Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Small ; 20(33): e2400513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38545999

RESUMO

Hydrogenated diamond-like carbon (HDLC) is a promising solid lubricant for its superlubricity which can benefit various industrial applications. While HDLC exhibits notable friction reduction in macroscale tests in inert or reducing environmental conditions, ultralow friction is rarely observed at the nanoscale. This study investigates this rather peculiar dependence of HDLC superlubricity on the contact scale. To attain superlubricity, HDLC requires i) removal of ≈2 nm-thick air-oxidized surface layer and ii) shear-induced transformation of amorphous carbon to highly graphitic and hydrogenated structure. The nanoscale wear depth exceeds the typical thickness of the air-oxidized layer, ruling out the possibility of incomplete removal of the air-oxidized layer. Raman analysis of transfer films indicates that shear-induced graphitization readily occurs at shear stresses lower than or comparable to those in the nanoscale test. Thus, the same is expected to occur at the nanoscale test. However, the graphitic transfer films are not detected in ex-situ analyses after nanoscale friction tests, indicating that the graphitic transfer films are pushed out of the nanoscale contact area due to the instability of transfer films within a small contact area. Combining all these observations, this study concludes the retention of highly graphitic transfer films is crucial to achieving HDLC superlubricity.

2.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474083

RESUMO

Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.


Assuntos
Artroplastia de Substituição , Células-Tronco Mesenquimais , Titânio/química , Propriedades de Superfície , Carbono/química , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
3.
Nanotechnology ; 34(38)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410425

RESUMO

Diamond-like carbon (DLC) films have broad application potential due to their high hardness, high wear resistance, and self-lubricating properties. However, considering that DLC films are micron-scale, neither finite element methods nor macroscopic experiments can reveal their deformation and failure mechanisms. Here we propose a coarse-grained molecular dynamics (CGMD) approach which expands the capabilities of molecular dynamics simulations to uniaxial tensile behavior of DLC films at a higher scale. The Tersoff potential is modified by high-throughput screening calculations for CGMD. Given this circumstance, machine learning (ML) models are employed to reduce the high-throughput computational cost by 86%, greatly improving the efficiency of parameter optimization in second- and fourth-order CGMD. The final obtained coarse-grained tensile curves fit well with that of the all-atom curves, showing that the ML-based CGMD method can investigate DLC films at higher scales while saving a large number of computational resources, which is important for promoting the research and production of high-performance DLC films.


Assuntos
Carbono , Materiais Revestidos Biocompatíveis , Propriedades de Superfície , Teste de Materiais , Dureza
4.
J Artif Organs ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227545

RESUMO

Staphylococcus aureus is one of the main causative bacteria for polyurethane catheter and artificial graft infection. Recently, we developed a unique technique for coating diamond-like carbon (DLC) inside the luminal resin structure of polyurethane tubes. This study aimed to elucidate the infection-preventing effects of diamond-like carbon (DLC) coating on a polyurethane surface against S. aureus. We applied DLC to polyurethane tubes and rolled polyurethane sheets with our newly developed DLC coating technique for resin tubes. The DLC-coated and uncoated polyurethane surfaces were tested in smoothness, hydrophilicity, zeta-potential, and anti-bacterial properties against S. aureus (biofilm formation and bacterial attachment) by contact with bacterial fluids under static and flow conditions. The DLC-coated polyurethane surface was significantly smoother, more hydrophilic, and had a more negative zeta-potential than did the uncoated polyurethane surface. Upon exposure to bacterial fluid under both static and flow conditions, DLC-coated polyurethane exhibited significantly less biofilm formation than uncoated polyurethane, based on absorbance measurements. In addition, the adherence of S. aureus was significantly lower for DLC-coated polyurethane than for uncoated polyurethane under both conditions, based on scanning electron microscopy. These results show that applying DLC coating to the luminal resin of polyurethane tubes may impart antimicrobial effects against S. aureus to implantable medical polyurethane devices, such as vascular grafts and central venous catheters.

5.
Sensors (Basel) ; 22(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684746

RESUMO

The main goal of this work was to modify the previously developed blade-type planar structure using plasmonic gold nanostars in order to stimulate photofield emission and provide efficient laser control of the electron current. Localization and enhancement of the field at the tips of gold nanostars provided a significant increase in the tunneling electron current in the experimental sample (both electrical field and photofield emission). Irradiation at a wavelength in the vicinity of the plasmon resonance (red laser) provided a gain in the photoresponse value of up to 5 times compared to irradiation far from the resonance (green laser). The prospects for transition to regimes of structure irradiation by femtosecond laser pulses at the wavelength of surface plasmon resonance, which lead to an increase in the local optical field, are discussed. The kinetics of the energy density of photoinduced hot and thermalized electrons is estimated. The proposed laser-controlled matrix current source is promising for use in X-ray computed tomography systems.


Assuntos
Ouro , Nanopartículas Metálicas , Elétrons , Ouro/química , Lasers , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos
6.
Small ; 17(1): e2005607, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33284504

RESUMO

Diamond-like carbon (DLC) films are capable of achieving superlubricity at sliding interfaces by a rapid running-in process. However, fundamental mechanisms governing the friction evolution during this running-in processes remain elusive especially at the nanoscale, which hinders strategic tailoring of tribosystems for minimizing friction and wear. Here, it is revealed that the running-in governing superlubricity of DLC demonstrates two sub-stages in single-asperity nanocontacts. The first stage, mechanical removal of a thin oxide layer, is described quantitatively by a stress-activated Arrhenius model. In the second stage, a large friction decrease occurs due to a structural ordering transformation, with the kinetics well described by the Johnson-Mehl-Avrami-Kolmogorov model with a modified load dependence of the activation energy. The direct observation of a graphitic-layered transfer film formation together with the measured Avrami exponent reveal the primary mechanism of the ordering transformation. The findings provide fundamental insights into friction evolution mechanisms, and design criteria for superlubricity.

7.
Nanotechnology ; 32(49)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34450616

RESUMO

In order to adapt to the quick and large amount of necessity in data flow for 5G cloud generation, it is necessary to develop a technology of warm storage device in market which takes a great balance between the reading/writing performance and the price per storage capacity. The technologies of warm storage devices are assumed to adopt phase change memory (PCM), resistive random access memory or magnetoresistive random access memory which have the highest possibilities to 5G structures and magnetic properties of Co on non-hydrogenated diamond like carbon (DLC)/Si(100) films and Co/DLC interface are investigated. The self-assembled magnetic heterostructure is firstly reported in hexagonal close packing Co layers perpendicular magnetic anisotropy (PMA) on Co carbide layers (in-plane) during Co deposited on DLC/Si(100). A PMA/in-plane magnetic heterostructure is expected to have the highest switching current to the energy barrier ratio of near 4 in previous report, which has great potential for developing warm memory devices. Based on these unique characteristics, we provide a novel design called magnetic anisotropy-phase change memory (Mani-PCM) which can impact the developing blueprint of memory. The working process of Mani-PCM includes in set, reset and read states as a universal PCM. This brand new technology is highly promising as warm memory devices including high reading/writing performance and economical price per storage capacity.

8.
Sensors (Basel) ; 21(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578701

RESUMO

An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated. The advantages of the proposed material and the prospects for using X-ray computed tomography in the matrix source are evaluated.

9.
Sensors (Basel) ; 19(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374817

RESUMO

The durability of metal-based constructions, especially those containing reinforced concrete, is mainly limited by corrosion processes. Diamond-like carbon (DLC)-coated silicon (Si) wafers provide a chemically inert and mechanically robust sensing interface for application in aggressive environments. In this study, iron-sensitive dyes, i.e., 2,3-dihydroxypyridine (DHP) and 1,2-dihydroxybenzol (DHB), were coated onto DLC-modified Si wafers for evaluating the potential of detecting corrosion processes via evanescent field absorption spectroscopy using Fourier-transform infrared spectroscopy. The obtained IR spectra reveal discernible changes of the dye layer after exposure to iron solutions, which indicates that indeed corrosion processes may be studied at molecular level detail.

10.
Materials (Basel) ; 17(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793487

RESUMO

The wall friction angle is an important parameter in powder flow. In a recent study for various powders, a reduction in the wall friction angle for steel was demonstrated by the application of an a-C:H:Si film on the steel surface. This work presents the results of a study of this effect in more detail regarding the influence of the powder material, the wall normal stress and the particle size of the powder for mass median diameters from 4 µm to approximately 150 µm. The wall friction angles were measured using a Schulze ring shear tester for three different powder materials: aluminum oxide, calcium carbonate and silicon carbide. The results showed little difference with respect to powder chemistry. For the coarser powders, the reduction in the wall friction angle due to the a-C:H:Si coating was highest (10° to 12°) and rather stress-independent, while for the fine and medium-size powders the reduction was lower and stress-dependent. With increasing wall normal stress, the reduction in the wall friction angle increased. These results can be explained by the friction reduction mechanism of a-C:H:Si, which requires a certain contact pressure for superficial graphitization.

11.
ACS Biomater Sci Eng ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108014

RESUMO

Diamond-like carbon (DLC) wear debris, which is often composed of different types of structures, is generated from DLC-modified artificial joints in the human body, and its biocompatibility evaluation is especially important to prevent wear-debris-induced implant failure. Here, RAW 264.7 macrophages (inflammatory-reaction assay) and primary mouse osteoblasts (osteoblastogenesis assay) were employed to investigate the toxicity of DLC wear particles (DWPs) by evaluation of cell viability and morphology, enzyme-linked immunosorbent assays, and quantitative reverse-transcription polymerase chain reaction (PCR). Relevant histopathological analysis of rat joints was also performed in vivo. We found that DWPs with a relatively high sp2/sp3 ratio (graphite-phase tendency) manifested a higher cytotoxicity and significant inhibition of osteoblastogenesis. DWPs with a relatively low sp2/sp3 ratio (diamond-phase tendency) showed good biocompatibility in vivo. The DWPs exhibiting a low sp2/sp3 ratio demonstrated reduced secretion of TNF-α and IL-6, along with increased secretion of TIMP-1, resulting in the downregulation of MMP-2 and MMP-9 and upregulation of interleukin-10 (IL-10), thereby attenuating the inflammatory response. Moreover, coculturing osteoblasts with DWPs exhibiting a low sp2/sp3 ratio resulted in an elevated OPG/RANKL ratio and increased expression of OPG mRNA. Because of the absence of electrostatic repulsion, DWPs with a relatively low sp2/sp3 ratio enhanced bovine serum albumin adsorption, which favored cellular activities. Cytotoxicity assessment of DWPs can help establish an evaluation system for particle-related joint disease and can facilitate the clinical application of DLC-coated prostheses.

12.
ACS Appl Mater Interfaces ; 16(14): 18112-18123, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547870

RESUMO

Boron doping of diamond-like carbon coatings has multiple effects on their tribological properties. While boron typically reduces wear in cutting applications, some B-doped coatings show poor tribological performance compared with undoped films. This is the case of the tribological tests presented in this work in which an alumina ball is placed in frictional contact with different undoped and B-doped amorphous carbon coatings in humid air. With B-doped coatings, a higher friction coefficient at a steady state with respect to their undoped counterparts was observed. Estimates of the average contact shear stress based on experimental friction coefficients, surface topographies, and Persson's contact theory suggest that the increased friction is compatible with the formation of a sparse network of interfacial ether bonds leading to a mild cold-welding friction regime, as documented in the literature. Tight binding and density functional theory simulations were performed to investigate the chemical effect of B-doping on the interfacial properties of the carbon coatings. The results reveal that OH groups that normally passivate carbon surfaces in humid environments can be activated by boron and form B-O dative bonds across the tribological interfaces, leading to a mild cold-welding friction regime. Simulations performed on different tribological pairs suggest that this mechanism could be valid for B-doped carbon surfaces in contact with a variety of materials. In general, this study highlights the impact that subtle modifications in surface and interface chemistry caused by the presence of impurities can have on macroscopic properties, such as friction and wear.

13.
ACS Appl Mater Interfaces ; 16(22): 29314-29323, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38770841

RESUMO

Dopants and alloying elements are commonly introduced in amorphous carbon (a-C) materials to tailor their mechanical and tribological properties. While most published studies have focused on doping and alloying a-C coatings with metals or metalloids, doping a-C films with rare-earth elements has only recently been explored. Notably, our understanding of the shear-induced structural changes occurring in rare-earth-element-containing a-C films is still elusive, even in the absence of any liquid lubricants. Here, the friction response of Eu- and Gd-containing a-C films with low hydrogen content deposited by HiPIMS on silicon was evaluated in open air and at room temperature. The load-dependent friction measurements indicated that the introduction of Gd ((2.3 ± 0.1) at.%) and Eu ((2.4 ± 0.1) at.%) into the a-C matrix results in a significant reduction of the shear strength of the sliding interfaces ((41 ± 2) MPa for a-C, (16 ± 1) MPa for a-C:Gd2.3 at.%, and (11 ± 2) MPa for a-C:Eu2.4 at.%). NEXAFS spectromicroscopy experiments provided evidence that no stress-assisted sp3-to-sp2 rehybridization of carbon atoms was induced by the sliding process in the near-surface region of undoped a-C, while the amount of sp2-bonded carbon progressively increased in a-C:Gd2.3 at.% and a-C:Eu2.4 at.% upon increasing the applied normal load in tribological tests. The formation of an sp2-bonded carbon-rich surface layer in a-C:Gd2.3 at.% and a-C:Eu2.4 at.% films was not only proposed to be the origin for the reduced duration of the running-in period in tribological test, but was also postulated to induce shear localization within the sp2-carbon-rich layer and transfer film formation on the countersurface, thus decreasing the interfacial shear strength. These findings open the path for the use of Gd- and Eu-containing a-C even under critical conditions for nearly hydrogen-free a-C films (i.e., humid air).

14.
J Mol Model ; 30(2): 28, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194121

RESUMO

CONTEXT: Diamond-like carbon (DLC) films are amorphous solids in which carbon atoms are linked by hybridized sp3, sp2, and sp bonds. The mechanical and tribological properties of DLC films can be adjusted by tuning the sp2/sp3 bond ratio. These films are typically used as protective coatings for components such as dies, automotive engines, mechanical seals, hard disk drives, biological engineering devices, and micro/nano-electromechanical systems. Further exploration of the mechanical and tribological behavior of DLC films is important for enhancing functional design for the above applications. The simulation results show that single-layer DLC with a higher sp3 ratio has better resistance to indentation. Single-layer DLC with a lower initial sp3 ratio has lower friction and a shorter repeated cycle in the friction force curve due to an increase in the graphitization of the friction interface. Single-layer DLC with a higher sp3 ratio has a higher coefficient of friction because compared with the normal force, the friction force is much more sensitive to an increase in the sp3 ratio. METHODS: Molecular dynamics simulations based on the Tersoff potential were performed using the open-source code LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator).

15.
Adv Sci (Weinh) ; : e2309170, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952062

RESUMO

The long-term durability of triboelectric nanogenerators (TENGs) remains a main challenge for practical applications because of inevitable material abrasion and wear, especially for sliding TENGs. Herein, an inorganic triboelectric pair composed of diamond-like carbon (DLC) and glass with excellent durability and triboelectric output for sliding-mode TENGs is proposed. This triboelectric pair possesses a low coefficient of friction and little abrasion and accordingly excellent durability (>500 000 cycles). Moreover, compared with the traditional copper-polytetrafluoroethylene (Cu-PTFE) TENG with maximum transferred charges of 50 nC, those of the DLC-glass TENG reaches 141 nC. Due to the low-friction and high hardness of the triboelectric pair, the output quickly recovers after simply cleaning wear debris. The DLC-glass TENG demonstrates an output power density of 530 mW m-2 and a fourfold faster capacitor charging speed than the Cu-PTFE TENG. Compared to the reported durable TENGs via structure optimization and interface lubrication, the DLC-glass TENG shows higher outputs and simpler structure. This DLC-glass pair structure is also introduced into a spherical TENG for blue energy harvesting with excellent durability. The inorganic triboelectric pair with excellent mechanical durability and electrical performance proposed in this work shows huge prospects for practical applications of TENGs.

16.
Nanomicro Lett ; 16(1): 186, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687411

RESUMO

Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine. This study proposes the use of diamond-like carbon (DLC) deposited on polylactic acid (PLA) membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats. The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane, with histological score decreasing from 3.12 ± 0.27 to 2.20 ± 0.22 and anti-adhesion effectiveness increasing from 21.61% to 44.72%. Mechanistically, the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively; thus, the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited. Consequently, excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) is largely reduced. For biocompatibility evaluation, PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes. Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds, which further delays the fibrosis process. It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.

17.
ACS Appl Mater Interfaces ; 16(6): 8032-8044, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291784

RESUMO

Tribological interfaces between silicon-based ceramics, such as Si3N4 or SiC, are characterized by high friction and wear in unlubricated conditions. A solution to this problem is to use them in combination with a hydrogenated amorphous carbon (a-C:H) countersurface from which a passivating carbon film is transferred onto the ceramic surface. However, the mechanisms underlying a stable film transfer process and the conditions that favor it remain elusive. Here, we present friction experiments in ultrahigh vacuum in which friction coefficients lower than 0.01 are achieved by sliding Si3N4 against a-C:H with 36 at. % hydrogen but not against a-C:H with 20 at. % hydrogen. Chemical surface analyses confirm that the superlubric interface forms via the transfer of a hydrocarbon nanofilm onto the Si3N4 surface. Quantum-mechanical simulations reveal that a stable passivating a-C:H film can only be transferred if, after initial cold welding of the tribological interface, the plastic shear deformation is localized within the a-C:H coating. This occurs if the yield shear stress for plastic flow of a-C:H is lower than that of the ceramic and of the shear strength of the a-C:H-ceramic interface, i.e., if the a-C:H hydrogen content ranges between ∼30 and ∼50 at. %. While the importance of a relatively high hydrogen content to achieve an efficient passivation of a-C:H surfaces in a vacuum is well-documented, this work reveals how the hydrogen content is also crucial for obtaining a stable a-C:H transfer film. These results can be extended to glass, SiC, and steel, supporting the generality of the proposed mechanism.

18.
ACS Appl Mater Interfaces ; 16(14): 18090-18098, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533722

RESUMO

Multilayer coatings offer significant advantages in protecting materials' surfaces by shielding the underlying materials hierarchically from damage and wear. The layering morphology and structure of multilayer coatings directly affect their wear resistance capacity. Using a systematic set of experiments and molecular dynamics (MD) simulations, we studied the effect of layering thickness on the macroscale wear response of DLC/WC multinanolayer coatings. Our study revealed the existence of a critical bilayer thickness where maximum scratch hardness and wear resistance can be achieved. Our large-scale MD simulations showed that reducing the WC layer thickness to a certain limit increases the scratch hardness due to the confinement of dislocation motion. However, when the thickness of the WC layers falls below 2 nm, the deformation mechanism transitions from the interface-induced dislocation confinement to the interface-mediated amorphization of WC layers, reducing the scratch hardness of the coating. This finding offers a procedure for optimizing the macroscale wear performance of multinanolayer coatings.

19.
J Biomed Mater Res B Appl Biomater ; 111(5): 1048-1058, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36544251

RESUMO

Due to the poor tribological properties of titanium (Ti) and its alloy Ti6Al4V (commonly used for ventricular assist devices manufacturing), diamond-like carbon (DLC) films with excellent anti-wear properties are pursued to improve the wear resistance of Ti and its alloys. Considering the effect of temperature on magnets inside pump impellers and workpiece deformation, DLC films are preferred to be prepared under low temperature. In this study, DLC films were prepared on Ti6Al4V alloys by periodic and continuous processes, and the corresponding maximum deposition temperature was 85 and 154°C, respectively. The periodic DLC films exhibited the feature of columnar structure, and the surface hillocks were less uniform than that of continuous DLC films. The periodic DLC films possessed more sp3 -bonded structures, and the accessorial sp3 -bonding mainly existed in the form of CH. Compared to continuous DLC films, the periodic DLC films had lower residual stress and better adhesion with Ti6Al4V substrates. Both DLC films could effectively reduce the friction coefficient and wear rate of Ti6Al4V alloys both in air and fetal bovine serum (FBS), and the periodic DLC films exhibited superior anti-wear properties to that of continuous DLC films in FBS. Haemocompatibility evaluation revealed that both DLC films presented similar levels of more human platelet adhesion and activation as compared with that of bare Ti6Al4V. However, both DLC films significantly prolonged plasma clotting time in comparison to bare Ti6Al4V. This study demonstrates the potential of low-temperature DLC films as wear-resistant surface modification for VADs.


Assuntos
Carbono , Coração Auxiliar , Humanos , Teste de Materiais , Temperatura , Carbono/química , Propriedades de Superfície , Ligas
20.
ACS Appl Mater Interfaces ; 15(15): 19715-19729, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37029740

RESUMO

The anti-friction of diamond-like carbon (DLC) is achieved by a well-developed carbonaceous transfer layer, and Ti-doped DLC is developed into a robustly built-up carbonaceous transfer layer. The friction performance of DLC depends on the operating environment, e.g., ambient gas, humidity, temperature, lubricants, and mating material. In this study, we aimed to reveal the environmental sensitivities of Ti-DLC on friction characteristics. To this end, a Ti-DLC was rubbed against a steel ball, and friction behaviors were evaluated with different gas compositions, humidity, and temperature. Finally, we identified that fractional coverage of water on surfaces affected the anti-graphitization on Ti-DLC, leading to avoiding friction reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA