Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(33): e2302375120, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549254

RESUMO

Lithium metal anodes with ultrahigh theoretical capacities are very attractive for assembling high-performance batteries. However, uncontrolled Li dendrite growth strongly retards their practical applications. Different from conventional separator modification strategies that are always focused on functional group tuning or mechanical barrier construction, herein, we propose a crystallinity engineering-related tactic by using the highly crystalline carbon nitride as the separator interlayer to suppress dendrite growth. Interestingly, the presence of Cl- intercalation and high-content pyrrolic-N from molten salt treatment along with highly crystalline structure enhanced the interactions of carbon nitride with Li+ and homogenized lithium flux for uniform deposition, as supported by both experimental and theoretical evidences. The Li-Li cell with the modified separator therefore delivered ultrahigh stability even after 3,000 h with dendrite-free cycled electrodes. Meanwhile, the assembled Li-LiFePO4 full-cell also presented high-capacity retention. This work opens up opportunities for design of functional separators through crystallinity engineering and broadens the use of C3N4 for advanced batteries.

2.
Proc Natl Acad Sci U S A ; 119(12): e2118675119, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35286210

RESUMO

SignificanceBased on the analysis of three thermodynamic parameters of various M-S systems (solubility of metal sulfides [MxSy] in aqueous solution, volume change of the metal-sulfur [M-S] battery system, and the potential of S/MxSy cathode redox couple), an aqueous Pb-S battery operated by synergistic dual conversion reactions (cathode: S⇄PbS, anode: Pb2+⇄PbO2) has been officially reported. Benefitting from the inherent insolubility of PbS and a conversion-type counter electrode, the aqueous Pb-S battery exhibited two advantages: it is shuttle effect free and has a dendrite-free nature. Moreover, the practical value of the Pb-S battery was further certified by the prototype S|Pb(NO3)2ǁZn(NO3)2|Zn hybrid cell, which afforded an energy density of 930.9 Wh kg-1sulfur.

3.
Nano Lett ; 24(13): 4020-4028, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517395

RESUMO

The use of electrolyte additives is an efficient approach to mitigating undesirable side reactions and dendrites. However, the existing electrolyte additives do not effectively regulate both the chaotic diffusion of Zn2+ and the decomposition of H2O simultaneously. Herein, a dual-parasitic method is introduced to address the aforementioned issues by incorporating 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm]OTf) as cosolvent into the Zn(OTf)2 electrolyte. Specifically, the OTf- anion is parasitic in the solvent sheath of Zn2+ to decrease the number of active H2O. Additionally, the EMIm+ cation can construct an electrostatic shield layer and a hybrid organic/inorganic solid electrolyte interface layer to optimize the deposition behavior of Zn2+. This results in a Zn anode with a reversible cycle life of 3000 h, the longest cycle life of full cells (25,000 cycles), and an extremely high initial capacity (4.5 mA h cm-2), providing a promising electrolyte solution for practical applications of rechargeable aqueous zinc-ion batteries.

4.
Nano Lett ; 24(7): 2337-2344, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38341874

RESUMO

The interfacial structure holds great promise in suppressing dendrite growth and parasitic reactions of zinc metal in aqueous media. Current advancements prioritize novel component fabrication, yet the local crystal structure significantly impacts the interfacial properties. In addition, there is still a critical need for scalable synthesis methods for expediting the commercialization of aqueous zinc metal batteries (AZMBs). Herein, we propose a scalable concentration-controlled method for realizing crystalline to amorphous transformation of the Zn metal interface with exceptional scalability (>1 m2) and processing consistency (>30 trials). Theoretical and experimental analyses highlight the advantages of amorphous ZnO, which exhibits moderate adsorption energy, strong desolvation ability, and hydrophilicity. Employing the amorphous ZnO-coated zinc metal anode (AZO-Zn) significantly enhances the cycling performance, impressively maintaining 1000 cycles at 100 mA cm-2. The prototype AZO-Zn||MnO2@CNT pouch cell demonstrates a capacity of 15.7 mAh and maintains 91% of its highest capacity over 100 cycles, presenting promising avenues for the future commercialization of AZMBs.

5.
Small ; 20(5): e2306572, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759384

RESUMO

Cation-intercalated vanadates, which have considerable promise as the cathode for high-performance potassium metal batteries (PMBs), suffer from structural collapse upon K+ insertion and desertion. Exotic cations in the vanadate cathode may ease the collapse, yet their effect on the intrinsic cation remains speculative. Herein, a stable and dendrite-free PMB, composed of a Na+ and K+ co-intercalated vanadate (NKVO) cathode and a liquid NaK alloy anode, is presented. A series of NKVO with tuneable Na/K ratios are facilely prepared using MXene precursors, in which Na+ is testified to be immobilized upon cycling, functioning as a structural pillar. Due to stronger ionic bonding and lower Fermi level of Na+ compared to K+ , moderate Na+ intercalation could reduce K+ binding to the solvation sheath and favor K+ diffusion kinetics. As a result, the MXene-derived Na+ -pillared NKVO exhibits markedly improved specific capacities, rate performance, and cycle stability than the Na+ -free counterpart. Moreover, thermally-treated carbon paper, which imitates the microscopic structure of Chinese Xuan paper, allows high surface tension liquid NaK alloy to adhere readily, enabling dendrite-free metal anodes. By clarifying the role of foreign intercalating cations, this study may lead to a more rational design of stable and high-performance electrode materials.

6.
Small ; 20(12): e2307557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946707

RESUMO

Although zinc metal anode is promising for zinc-ion batteries (ZIBs) owing to high energy density, its reversibility is significantly obstructed by uncontrolled dendrite growth and parasitic reactions. Optimizing electrolytes is a facile yet effective method to simultaneously address these issues. Herein, 2-(N-morpholino)ethanesulfonic acid (MES), a pH buffer as novel additive, is initially introduced into conventional ZnSO4 electrolyte to ensure a dendrite-free zinc anode surface, enabling a stable Zn/electrolyte interface, which is achieved by controlling the solvated sheath through H2O poor electric double layer (EDL) derived from zwitterionic groups. Moreover, this zwitterionic additive can balance localized H+ concentration of the electrolyte system, thus preventing parasitic reactions in damaging electrodes. DFT calculation proves that the MES additive has a strong affinity with Zn2+ and induces uniform deposition along (002) orientation. As a result, the Zn anode in MES-based electrolyte exhibits exceptional plating/stripping lifespan with 1600 h at 0.5 mA cm-2 (0.5 mAh cm-2) and 430 h at 5.0 mA cm-2 (5.0 mAh cm-2) while it maintains high coulombic efficiency of 99.8%. This work proposes an effective and facile approach for designing dendrite-free anode for future aqueous Zn-based storage devices.

7.
Small ; 20(6): e2304723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797197

RESUMO

Aqueous Zn-ion batteries are the ideal candidate for large-scale energy storage systems owing to their high safety and low cost. However, the uncontrolled deposition and parasitic reaction of Zn metal anode hinder their commercial application. Here, the 2D metal-organic-framework (MOF) nanoflakes covered on the surface of Zn are proposed to enable dendrite-free for long lifespan Zn metal batteries. The MOF can facilitate the desolvation process to accelerate reaction kinetic due to its special channel structure. The abundant zincopilicity sites of MOF can realize the homogenous Zn2+ deposition. Consequently, their synergetic effect makes the MOF protected Zn anode good electrochemical performance with a long cycle life of 1400 h at 1 mA cm-2 and a high depth of discharge of 30 mAh cm-2 (DOD ≈ 54%) continued for over 700 h. This work provides a novel strategy for high-performance rechargeable Zn-ion batteries.

8.
Small ; 20(1): e2304463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649191

RESUMO

The high activity of water molecules results in a series of awful parasitic reaction, which seriously impede the development of aqueous zinc batteries. Herein, a new gel electrolyte with multiple molecular anchors is designed by employing natural biomaterials from chitosan and chlorophyll derivative. The gel electrolyte firmly anchors water molecules by ternary hydrogen bonding to reduce the activity of water molecules and inhibit hydrogen evolution reaction. Meanwhile, the multipolar charged functional groups realize the gradient induction and redistribution of Zn2+ , which drives oriented Zn (002) plane deposition of Zn2+ and then achieves uniform Zn deposition and dendrite-free anode. As a result, it endows the Zn||Zn cell with over 1700 h stripping/plating processes and a high efficiency of 99.4% for the Zn||Cu cell. In addition, the Zn||V2 O5 full cells also exhibit capacity retention of 81.7% after 600 cycles at 0.5 A g-1 and excellent long-term stability over 1600 cycles at 2 A g-1 , and the flexible pouch cells can provide stable power for light-emitting diodes even after repeated bending. The gel electrolyte strategy provides a reference for reversible zinc anode and flexible wearable devices.

9.
Small ; 20(31): e2311204, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38459801

RESUMO

Constructing a flexible and chemically stable multifunctional layer for the lithium (Li) metal anodes is a highly effective approach to improve the uneven deposition of Li+ and suppress the dendrite growth. Herein, an organic protecting layer of polythiophene is in situ polymerized on the Li metal via plasma polymerization. Compared with the chemically polymerized thiophene (C-PTh), the plasma polymerized thiophene layer (P-PTh), with a higher Young's modulus of 8.1 GPa, shows strong structural stability due to the chemical binding of the polythiophene and Li. Moreover, the nucleophilic C─S bond of polythiophene facilitates the decomposition of Li salts in the electrolytes, promoting the formation of LiF-rich solid electrolyte interface (SEI) layers. The synergetic effect of the rigid LiF as well as the flexible PTh-Li can effectively regulate the uniform Li deposition and suppress the growth of Li dendrites during the repeated stripping-plating, enabling the Li anodes with long-cycling lifespan over 8000 h (1 mA cm-2, 1 mAh cm-2) and 2500 h (10 mA cm-2, 10 mAh cm-2). Since the plasma polymerization is facile (5-20 min) and environmentally friendly (solvent-free), this work offers a novel and promising strategy for the construction of the forthcoming generation of high-energy-density batteries.

10.
Small ; : e2402213, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881352

RESUMO

The intrinsic reactivity of lithium (Li) toward ambient air, combined with insufficient cycling stability in conventional electrolytes, hinders the practical adoption of Li metal anodes in rechargeable batteries. Here, a bilayer interphase for Li metal is introduced to address both its susceptibility to corrosion in ambient air and its deterioration during cycling in carbonate electrolytes. Initially, the Li metal anode is coated with a conformal bottom layer of polysiloxane bearing methacrylate, followed by further grafting with poly(vinyl ethylene carbonate) (PVEC) to enhance anti-corrosion capability and electrochemical stability. In contrast to single-layer applications of polysiloxane or PVEC, the bilayer design offers a highly uniform coating that effectively resists humid air and prevents dendritic Li growth. Consequently, it demonstrates stable plating/stripping behavior with only a marginal increase in overpotential over 200 cycles in carbonate electrolytes, even after exposure to ambient air with 46% relative humidity. The design concept paves the way for scalable production of high-voltage, long-cycling Li metal batteries.

11.
Small ; : e2402206, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881367

RESUMO

The challenges of sodium metal anodes, including formation of an unstable solid-electrolyte interphase (SEI) and uncontrolled growth of sodium dendrites during charge-discharge cycles, impact the stability and safety of sodium metal batteries. Motivated by the promising commercialization potential of sodium metal batteries, it becomes imperative to systematically explore innovative protective interlayers specifically tailored for sodium metal anodes. In this work, a NaBix/NaVyOz hybrid and porous interfacial layer on sodium anode is successfully fabricated via pretreating sodium with bismuth vanadate. The hybrid interlayer effectively combines the advantages of sodium vanadates and alloys, raising a synergistic effect in facilitating sodium deposition kinetics and inhibiting the growth of sodium dendrites. As a result, the modified sodium electrodes (BVO-Na) can stably cycle for 2000 h at 0.5 mA cm-2 with a fixed capacity of 1 mAh cm-2, and the BVO-Na||Na3V2(PO4)3 full cell sustains a high capacity of 94 mAh g-1 after 600 cycles at 5 C. This work demonstrates that constructing an artificial hybrid interlayer is a practical solution to obtain high performance anodes in sodium metal batteries.

12.
Small ; : e2404470, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934337

RESUMO

The uncontrollable growth of lithium dendrites and the flammability of electrolytes are the direct impediments to the commercial application of high-energy-density lithium metal batteries (LMBs). Herein, this study presents a novel approach that combines microencapsulation and electrospinning technologies to develop a multifunctional composite separator (P@AS) for improving the electrochemical performance and safety performance of LMBs. The P@AS separator forms a dense charcoal layer through the condensed-phase flame retardant mechanism causing the internal separator to suffocate from lack of oxygen. Furthermore, it incorporates a triple strategy promoting the uniform flow of lithium ions, facilitating the formation of a highly ion-conducting solid electrolyte interface (SEI), and encouraging flattened lithium deposition with active SiO2 seed points, considerably suppressing lithium dendrites growth. The high Coulombic efficiency of 95.27% is achieved in Li-Cu cells with additive-free carbonate electrolyte. Additionally, stable cycling performance is also maintained with a capacity retention rate of 93.56% after 300 cycles in LFP//Li cells. Importantly, utilizing P@AS separator delays the ignition of pouch batteries under continuous external heating by 138 s, causing a remarkable reduction in peak heat release rate and total heat release by 23.85% and 27.61%, respectively, substantially improving the fire safety of LMBs.

13.
Small ; : e2401465, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750613

RESUMO

Lithium (Li) metal batteries have attracted considerable research attention due to their exceptionally high theoretical capacity. However, the commercialization of Li metal batteries faces challenges, primarily attributed to uncontrolled growth of Li dendrites, which raises safety concerns and lowers coulombic efficiency. To mitigate Li dendrites growth and attain dense Li deposition, the hybrid SiO2-Cu2O lithiophilic film applied to a 3D copper foam current collector is developed to regulate the interfacial properties for achieving even and dense Li deposition. The SiO2-Cu2O possesses strong Li+ trapping capability through strong lithiophilicity from Cu2O. Additionally, the SiO2-Cu2O enables uniform ion diffusion through the domain-limiting effect of the holes in the SiO2 layer, inducing an even and dense Li plating/stripping behavior at a large capacity. Furthermore, the SiO2 layer promotes the formation of an initial high inorganic content Solid Electrolyte Interphase (SEI) through selective preferential binding with anion and solvent molecules. When the SiO2-Cu2O@Li anode is coupled with a LiFePO4 (LFP) cathode, the resulting full cell exhibits superior cycling stability and rate performance. These results provide a facile approach to construct a lithiophilic current collector for practical Li metal anodes.

14.
Small ; 20(28): e2311851, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312088

RESUMO

Aqueous Zn-metal battery is considered as a promising energy-storage system. However, uncontrolled zinc dendrite growth is the main cause of short-circuit failure in aqueous Zn-based batteries. One of the most efficient and convenient strategies to alleviate this issue is to introduce appropriate zincophilic nucleation sites to guide zinc metal deposition and regulate crystal growth. Herein, this work proposes Bi2O3/Bi nanosheets anchored on the cell wall surface of the 3D porous conductive host as the Zn deposition sites to modulate Zn deposition behavior and hence inhibit the zinc dendrite growth. Density functional theory and experimental results demonstrate that Bi2O3 has a super zinc binding energy and strong adsorption energy with zinc (002) plane, as a super-zincophilic nucleation site, which results in the deposition of zinc preferentially along the horizontal direction of (002) crystal plane, fundamentally avoids the formation of Zn dendrites. Benefiting from the synergistic effect Bi2O3/Bi zincophilic sites and 3D porous structure in the B-BOGC host, the electrochemical performance of the constructed Zn-based battery is significantly improved. As a result, the Zn anode cycles for 1500 cycles at 50 mA cm-2 and 1.0 mAh cm-2. Meanwhile, the Zn@B-BOGC//MnO2 full cell can operate stably for 2000 cycles at 2.0 A g-1.

15.
Small ; 20(24): e2307200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38197540

RESUMO

Uniform lithium deposition is essential to hinder dendritic growth. Achieving this demands even seed material distribution across the electrode, posing challenges in correlating the electrode's surface structure with the uniformity of seed material distribution. In this study, the effect of periodic surface and facet orientation on seed distribution is investigated using a model system consisting of a wrinkled copper (Cu)/graphene structure with a [100] facet orientation. A new methodology is developed for uniformly distributed silver (Ag) nanoparticles over a large area by controlling the surface features of Cu substrates. The regularly arranged Ag nanoparticles, with a diameter of 26.4 nm, are fabricated by controlling the Cu surface condition as [100]-oriented wrinkled Cu. The wrinkled Cu guides a deposition site for spherical Ag nanoparticles, the [100] facet determines the Ag morphology, and the presence of graphene leads to spacings of Ag seeds. This patterned surface and high lithiophilicity, with homogeneously distributed Ag nanoparticles, lead to uniform Li+ flux and reduced nucleation energy barrier, resulting in excellent battery performance. The electrochemical measurements exhibit improved cyclic stability over 260 cycles at 0.5 mA cm-2 and 100 cycles at 1.0 mA cm-2 and enhanced kinetics even under a high current density of 5.0 mA cm-2.

16.
Small ; 20(32): e2401249, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38482948

RESUMO

Zn metal anodes in aqueous electrolytes suffer from interface issues including uncontrolled dendrite growth and undesired side reactions, resulting in their limited application in terms of short circuits and cell failure. Herein, a hybrid interface chemistry strategy is developed through ultrafast microwave polarization at the skin region of bare Zn. Owing to efficient Joule heating directed by abundant local hot spots at electron valleys, the rapid establishment of a dense interfacial layer can be realized within a minute. Stabilized Zn with suppressed side reactions or surface corrosion is therefore achieved due to the interfacial protection. Importantly, hybrid zincophilic sites involving laterally/vertically interconnected Cu-Zn intermetallic compound and Zn2+-conductive oxide species ensure mixed charge conducting (denoted as CuHL@Zn), featuring uniformly distributed electric field and boosted Zn2+ diffusion kinetics. As a consequence, CuHL@Zn in symmetric cells affords lifespans of 2800 and 3200 h with ultra-low polarization voltages (≈19 and 56 mV) at a plating capacity of 1.0 mAh cm-2 for 1 and 5 mA cm-2, respectively. The CuHL@Zn||MnO2 full cell further exhibits cycling stability with a capacity retention of over 80% for 500 cycles at 2 A g-1.

17.
Chemistry ; 30(22): e202304252, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38369896

RESUMO

Ta-doped Li7La3Zr2O12 (LLZTO) solid-state electrolytes (SEs) show great promise for solid-state batteries due to its high conductivity and safety. However, one of the challenges it faces is lithium dendrite propagation upon long-term cycling. To address this issue, we propose the incorporation of fumed silica (FS) at the grain boundaries of LLZTO to modify the properties of the garnet pellet, which effectively inhibits the dendrite growth. The introduction of FS has demonstrated several beneficial effects. Firstly, it reduces the migration barrier of lithium ions, which helps prevent dendrite formation and propagation. Additionally, FS reduces the electronic conductivity of the SEs pellet, suppressing the dendrite formation. Moreover, the formed lithium silicates from FS might also be acted as electron inhibitor, thus inhibiting the lithium dendrite growth upon cycling. By investigating the use of FS as a modifier in LLZTO-based electrolytes, our study contributes to advancing dendrite-free solid-state electrolytes and thus the development of high-performance all-solid-state batteries.

18.
Chemistry ; 30(2): e202302867, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37885053

RESUMO

Lithium metal batteries are deemed as an optimal candidate for the next generation of durable energy storage devices. However, the growth of lithium dendrite and significant volume expansion pose as obstacles that impede the application of lithium metal batteries. In this work, a functional copper current collector was designed by coating it with Co-doped ZnO (Co/ZnO) to enhance the lithiophilicity through local electric fields and built-in magnetic fields induced by the ferromagnetic material. The incorporation of Co not only induces a local electric field and thus accelerating electron transfer, but also imparts the ferromagnetic behavior to ZnO, resulting in an internal magnetic field to regulate the dynamic trajectory. Profiting from the above advantages, the symmetric cells have excellent cycle stability in 1 mA cm-2 and 1 mAh cm-2 , maintaining ultra-low voltage for over 2000 h. This study provides a realizable pathway for next-generation current collector of copper modification.

19.
Chemistry ; 30(21): e202304152, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38311589

RESUMO

Due to the ultrahigh theoretical specific capacity (3860 mAh g-1) and low redox potential (-3.04 V vs. standard hydrogen electrode), Lithium (Li) metal anode (LMA) received increasing attentions. However, notorious dendrite and volume expansion during the cycling process seriously hinder the development of high energy density Li metal batteries. Constructing three-dimensional (3D) current collectors for Li can fundamentally solve the intrinsic drawback of hostless for Li. Therefore, this review systematically introduces the design and synthesis engineering and the current development status of different 3D collectors in recent years (the current collectors are divided into two major parts: metal-based current collectors and carbon-based current collectors). In the end, some perspectives of the future promotion for LMA application are also presented.

20.
Nano Lett ; 23(6): 2295-2303, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36876971

RESUMO

Aluminum (Al) metal is an attractive anode material for next-generation rechargeable batteries, because of its low cost and high capacities. However, it brings some fundamental issues such as dendrites, low Coulombic efficiency (CE), and low utilization. Here, we propose a strategy for constructing an ultrathin aluminophilic interface layer (AIL) to regulate the Al nucleation and growth behaviors, which enables highly reversible and dendrite-free Al plating/stripping under high areal capacity. Metallic Al can maintain stable plating/stripping on the Pt-AIL@Ti for over 2000 h at 10 mAh cm-2 with an average CE of 99.9%. The Pt-AIL also enables reversible Al plating/stripping at a record high areal capacity of 50 mAh cm-2, which is 1-2 orders of magnitude higher than the previous studies. This work provides a valuable direction for further construction of high-performance rechargeable Al metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA