: BA1T and P. akhursti 15138T share 68.8 % digital DNA-DNA hybridization (dDDH), Q614T and P. heterorhabditis SF41T share 75.4 % dDDH, and PB68.1T and P. australis DSM 17609T share 76.6  % dDDH. Physiological and biochemical characterizations reveal that these three strains also differ from all validly described Photorhabdus species and from their more closely related taxa, contrary to what was previously suggested. We therefore propose to classify BA1T as a new species within the genus Photorhabdus, Q614T as a new subspecies within P. heterorhabditis, and PB68.1T as a new subspecies within P. australis. Hence, the following names are proposed for these strains: Photorhabdus aegyptia sp. nov. with the type strain BA1T(=DSM 111180T=CCOS 1943T=LMG 31957T), Photorhabdus heterorhabditis subsp. aluminescens subsp. nov. with the type strain Q614T (=DSM 111144T=CCOS 1944T=LMG 31959T) and Photorhabdus australis subsp. thailandensis subsp. nov. with the type strain PB68.1T (=DSM 111145T=CCOS 1942T). These propositions automatically create Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov. with SF41T as the type strain (currently classified as P. heterorhabditis) and Photorhabdus australis subsp. australis subsp. nov. with DSM17609T as the type strain (currently classified as P. australis).


Assuntos
Nematoides/microbiologia , Photorhabdus/classificação , Filogenia , Animais , Austrália , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Sistema Digestório/microbiologia , Egito , Hibridização de Ácido Nucleico , Photorhabdus/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia
19.
Artigo em Inglês | MEDLINE | ID: mdl-34524954

RESUMO

Two Gram-negative, rod-shaped bacteria, H1T and H3T, isolated from the digestive tract of Heterorhabditis entomopathogenic nematodes were biochemically and molecularly characterized to determine their taxonomic positions. The 16S rRNA gene sequences of these strains indicate that they belong to the Gammaproteobacteria, to the family Morganellaceae, and to the Photorhabdus genus. Deeper analyses using whole genome-based phylogenetic reconstructions show that strains H1T and H3T are closely related to P. akhurstii DSM 15138T, to P. hainanensis DSM 22397T, and to P. namnaonensis PB45.5T. In silico genomic comparisons confirm these observations and show that strain H1T shares 70.6, 66.8, and 63.5 % digital DNA-DNA hybridization (dDDH) with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively, and that strain H3T shares 76.6, 69.4, and 59.2 % dDDH with P. akhurstii DSM 15138T, P. hainanensis DSM 22397T, and P. namnaonensis PB45.5T, respectively. Physiological and biochemical characterization reveals that these two strains differ from most of the validly described Photorhabdus species and from their more closely related taxa. Given the clear phylogenetic separations, that the threshold to discriminate species and subspecies is 70 and 79% dDDH, respectively, and that strains H1T and H3T differ physiologically and biochemically from their more closely related taxa, we propose to classify H1T and H3T into new taxa as follows: H3T as a new subspecies within the species P. akhurstii, and H1T as a new species within the Photorhabdus genus, in spite that H1T shares 70.6 % dDDH with P. akhurstii DSM 15138T, score that is slightly higher than the 70 % threshold that delimits species boundaries. The reason for this is that H1T and P. akhurstii DSM 15138T cluster apart in the phylogenetic trees and that dDDH scores between strain H1T and other P. akhurstii strains are lower than 70 %. Hence, the following names are proposed: Photorhabdus hindustanensis sp. nov. with the type strain H1T (=IARI-SGMG3T,=KCTC 82683T=CCM 9150T=CCOS 1975T) and P. akhurstii subsp. bharatensis subsp. nov. with the type strain H3T (=IARI-SGHR2T=KCTC 82684T=CCM 9149T=CCOS 1976T). These propositions automatically create P. akhurstii subsp. akhurstii subsp. nov. with DSM 15138T as the type strain (currently classified as P. akhurstii).


Assuntos
Nematoides , Photorhabdus , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Photorhabdus/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34714227

RESUMO

The taxonomic positions of members within the family Pseudonocardiaceae were assessed based on phylogenomic trees reconstructed using core-proteome and genome blast distance phylogeny approaches. The closely clustered genome sequences from the type strains of validly published names within the family Pseudonocardiaceae were analysed using overall genome-related indices based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values. The family Pseudonocardiaceae consists of the type genus Pseudonocardia, as well as the genera Actinoalloteichus, Actinocrispum, Actinokineospora, Actinomycetospora, Actinophytocola, Actinopolyspora, Actinorectispora, Actinosynnema, Allokutzneria, Allosaccharopolyspora gen. nov., Amycolatopsis, Bounagaea, Crossiella, Gandjariella, Goodfellowiella, Haloactinomyces, Haloechinothrix, Halopolyspora, Halosaccharopolyspora gen. nov., Herbihabitans, Kibdelosporangium, Kutzneria, Labedaea, Lentzea, Longimycelium, Prauserella, Saccharomonospora, Saccharopolyspora, Saccharothrix, Salinifilum, Sciscionella, Streptoalloteichus, Tamaricihabitans, Thermocrispum, Thermotunica and Umezawaea. The G+C contents of the Pseudonocardiaceae genomes ranged from 66.2 to 74.6 mol% and genome sizes ranged from 3.69 to 12.28 Mbp. Based on the results of phylogenomic analysis, the names Allosaccharopolyspora coralli comb. nov., Halosaccharopolyspora lacisalsi comb. nov. and Actinoalloteichus caeruleus comb. nov. are proposed. This study revealed that Actinokineospora mzabensis is a heterotypic synonym of Actinokineospora spheciospongiae, Lentzea deserti is a heterotypic synonym of Lentzea atacamensis, Prauserella endophytica is a heterotypic synonym of Prauserella coralliicola, and Prauserella flava and Prauserella sediminis are heterotypic synonyms of Prauserella salsuginis. This study addresses the nomenclature conundrums of Actinoalloteichus cyanogriseus and Streptomyces caeruleus as well as Micropolyspora internatus and Saccharomonospora viridis.


Assuntos
Actinobacteria/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA