Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(4): 103059, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841479

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, glucolipid metabolism, and inflammation. Thiazolidinediones are PPARγ full agonists with potent insulin-sensitizing effects, whereas their oral usage is restricted because of unwanted side effects, including obesity and cardiovascular risks. Here, via virtual screening, microscale thermophoresis analysis, and molecular confirmation, we demonstrate that diosmin, a natural compound of wide and long-term clinical use, is a selective PPARγ modulator that binds to PPARγ and blocks PPARγ phosphorylation with weak transcriptional activity. Local diosmin administration in subcutaneous fat (inguinal white adipose tissue [iWAT]) improved insulin sensitivity and attenuated obesity via enhancing browning of white fat and energy expenditure. Besides, diosmin ameliorated inflammation in WAT and liver and reduced hepatic steatosis. Of note, we determined that iWAT local administration of diosmin did not exhibit obvious side effects. Taken together, the present study demonstrated that iWAT local delivery of diosmin protected mice from diet-induced insulin resistance, obesity, and fatty liver by blocking PPARγ phosphorylation, without apparent side effects, making it a potential therapeutic agent for the treatment of metabolic diseases.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Diosmina , Fígado Gorduroso , Resistência à Insulina , PPAR gama , Animais , Camundongos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Diosmina/farmacologia , Diosmina/metabolismo , Diosmina/uso terapêutico , Fígado Gorduroso/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/metabolismo , Tecido Adiposo Marrom/metabolismo
2.
Metab Brain Dis ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105973

RESUMO

Alzheimer's disease (AD), a prevalent cognitive disorder among the elderly, is frequently linked to the abnormal accumulation of myloid-ß (Aß), which is mainly as a result of neuronal death and inflammation. Diosmin, a flavonoid, is considered a potential drug for the treatment of AD. Our study aimed to uncover the molecular mechanism of diosmin in AD therapy. Here, rats were randomly divided into three groups: control, Aß25-35, and Aß25-35 + diosmin groups. AD model rats were induced by Aß25-35 intraventricular injection, meanwhile 50 mg/kg diosmin was orally administered for 6-week intervention. Morris water maze test assessed learning and memory abilities. Hippocampal neuronal damage was determined by HE, Nissl, and TUNEL staining. These assays indicate that diosmin improves cognitive dysfunction and reduces hippocampal neuronal loss and apoptosis. Western blot showed that diosmin reduced Bax (1.21 ± 0.12) and cleaved caspase-3 (1.27 ± 0.12) expression, and increased Bcl-2 (0.70 ± 0.06), p-PI3K (0.71 ± 0.08), and p-AKT (0.96 ± 0.10) in the hippocampus. ELISA indicated diosmin reduces IL-1ß, IL-6, and TNF-α levels, suggesting anti-inflammation effect. These results suggest that diosmin inhibits neuronal apoptosis and neuroinflammatory responses to improve cognitive dysfunction in AD rats, possibly related to upregulation of the PI3K/AKT pathway, providing a scientific basis for its use in AD treatment.

3.
Saudi Pharm J ; 32(6): 102103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799001

RESUMO

Chemotherapeutic drugs, such as doxorubicin (Dox), are commonly used to treat a variety of malignancies. However, Dox-induced cardiotoxicity limits the drug's clinical applications. Hence, this study intended to investigate whether diosmin could prevent or limit Dox-induced cardiotoxicity in an animal setting. Thirty-two rats were separated into four distinct groups of controls, those treated with Dox (20 mg/kg, intraperitoneal, i.p.), those treated with diosmin 100 mg plus Dox, and those treated with diosmin 200 mg plus Dox. At the end of the experiment, rats were anesthetized and sacrificed and their blood and hearts were collected. Cardiac toxicity markers were analyzed in the blood, and the heart tissue was analyzed by the biochemical assays MDA, GSH, and CAT, western blot analysis (NF-kB, IL-6, TLR-4, TNF-α, iNOS, and COX-2), and gene expression analysis (ß-MHC, BNP). Formalin-fixed tissue was used for histopathological studies. We demonstrated that a Dox insult resulted in increased oxidative stress, inflammation, and hypertrophy as shown by increased MDA levels and reduced GSH content and CAT activity. Furthermore, Dox treatment induced cardiac hypertrophy and damage, as evidenced by the biochemical analysis, ELISA, western blot analysis, and gene expression analysis. However, co-administration of diosmin at both doses, 100 mg and 200 mg, mitigated these alterations. Data derived from the current research revealed that the cardioprotective effect of diosmin was likely due to its ability to mitigate oxidative stress and inflammation. However, further study is required to investigate the protective effects of diosmin against Dox-induced cardiotoxicity.

4.
FASEB J ; 36(12): e22630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36315163

RESUMO

The endothelium, a crucial homeostatic organ, regulates vascular permeability and tone. Under physiological conditions, endothelial stimulation induces vasodilator endothelial nitric oxide (eNO) release and prevents adhesion molecule accessibility and leukocyte adhesion and migration into vessel walls. Endothelium dysfunction is a principal event in cardiovascular disorders, including atherosclerosis. Minimal attention is given to an important endothelial cell structure, the endothelial glycocalyx (GCX), a negatively charged heterogeneous polysaccharide that serves as a protective covering for endothelial cells and enables endothelial cells to transduce mechanical stimuli into various biological and chemical activities. Endothelial GCX shedding thus plays a role in endothelial dysfunction, for example by increasing vascular permeability and decreasing vessel tone. Consequently, there is increasing interest in developing therapies that focus on GCX repair to limit downstream endothelium dysfunction and prevent further downstream cardiovascular events. Here, we present diosmin (3',5,7-trihydroxy-4'-methoxyflavone-7-rhamnoglucoside), a flavone glycoside of diosmetin, which downregulates adhesive molecule expression, decreases inflammation and capillary permeability, and upregulates eNO expression. Due to these pleiotropic effects of diosmin on the vasculature, a possible unidentified mechanism of action is through GCX restoration. We hypothesize that diosmin positively affects GCX integrity along with GCX-related endothelial functions. Our hypothesis was tested in a partial ligation left carotid artery (LCA) mouse model, where the right carotid artery was the control for each mouse. Diosmin (50 mg/kg) was administered daily for 7 days, 72 h after ligation. Within the ligated mice LCAs, diosmin treatment elevated the activated eNO synthase level, inhibited inflammatory cell uptake, decreased vessel wall thickness, increased vessel diameter, and increased GCX coverage of the vessel wall. ELISA showed a decrease in hyaluronan concentration in plasma samples of diosmin-treated mice, signifying reduced GCX shedding. In summary, diosmin supported endothelial GCX integrity, to which we attribute diosmin's preservation of endothelial function as indicated by attenuated expression of inflammatory factors and restored vascular tone.


Assuntos
Aterosclerose , Diosmina , Camundongos , Animais , Glicocálix/metabolismo , Diosmina/farmacologia , Diosmina/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/metabolismo , Óxido Nítrico/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Endotélio Vascular/metabolismo
5.
Biosci Biotechnol Biochem ; 87(7): 771-776, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37133406

RESUMO

Diosmin (DSN) is found mainly in citrus fruits, and has potent antioxidant effects. This study aimed to evaluate pharmacokinetics of diosmetin-7-glucoside-γ-cyclodextrin (DIOSG-CD) inclusion complex. The area under the curve values from AUC0-24 of DIOSG-CD, prepared by reacting DSN and naringinase with γ-CD, were approximately 800-fold higher than those of DSN following their administration in Sprague-Dawley rats.


Assuntos
Diosmina , gama-Ciclodextrinas , Ratos , Animais , Ratos Sprague-Dawley , Diosmina/farmacocinética , Disponibilidade Biológica
6.
Pestic Biochem Physiol ; 197: 105652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072527

RESUMO

Arsenic compounds, which are used in different industries like pesticide manufacturing, cause severe toxic effects in almost all organs, including the kidneys. Since the primary route of exposure to arsenic is through drinking water, and millions of people worldwide are exposed to unsafe levels of arsenic that can pose a threat to their health, this research was performed to investigate the nephroprotective effects of Diosmin (Dios), a flavonoid found in citrus fruits, against nephrotoxicity induced by sodium arsenite (SA). To induce nephrotoxicity, SA (10 mg/kg, oral gavage) was administered to mice for 30 days. Dios (25, 50, and 100 mg/kg, oral gavage) was given to mice for 30 days prior to SA administration. After the study was completed, animals were euthanized and blood and kidney samples were taken for biochemical and histopathological assessments. Results showed that SA-treated mice significantly increased the blood urea nitrogen and creatinine levels in the serum. This increase was associated with significant kidney tissue damage in SA-treated mice, which was confirmed by histopathological studies. Furthermore, SA enhanced the amounts of renal thiobarbituric acid reactive substances and decreased total thiol reserves, as well as the activity of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase. Also, in the SA-exposed group, an increase in the levels of kidney inflammatory biomarkers, including nitric oxide and tumor necrosis factor-alpha was observed. The western blot analysis indicated an elevation in the protein expression of kidney injury molecule-1 and nuclear factor-kappa B in SA-treated mice. However, pretreatment with Dios ameliorated the SA-related renal damage in mice. Our findings suggest that Dios can protect the kidneys against the nephrotoxic effects of SA by its antioxidant and anti-inflammatory characteristics.


Assuntos
Arsênio , Diosmina , Humanos , Ratos , Camundongos , Animais , Antioxidantes/farmacologia , Diosmina/farmacologia , Diosmina/metabolismo , Arsênio/farmacologia , Arsênio/toxicidade , Ratos Wistar , Estresse Oxidativo , Rim , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Glutationa/metabolismo
7.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629098

RESUMO

Chronic venous disease (CVD) is a condition characterized by functional disturbances in the microcirculation of the superficial and deep veins, affecting up to 30% of the global population. Diosmin, a phlebotropic drug, is commonly used in the treatment of CVD, and its beneficial effects have been described in numerous clinical studies. However, the precise molecular mechanism underlying the activity of diosmin is not yet fully understood. Therefore, the objective of our study was to investigate whether diosmin has an impact on oxygen management, as cardiovascular diseases are often associated with hypoxia. In our study, patients were administered a daily dosage of 2 × 600 mg of diosmin for 3 months, and we evaluated several factors associated with oxygen management, angiogenesis, and inflammation using biochemical assays. Our findings indicate that diosmin reduced the levels of fibroblast growth factors (FGF) and vascular endothelial growth factor (VEGF-C), while increasing endostatin and angiostatin levels, suggesting a potential influence on angiogenesis regulation. Furthermore, diosmin exhibited anti-inflammatory properties by suppressing the levels of tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1ß), and interleukin 6 (IL-6), while promoting the production of interleukin 12 (IL-12). Additionally, diosmin significantly decreased the levels of hypoxia-inducible factor (HIF), anion gap (AG), and lactate, indicating its potential influence on the hypoxia-inducible factor pathway. These findings suggest that diosmin may play a crucial role in modulating oxygen management and inflammation in the context of chronic venous disease.


Assuntos
Doenças Cardiovasculares , Diosmina , Humanos , Diosmina/farmacologia , Diosmina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Interleucina-12 , Fatores de Crescimento de Fibroblastos , Hipóxia , Inflamação , Interleucina-6 , Ácido Láctico , Homeostase , Oxigênio
8.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770968

RESUMO

Cisplatin (CP) is a platinum compound of the alkylating agent class that is used for the treatment of various types of cancer. However, CP treatments in cancer patients are accountable for nephrotoxicity, as it is a major adverse effect. Hence, this research study was proposed to investigate the nephroprotective effect of diosmin, a flavonoid glycoside of hesperidin derivatives against cisplatin-induced kidney damage. Wistar rats received a single intraperitoneal (i.p) injection of CP (7.5 mg/kg, i.p) to induce nephrotoxicity. The administration of CP significantly (p < 0.001) increased the markers of kidney function test (creatinine, blood urea nitrogen, and uric acid) and demonstrated histopathological changes in the kidney of the CP-treated nephrotoxic group. In addition, the CP-treated nephrotoxic group demonstrated a significant (p < 0.001) increase in lipid peroxidation (LPO) levels and depleted activities of reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT).However, diosmin (100 and 200 mg/kg) treatments significantly reduced the elevated levels of kidney function test parameters and restored structural changes in the kidney (p < 0.001). The administration of diosmin (100 and 200 mg/kg) significantly (p < 0.001) reduced LPO levels, increased GSH content and showed improvements in the activities of GPx, GR, SOD and CAT. The markers of inflammatory cytokines such as IL-1ß, IL-6 and TNFα significantly (p < 0.001) increased in the CP-treated nephrotoxic group, whereas diosmin (100 and 200 mg/kg) treatments significantly (p < 0.001) reduced the elevated levels of these cytokines. The findings of this research demonstrate the nephroprotective effect of diosmin against CP-induced kidney damage. Therefore, we conclude that diosmin may be used as a supplement in the management of nephrotoxicity associated with CP treatments in cancer patients.


Assuntos
Diosmina , Nefropatias , Ratos , Animais , Cisplatino/farmacologia , Interleucina-6/metabolismo , Diosmina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Rim , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Estresse Oxidativo , Antioxidantes/farmacologia , Citocinas/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo
9.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903535

RESUMO

Diosmin and bromelain are bioactive compounds of plant origin with proven beneficial effects on the human cardiovascular system. We found that diosmin and bromelain slightly reduced total carbonyls levels and had no effect on TBARS levels, as well as slightly increased the total non-enzymatic antioxidant capacity in the RBCs at concentrations of 30 and 60 µg/mL. Diosmin and bromelain induced a significant increase in total thiols and glutathione in the RBCs. Examining the rheological properties of RBCs, we found that both compounds slightly reduce the internal viscosity of the RBCs. Using the MSL (maleimide spin label), we revealed that higher concentrations of bromelain led to a significant decrease in the mobility of this spin label attached to cytosolic thiols in the RBCs, as well as attached to hemoglobin at a higher concentration of diosmin, and for both concentrations of bromelain. Both compounds tended to decrease the cell membrane fluidity in the subsurface area, but not in the deeper regions. An increase in the glutathione concentration and the total level of thiol compounds promotes the protection of the RBCs against oxidative stress, suggesting that both compounds have a stabilizing effect on the cell membrane and improve the rheological properties of the RBCs.


Assuntos
Diosmina , Humanos , Diosmina/farmacologia , Compostos de Sulfidrila/metabolismo , Bromelaínas/farmacologia , Eritrócitos/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Marcadores de Spin
10.
Molecules ; 28(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37513462

RESUMO

Diosmin is used to relieve chronic venous disease (CVD) symptoms. This study aimed to investigate the anti-inflammatory and antioxidant effects of diosmetin-3-O-ß-d-glucuronide, the major metabolite of diosmin, using human skin explants. The explants were exposed to substance P (inflammation model) or UVB irradiation (oxidative model) and to five diosmetin-3-O-ß-d-glucuronide concentrations. Inflammation was evaluated through interleukin-8 (IL-8) secretion measurements and capillary dilation observation, and oxidation was evaluated by measuring the hydrogen peroxide levels and observing cyclobutane pyrimidine dimers (CPDs). In substance-P-exposed explants, diosmetin-3-O-ß-d-glucuronide induced a significant decrease in IL-8 secretions, with a maximal effect at 2700 pg/mL (-49.6%), and it reduced the proportion of dilated capillaries and the mean luminal cross-sectional area (p < 0.0001 at all tested concentrations), indicating a vasoconstrictive effect. In UVB-irradiated fragments, diosmetin-3-O-ß-d-glucuronide induced a significant decrease in hydrogen peroxide production and in the number of CPD-positive cells, reaching a maximal effect at the concentration of 2700 pg/mL (-48.6% and -52.0%, respectively). Diosmetin-3-O-ß-d-glucuronide induced anti-inflammatory and antioxidant responses, with the maximal effect being reached at 2700 pg/mL and corresponding to the peak plasma concentration estimated after the oral intake of 600 mg of diosmin, the daily dose usually recommended for the treatment of CVD. These ex vivo findings suggest a protective role of diosmetin-3-O-ß-d-glucuronide against inflammatory and oxidative stress affecting the vascular system in CVD pathophysiology.


Assuntos
Doenças Cardiovasculares , Diosmina , Humanos , Antioxidantes/farmacologia , Glucuronídeos/farmacologia , Diosmina/farmacologia , Peróxido de Hidrogênio , Interleucina-8 , Anti-Inflamatórios/farmacologia , Inflamação
11.
Inflammopharmacology ; 31(3): 1341-1359, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37010718

RESUMO

Diosmin is a flavonoid with promising anti-inflammatory and antioxidant properties. However, it has difficult physicochemical characteristics since its solubility demands a pH level of 12, which has an impact on the drug's bioavailability. The aim of this work is the development and characterization of diosmin nanocrystals using anti-solvent precipitation technique to be used for topical treatment of psoriasis. Results revealed that diosmin nanocrystals stabilized with hydroxypropyl methylcellulose (HPMC E15) in ratio (diosmin:polymer; 1:1) reached the desired particle size (276.9 ± 16.49 nm); provided promising colloidal properties and possessed high drug release profile. Additionally, in-vivo assessment was carried out to evaluate and compare the activities of diosmin nanocrystal gel using three different doses and diosmin powder gel in alleviating imiquimod-induced psoriasis in rats and investigating their possible anti-inflammatory mechanisms. Herein, 125 mg of 5% imiquimod cream (IMQ) was applied topically for 5 consecutive days on the shaved backs of rats to induce psoriasis. Diosmin nanocrystal gel especially in the highest dose used offered the best anti-inflammatory effect. This was confirmed by causing the most statistically significant reduction in the psoriasis area severity index (PASI) score and the serum inflammatory cytokines levels. Furthermore, it was capable of maintaining the balance between T helper (Th17) and T regulatory (Treg) cells. Moreover, it tackled TLR7/8/NF-κB, miRNA-31, AKT/mTOR/P70S6K and elevated the TNFAIP3/A20 (a negative regulator of NF-κB) expression in psoriatic skin tissues. This highlights the role of diosmin nanocrystal gel in tackling imiquimod-induced psoriasis in rats, and thus it could be a novel promising therapy for psoriasis.


Assuntos
Diosmina , MicroRNAs , Nanopartículas , Psoríase , Ratos , Animais , Camundongos , NF-kappa B/metabolismo , Imiquimode/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/uso terapêutico , Diosmina/efeitos adversos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Transdução de Sinais , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Serina-Treonina Quinases TOR/metabolismo , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
12.
J Biochem Mol Toxicol ; 36(11): e23187, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920545

RESUMO

Lung cancer, one of the most common cancer is a cause of concern associated with cancer-related mortality. Benzo[a]pyrene [B(a)P], a potent carcinogen as well as an environmental contaminant is reported to be found in cigarette smoke among various sources. The present study focuses on the chemopreventive potential of Diosmin against B[a]P-induced lung carcinogenesis and its possible mechanism in male Swiss Albino mice (SAM). SAM were treated orally with Diosmin (200 mg/kg b.w.) for 16 weeks and/or B[a]P (50 mg/kg b.w) for a period of 4 weeks. B[a]P treated cancerous mice showed increased peroxidation of membrane lipid as well as a decrease in the level/activity of antioxidant proteins. Cancerous mice also showed an increased level of carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE). Diosmin treatment, however, leads to decreased peroxidation of lipids, increased antioxidant proteins as well decrease in the level of CEA and NSE. B[a]P-induced cancerous animals also exhibited increased expression of cyclic AMP response element-binding protein (CREB), COX2 as well as prostaglandin-E2 (PGE2) while Diosmin-treated mice were found to have an ameliorative effect. Histopathological results further confirm the protective effect of Diosmin in averting B[a]P-induced pathological alterations of lung tissue. Overall, our results suggest Diosmin exerts its chemopreventive potential possibly via targeting the CREB/cyclooxygenase-2 (COX-2)/PGE2 pathway thereby repressing inflammation.


Assuntos
Diosmina , Neoplasias Pulmonares , Masculino , Camundongos , Animais , Benzo(a)pireno/toxicidade , Diosmina/efeitos adversos , Diosmina/metabolismo , Antígeno Carcinoembrionário/metabolismo , Antioxidantes/farmacologia , Dinoprostona/metabolismo , Pulmão/metabolismo , Carcinogênese , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/metabolismo , Ciclo-Oxigenase 2/metabolismo
13.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080407

RESUMO

The absence of a treatment efficient in the control of type 2 diabetes mellitus requires more functional products to assist treatment. Luteolin (LU) and diosmin (DIO) have been known as bioactive molecules with potential for the treatment of diabetes. This work aimed to establish the role that a combination of LU and DIO in selenium nanoparticles (SeNPs) played in streptozotocin (STZ)- induced diabetes mice. Green synthesis of Se NPs was performed by mixing luteolin and diosmin with the solution of Na2SeO3 under continuous stirring conditions resulting in the flavonoids conjugated with SeNPs. The existence of flavonoids on the surface of SeNPs was confirmed by UV-Vis spectra, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) images, and DLS graphs via Zetasizer. The average diameter of GA/LU/DIO-SeNPs was 47.84 nm with a PDI of -0.208, a zeta potential value of -17.6, a Se content of 21.5% with an encapsulation efficiency of flavonoids of 86.1%, and can be stabilized by gum Arabic for approximately 175 days without any aggregation and precipitation observed at this time. Furthermore, The C57BL/6 mice were treated with STZ induced-diabetes and were exposed to LU/DIO, SeNPs, and GA/LU/DIO-SeNPs for six weeks. The treatment by nanospheres (GA/LU/DIO-SeNPs) in the mice with diabetes for a period of 6 weeks restored their blood glucose, lipid profile, glycogen, glycosylated hemoglobin, and insulin levels. At the same time, there were significant changes in body weight, food intake, and water intake compared with the STZ- untreated induced diabetic mice. Moreover, the GA/LU/DIO-SeNPs showed good antioxidant activity examined by catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) in liver and kidney and can prevent the damage in the liver evaluated by aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities. The nanospheres exhibited a significant anti-diabetic activity with a synergistic effect between the selenium and flavonoids. This investigation provides novel SeNPs nanospheres prepared by a high-efficiency strategy for incorporating luteolin and diosmin to improve the efficiency in type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Diosmina , Nanopartículas , Selênio , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Luteolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Selênio/química , Estreptozocina
14.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500323

RESUMO

Phlebotropic flavonoids, including diosmin and its aglycone diosmetin, are natural polyphenols widely used in the prevention and treatment of chronic venous insufficiency (CVI). As oxidative stress plays an important role in the development of pathophysiology of the cardiovascular system, the study aimed to investigate the protective effects of diosmin and diosmetin on hydrogen peroxide (H2O2)-induced oxidative stress in endothelial cells. The cells were pretreated with different concentrations of the flavonoid prior to the H2O2 exposure. The cell viability, the level of intracellular reactive oxygen species (ROS), the activity of cellular antioxidant enzymes-including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase GPx-and the malondialdehyde (MDA) level were assessed. It was found that the H2O2-induced oxidative stress was ameliorated by diosmin/diosmetin in a concentration-dependent manner. The flavonoids restored the activity of cellular antioxidant enzymes and lowered the MDA level upregulated by the H2O2 exposure. These results indicate that diosmin and diosmetin may prevent oxidative stress in endothelial cells; therefore, they may protect against the development and progression of oxidative-stress-related disorders.


Assuntos
Antioxidantes , Diosmina , Antioxidantes/farmacologia , Diosmina/farmacologia , Peróxido de Hidrogênio/farmacologia , Células Endoteliais , Estresse Oxidativo , Catalase/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Superóxido Dismutase/farmacologia
15.
Molecules ; 27(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36500369

RESUMO

Diosmin is widely used in the treatment of chronic venous diseases and hemorrhoids. Based on Raman and infrared reflection spectra of powdered tablets in the mid- and near-infrared regions and results of reference high-performance liquid chromatographic analysis, partial least squares models that enable fast and reliable quantification of the studied active ingredient in tablets, without the need for extraction, were elaborated. Eight commercial preparations containing diosmin in the 66-92% (w/w) range were analyzed. In order to assess and compare the quality of the developed chemometric models, the relative standard errors of prediction for calibration and validation sets were calculated. We found these errors to be in the 1.0-2.4% range for the three spectroscopic techniques used. Diosmin content in the analyzed preparations was obtained with recoveries in the 99.5-100.5% range.


Assuntos
Diosmina , Análise Espectral Raman , Análise Espectral Raman/métodos , Comprimidos/química , Análise dos Mínimos Quadrados , Calibragem
16.
Molecules ; 27(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807509

RESUMO

Diosmin is widely used as a venoactive drug in the pharmacological treatment of chronic venous disorders. It exerts a strong protective effect on blood vessels via an increase in the elasticity of vessel walls and reduces the permeability of capillary walls, thereby producing an anti-edematous effect. In this paper, we investigated the effectiveness of diosmin and diosmetin in modulating the level of proinflammatory factors in human skin fibroblasts treated with lipopolysaccharide (LPS). Two variants of the experiments were performed: the flavonoid was added 2 h prior to or 24 h after LPS stimulation. Our study revealed that both flavonoids reduced the levels of IL-6 and Il-1ß as well as COX-2 and PGE2 but had no impact on IL-10. However, the addition of the compounds prior to the LPS addition was more effective. Moreover, diosmetin modulated the proinflammatory factors more strongly than diosmin. Our investigations also showed that both flavonoids were potent inhibitors of elastase and collagenase activity, and no differences between the glycoside and aglycone forms were observed.


Assuntos
Diosmina , Diosmina/farmacologia , Fibroblastos , Flavonoides/farmacologia , Humanos , Mediadores da Inflamação , Lipopolissacarídeos/farmacologia , Metaloproteases
17.
Ceska Slov Farm ; 71(4): 137-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36208917

RESUMO

Metabolic syndrome is diagnosed mainly in people of economically developed parts of the world and it affects 20-25% of the adult population worldwide. Nowadays, it is also more frequently diagnosed in children and adolescents. In addition to standard treatment that often involves polypharmacotherapy, and thus increases risk of side effects caused by drugdrug interactions, it is appropriate to look for alternative tools to support the treatment of metabolic syndrome components. Natural polyphenolic compounds, usually present in the so-called functional foods, are suitable candidates for that matter, due to the bioactivity and beneficial effects on the human body. Quercetin, troxerutin, diosmin, hesperidin or silybin are among the currently studied and used natural polyphenolic compounds with a positive effect on aspects of the metabolic syndrome. In addition to their antioxidant and anti-inflammatory effects, these compounds have other positive properties that very often outweigh their side effects whilst their usage in the pharmacotherapy.


Assuntos
Diosmina , Hesperidina , Síndrome Metabólica , Adolescente , Adulto , Anti-Inflamatórios , Antioxidantes/efeitos adversos , Criança , Diosmina/uso terapêutico , Hesperidina/uso terapêutico , Humanos , Síndrome Metabólica/tratamento farmacológico , Quercetina , Silibina/uso terapêutico
18.
Pharmacol Res ; 174: 105919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601080

RESUMO

With the coming of the era of the aging population, hypertension has become a global health burden to be dealt with. Although there are multiple drugs and procedures to control the symptoms of hypertension, the management of it is still a long-term process, and the side effects of conventional drugs pose a burden on patients. Flavonoids, common compounds found in fruits and vegetables as secondary metabolites, are active components in Chinese Herbal Medicine. The flavonoids are proved to have cardiovascular benefits based on a plethora of animal experiments over the last decade. Thus, the flavonoids or flavonoid-rich plant extracts endowed with anti-hypertension activities and probable mechanisms were reviewed. It has been found that flavonoids may affect blood pressure in various ways. Moreover, despite the substantial evidence of the potential for flavonoids in the control of hypertension, it is not sufficient to support the clinical application of flavonoids as an adjuvant or core drug. So the synergistic effects of flavonoids with other drugs, pharmacokinetic studies, clinical trials and the safety of flavonoids are also incorporated in the discussion. It is believed that more breakthrough studies are needed. Overall, this review may shed some new light on the explicit recognition of the mechanisms of anti-hypertension actions of flavonoids, pointing out the limitations of relevant research at the current stage and the aspects that should be strengthened in future researches.


Assuntos
Anti-Hipertensivos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/uso terapêutico , Animais , Anti-Hipertensivos/classificação , Medicamentos de Ervas Chinesas/classificação , Flavonoides/classificação , Humanos , Medicina Tradicional Chinesa , Fitoterapia
19.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638796

RESUMO

Diosmin, a natural flavone glycoside acquired through dehydrogenation of the analogous flavanone glycoside hesperidin, is plentiful in many citrus fruits. Glioblastoma multiforme (GBM) is the most malignant primary brain tumor; the average survival time of GBM patients is less than 18 months after standard treatment. The present study demonstrated that diosmin, which is able to cross the blood-brain barrier, inhibited GBM cell growth in vitro and in vivo. Diosmin also impeded migration and invasion by GBM8401and LN229 GBM cells by suppressing epithelial-mesenchymal transition, as indicated by increased expression of E-cadherin and decreased expression of Snail and Twist. Diosmin also suppressed autophagic flux, as indicated by increased expression of LC3-II and p62, and induced cell cycle arrest at G1 phase. Importantly, diosmin did not exert serious cytotoxic effects toward control SVG-p12 astrocytes, though it did reduce astrocyte viability at high concentrations. These findings provide potentially helpful support to the development of new therapies for the treatment of GBM.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Diosmina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Diosmina/uso terapêutico , Feminino , Glioblastoma/fisiopatologia , Humanos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298934

RESUMO

In this paper, the electrochemical behavior of two types of sensors based on modified screen-printed electrodes (one screen-printed electrode based on carbon (SPCE) and another screen-printed electrode modified with Prussian Blue (PB/SPCE)) was studied with the aim of sensitive detection of diosmin, an active pharmaceutical compound from the class of flavonoids. The scan electron microscopy technique was used for the morphological characterization of PB/SPCE. The preliminary analysis assessed the electrochemical behavior of SPCE and PB/SPCE in KCl solution and in a double solution of potassium ferrocyanide-potassium chloride. It was shown that the active area of PB/SPCE is superior to the one of SPCE, the greater sensitivity being related with the presence of the electroactive modifier. Similarly, in the case of diosmin detection, the PB/SPCE sensor detect more sensitivity the diosmin due to the electrocatalytic effect of PB. From the study of the influence of reaction rate on the sensor's electrochemical response, it was shown that the detection process is controlled by the adsorption process, the degree of surface coverage with electroactive molecules being higher in the case of PB/SPCE. From the PB/SPCE calibration curve, it wasdetermined that it has high sensitivity and low detection and quantification limit values (limit of detection 5.22 × 10-8 M). The applicability of the PB/SPCE sensor was confirmed by sensitive analysis of diosmin in pharmaceutical products. The voltammetric method is suitable for the detection and quantification of diosmin in pharmaceutical products. The method is simple, accurate, and quick and can be used in routine analysis in the examination of the quality of pharmaceutical products and other types of samples.


Assuntos
Diosmina/química , Preparações Farmacêuticas/química , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA