RESUMO
Stresses such as heat shock trigger the formation of protein aggregates and the induction of a disaggregation system composed of molecular chaperones. Recent work reveals that several cases of apparent heat-induced aggregation, long thought to be the result of toxic misfolding, instead reflect evolved, adaptive biomolecular condensation, with chaperone activity contributing to condensate regulation. Here we show that the yeast disaggregation system directly disperses heat-induced biomolecular condensates of endogenous poly(A)-binding protein (Pab1) orders of magnitude more rapidly than aggregates of the most commonly used misfolded model substrate, firefly luciferase. Beyond its efficiency, heat-induced condensate dispersal differs from heat-induced aggregate dispersal in its molecular requirements and mechanistic behavior. Our work establishes a bona fide endogenous heat-induced substrate for long-studied heat shock proteins, isolates a specific example of chaperone regulation of condensates, and underscores needed expansion of the proteotoxic interpretation of the heat shock response to encompass adaptive, chaperone-mediated regulation.
Assuntos
Condensados Biomoleculares/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ligação Competitiva , Condensados Biomoleculares/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Proteínas de Ligação a Poli(A)/genética , Agregados Proteicos , Ligação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Although amyloid fibres are highly stable protein aggregates, a specific combination of human Hsp70 system chaperones can disassemble them, including fibres formed of α-synuclein, huntingtin, or Tau. Disaggregation requires the ATPase activity of the constitutively expressed Hsp70 family member, Hsc70, together with the J domain protein DNAJB1 and the nucleotide exchange factor Apg2. Clustering of Hsc70 on the fibrils appears to be necessary for disassembly. Here we use atomic force microscopy to show that segments of in vitro assembled α-synuclein fibrils are first coated with chaperones and then undergo bursts of rapid, unidirectional disassembly. Cryo-electron tomography and total internal reflection fluorescence microscopy reveal fibrils with regions of densely bound chaperones, preferentially at one end of the fibre. Sub-stoichiometric amounts of Apg2 relative to Hsc70 dramatically increase recruitment of Hsc70 to the fibres, creating localised active zones that then undergo rapid disassembly at a rate of ~ 4 subunits per second. The observed unidirectional bursts of Hsc70 loading and unravelling may be explained by differences between the two ends of the polar fibre structure.
Assuntos
Proteínas de Choque Térmico HSP70 , alfa-Sinucleína , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Ligação Proteica , alfa-Sinucleína/metabolismoRESUMO
The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in C. elegans. Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.
Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , alfa-Sinucleína/metabolismo , Sinucleinopatias/patologia , Caenorhabditis elegans/metabolismo , Doença de Parkinson/patologia , Atrofia de Múltiplos Sistemas/patologia , Encéfalo/metabolismo , Amiloide/metabolismoRESUMO
Periplasmic chaperones 17-kilodalton protein (Skp) and survival factor A (SurA) are essential players in outer membrane protein (OMP) biogenesis. They prevent unfolded OMPs from misfolding during their passage through the periplasmic space and aid in the disassembly of OMP aggregates under cellular stress conditions. However, functionally important links between interaction mechanisms, structural dynamics, and energetics that underpin both Skp and SurA associations with OMPs have remained largely unresolved. Here, using single-molecule fluorescence spectroscopy, we dissect the conformational dynamics and thermodynamics of Skp and SurA binding to unfolded OmpX and explore their disaggregase activities. We show that both chaperones expand unfolded OmpX distinctly and induce microsecond chain reconfigurations in the client OMP structure. We further reveal that Skp and SurA bind their substrate in a fine-tuned thermodynamic process via enthalpy-entropy compensation. Finally, we observed synergistic activity of both chaperones in the disaggregation of oligomeric OmpX aggregates. Our findings provide an intimate view into the multifaceted functionalities of Skp and SurA and the fine-tuned balance between conformational flexibility and underlying energetics in aiding chaperone action during OMP biogenesis.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biopolímeros/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Transferência Ressonante de Energia de Fluorescência/métodos , Chaperonas Moleculares/química , Conformação ProteicaRESUMO
Human islet amyloid polypeptide (amylin or hIAPP) is a 37 residue hormone co-secreted with insulin from ß cells of the pancreas. In patients suffering from type-2 diabetes, amylin self-assembles into amyloid fibrils, ultimately leading to the death of the pancreatic cells. However, a research gap exists in preventing and treating such amyloidosis. Plumbagin, a natural compound, has previously been demonstrated to have inhibitory potential against insulin amyloidosis. Our investigation unveils collapsible regions within hIAPP that, upon collapse, facilitates hydrophobic and pi-pi interactions, ultimately leading to aggregation. Intriguingly plumbagin exhibits the ability to bind these specific collapsible regions, thereby impeding the aforementioned interactions that would otherwise drive hIAPP aggregation. We have used atomistic molecular dynamics approach to determine secondary structural changes. MSM shows metastable states forming native like hIAPP structure in presence of PGN. Our in silico results concur with in vitro results. The ThT assay revealed a striking 50% decrease in fluorescence intensity at a 1:1 ratio of hIAPP to Plumbagin. This finding suggests a significant inhibition of amyloid fibril formation by plumbagin, as ThT fluorescence directly correlates with the presence of these fibrils. Further TEM images revealed disappearance of hIAPP fibrils in plumbagin pre-treated hIAPP samples. Also, we have shown that plumbagin disrupts the intermolecular hydrogen bonding in hIAPP fibrils leading to an increase in the average beta strand spacing, thereby causing disaggregation of pre-formed fibrils demonstrating overall disruption of the aggregation machinery of hIAPP. Our work is the first to report a detailed atomistic simulation of 22 µs for hIAPP. Overall, our studies put plumbagin as a potential candidate for both preventive and therapeutic candidate for hIAPP amyloidosis.
Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Simulação de Dinâmica Molecular , Naftoquinonas , Naftoquinonas/química , Naftoquinonas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Humanos , Cadeias de Markov , Ligação Proteica , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos/efeitos dos fármacos , Ligação de HidrogênioRESUMO
The accumulation and prion-like propagation of α-synuclein and other amyloidogenic proteins are associated with devastating neurodegenerative diseases. Metazoan heat shock protein HSP70 and its co-chaperones DNAJB1 and HSP110 constitute a disaggregation machinery that is able to disassemble α-synuclein fibrils in vitro, but its physiological effects on α-synuclein toxicity are unknown. Here, we depleted Caenorhabditis elegans HSP-110 and monitored the consequences on α-synuclein-related pathological phenotypes such as misfolding, intercellular spreading, and toxicity in C. elegans in vivo models. Depletion of HSP-110 impaired HSP70 disaggregation activity, prevented resolubilization of amorphous aggregates, and compromised the overall cellular folding capacity. At the same time, HSP-110 depletion reduced α-synuclein foci formation, cell-to-cell transmission, and toxicity. These data demonstrate that the HSP70 disaggregation activity constitutes a double-edged sword, as it is essential for maintaining cellular proteostasis but also involved in the generation of toxic amyloid-type protein species.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , alfa-Sinucleína/genéticaRESUMO
Osp94 (also known as HSPA4L or HSPH3), a member of the Hsp110/Sse1 family of heat-shock proteins, has a longer C-terminus than found in Hsc70/Hsp70 family proteins, composed of the loop region with a partial substrate-binding domain (SBD) ß (L), and the SBDα and the C-terminal extension (H), but the functions of these domains are poorly understood. Here, we found that Osp94 suppressed heat-induced aggregation of luciferase (Luc). Osp94-bound heat-inactivated Luc was reactivated in the presence of rabbit reticulocyte lysate (RRL) and/or a combination of Hsc70 and Hsp40 (also known as HSPA8 and DNAJB1, respectively). Targeted deletion mutagenesis revealed that the SBDß and H domains of Osp94 are critical for protein disaggregation and RRL-mediated refolding. Reactivation of Hsp90-bound heat-inactivated Luc was abolished in the absence of RRL but compensated for by PA28α (also known as PSME1), a proteasome activator. Interestingly, the LH domain also reactivated heat-inactivated Luc, independently of PA28α. Biotin-tag cross-linking experiments indicated that the LH domain and PA28α interact with Luc bound by Hsp90 during refolding. A chimeric protein in which the H domain was exchanged for PA28α also mediated disaggregation and reactivation of heat-inactivated Luc. These results indicate that Osp94 acts as a holdase, and that the C-terminal region plays a PA28α-like role in the refolding of unfolded proteins.
Assuntos
Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Animais , Família , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Redobramento de Proteína , CoelhosRESUMO
The monolithic misrepresentation of Asian American (AsAm) populations has maintained assumptions that AsAm people are not burdened by health disparities and social and economic inequities. However, the story is more nuanced. We critically review AsAm health research to present knowledge of AsAm health profiles from the past two decades and present findings and opportunities across three topical domains: (a) general descriptive knowledge, (b) factors affecting health care uptake, and (c) effective interventions. Much of the literature emphasized underutilization of health care services; low knowledge and awareness among AsAms about health-related risk factors, prevention, diagnosis, and treatment; inadequate efforts by health systems to improve language access, provider-patient communication, and trust; and the critical roles of community- and faith-based organizations and leaders in health promotion initiatives. Future opportunities for AsAm health research will require adoption of and significant investment in community-engaged research infrastructure to increase representation, funding, and research innovation for AsAm communities.
Assuntos
Asiático , Equidade em Saúde , Humanos , Asiático/estatística & dados numéricos , Estados Unidos , Acessibilidade aos Serviços de Saúde , Disparidades nos Níveis de Saúde , Disparidades em Assistência à Saúde/etnologia , Conhecimentos, Atitudes e Prática em Saúde , Promoção da Saúde/organização & administraçãoRESUMO
Asian American and Pacific Islanders (AAPI) are the fastest growing racial group in the United States. Data on AAPI communities, however, are significantly limited. The oversimplification and underreporting of this ethnically and socioeconomically heterogenous population through the use of aggregated data has deleterious effects and worsens disparities in patient treatment, outcomes, and experiences. Gynecologic oncology disparities do not exist in a vacuum, and are rooted in larger cultural gaps in our understanding and delivery of healthcare. In this paper, we aim to demonstrate how AAPI data inequities have negative downstream effects on research and public health policies and initiatives, and also provide a call to action with specific recommendations on how to improve AAPI data equity within these realms.
Assuntos
Nativo Asiático-Americano do Havaí e das Ilhas do Pacífico , Neoplasias dos Genitais Femininos , Disparidades em Assistência à Saúde , Feminino , Humanos , Neoplasias dos Genitais Femininos/etnologia , Neoplasias dos Genitais Femininos/terapia , Ginecologia/estatística & dados numéricos , Disparidades em Assistência à Saúde/etnologia , Disparidades em Assistência à Saúde/estatística & dados numéricos , Oncologia/estatística & dados numéricos , Estados UnidosRESUMO
There is great variation in the experiences of Latiné/e/x/o/a, Hispanic, and/or Spanish origin (LHS) individuals in the United States, including differences in race, ancestry, colonization histories, and immigration experiences. This essay calls readers to consider the implications of the heterogeneity of lived experiences among LHS populations, including variations in country of origin, immigration histories, time in the United States, languages spoken, and colonization histories on patient care and academia. There is power in unity when advocating for community, social, and political change, especially as it pertains to equity, diversity, and inclusion (EDI; sometimes referred to as DEI) efforts in academic institutions. Yet, there is also a critical need to disaggregate the LHS diaspora and its conceptualization based on differing experiences so that we may improve our understanding of the sociopolitical attributes that impact health. We propose strategies to improve recognition of these differences and their potential health outcomes toward a goal of health equity.
Assuntos
Diversidade Cultural , Hispânico ou Latino , Humanos , Emigração e Imigração , Hispânico ou Latino/etnologia , Hispânico ou Latino/estatística & dados numéricos , Estados Unidos , Migração HumanaRESUMO
The aggregation of α-Syn is a pivotal mechanism in Parkinson's disease (PD). Effectively maintaining α-Syn proteostasis involves both inhibiting its aggregation and promoting disaggregation. In this study, we developed a series of aromatic amide derivatives based on Rhein. Two of these compounds, 4,5-dihydroxy-N-(3-hydroxyphenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a5) and 4,5-dihydroxy-N-(2-hydroxy-4-chlorophenyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxamide (a8), exhibited good binding affinities to α-Syn residues, demonstrating promising inhibitory activity against α-Syn aggregation in vitro, with low IC50 values (1.35 and 1.08 µM, respectivly). These inhibitors acted throughout the entire aggregation process by stabilizing α-Syn's conformation and preventing the formation of ß-sheet aggregates. They also effectively disassembled preformed α-Syn oligomers and fibrils. Preliminary mechanistic insights indicated that they bound to the specific domain within fibrils, inducing fibril instability, collapse, and the formation of smaller aggregates and monomeric α-Syn units. This research underscores the therapeutic potential of Rhein's aromatic amides in targeting α-Syn aggregation for PD treatment and suggests broader applications in managing and preventing neurodegenerative diseases.
Assuntos
Antracenos , Doença de Parkinson , Humanos , alfa-Sinucleína , Antraquinonas/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Doença de Parkinson/metabolismo , Antracenos/química , Antracenos/farmacologiaRESUMO
This study focuses on the discovery of new potential drugs for treating PD by targeting the aggregation of α-Syn. A series of hybrids combining Coumarin and phenolic acid were designed and synthesized. Four particularly promising compounds were identified, showing strong inhibitory effects with IC50 values ranging from low micromolar to submicromolar concentrations, as low as 0.63 µM. These compounds exhibited a higher binding affinity to α-Syn residues and effectively hindered the entire aggregation process, maintaining the proteostasis conformation of α-Syn and preventing the formation of ß-sheet aggregates. This approach holds significant promise for PD prevention. Additionally, these candidate compounds demonstrated the ability to break down preformed α-Syn oligomers and fibrils, resulting in the formation of smaller aggregates and monomers. Moreover, the candidate compounds showed impressive effectiveness in inhibiting α-Syn aggregation within nerve cells, thereby reducing the likelihood of α-Syn inclusion formation resembling Lewy bodies, which highlights their potential for treating PD.
Assuntos
Neurônios , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Ligação Proteica , Neurônios/metabolismo , Cumarínicos/farmacologiaRESUMO
The misfolding and aggregation of α-Syn play a pivotal role in connecting diverse pathological pathways in Parkinson's disease (PD). Preserving α-Syn proteostasis and functionality by inhibiting its aggregation or disaggregating existing aggregates using suitable inhibitors represents a promising strategy for PD prevention and treatment. In this study, a series of benzothiazole-polyphenol hybrids was designed and synthesized. Three identified compounds exhibited notable inhibitory activities against α-Syn aggregation in vitro, with IC50 values in the low micromolar range. These inhibitors demonstrated sustained inhibitory effects throughout the entire aggregation process, stabilizing α-Syn proteostasis conformation. Moreover, the compounds effectively disintegrated preformed α-Syn oligomers and fibers, potentially by binding to specific domains within the fibers, inducing fibril instability, collapse, and ultimately resulting in smaller-sized aggregates and monomers. These findings offer valuable insights into the therapeutic potential of polyphenol hybrids with 2-conjugated benzothiazole targeting α-Syn aggregation in the treatment of PD.
Assuntos
Benzotiazóis , Polifenóis , Agregados Proteicos , alfa-Sinucleína , Benzotiazóis/química , Benzotiazóis/farmacologia , Benzotiazóis/síntese química , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/metabolismo , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/síntese química , Humanos , Agregados Proteicos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismoRESUMO
The primary objective of this research is to further examine the events occurring during the active or burst phase by focusing on the aggregation of the Syn amyloid protein. Regarding this aspect, it was initially conducted rapid temperature variations using stopped-flow spectrometry and tyrosyl group fluorescence emission detection, within the initial 500 milliseconds in buffered Syn solutions at pH 7, exploring various temperature ranges to investigate protein aggregation. The results obtained were contrasted with results obtained for the Nα-acetyl-L-tyrosinamide (NAYA) parent compound in the same conditions. The utilization of the NAYA compound is suitable as it mimics the peptide bonds in proteins and contains a tyrosyl group resembling the four tyrosyl groups found in the Syn protein structure (the protein has no tryptophan residues). Furthermore, the NAYA compound adopts an intramolecularly hydrogen-bonded structure even in an aqueous solution, similar to the interactions seen in the hydrophilic face of ß-sheets. Additionally, the Syn protein system can exhibit the presence of ß-sheets as a result of the existence of very low abundant Syn amyloid precursor forms or nuclei during the initial stages of the protein aggregation. Thus, a relationship is present between the molecular processes in the NAYA and Syn protein systems, making the NAYA's application crucial in this research. Moreover, to aid in understanding the results, it was also compared the events during the quiescent or inactive phase (30-500 milliseconds) with those in the burst phase (up to 10 milliseconds) using stopped-flow spectrometry conditions. Steady-state measurements were beneficial in comprehending the occurrences in both the quiescent and burst phases examined. Although protein aggregation and disaggregation were observed during the quiescent phase, determining these processes in the burst phase was more challenging. In the latter case, the aggregation of the Syn protein is actually initiated by the interaction of the intrinsically disordered Syn monomers. In the quiescent phase, first-order rate constants were measured and analysis showed that Syn protein aggregation and disaggregation occur simultaneously. At lower temperatures, early protein disaggregation outweighs protein aggregation whereas at higher temperatures protein disaggregation and aggregation are rather similar. It is also need to highlight that the burst phase, while distinct from the quiescent phase, can be considered as a possible structural phase for obtaining details about the aggregation of this specific disordered protein in solution on a very short timescale.
RESUMO
Tannic acid (TA)-derived carbon dots (TACDs) were synthesized for the first time via a solvothermal method using TA as one of the raw materials, which may effectively inhibit amyloid fibril aggregation and disaggregate mature fibril. The fluorescent property of TACDs were modulated by adjusting the ratio of TA to o-phenylenediamine (oPD), and TACDs fabricated with the precursor ratio as 1:1 showed the best fluorescent property. Circular dichroism spectra (CD) showed that the structure of ß-sheet decreased as the concentration of TACDs increased. The inhibition efficiency, as confirmed by thioflavin T (ThT) and transmission electron microscopy (TEM), is extraordinary at 98.16%, whereas disaggregation efficiency is noteworthy at 97.97%, and the disaggregated lysozyme fibrils did not reaggregate after 7 days. More critically, TACDs can also alleviate the cellular toxicity caused by Aß fibrils and improve cell viability. This work offers a new perspective on the design of scavengers for amyloid plaques.
Assuntos
Carbono , Agregados Proteicos , Taninos , Taninos/química , Taninos/farmacologia , Carbono/química , Humanos , Agregados Proteicos/efeitos dos fármacos , Muramidase/química , Muramidase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Pontos Quânticos/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Amiloide/metabolismo , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia , Animais , PolifenóisRESUMO
Following the U.S. military's departure from Afghanistan, a significant number of Afghan refugees have resettled in the United States, presenting complex mental health challenges exacerbated by extensive traumatic exposure. This demographic is particularly affected by collective trauma due to war, genocide, and the loss of homeland. However, detailed investigations into the correlations between collective trauma and mental health outcomes among Afghan refugees are limited. This study sought to explore the relationship between collective trauma and mental health outcomes within the Afghan refugee population in the United States, paying particular attention to the influence of sociodemographic factors. Identifying subgroups at greater risk allows for the development of more targeted mental health interventions. The study surveyed 173 Afghan refugees employing snowball sampling, utilizing a cross-sectional design. Data collection was facilitated through online and in-person surveys in English, Dari, and Pashto. Key measures included the Harvard Trauma Questionnaire for individual trauma experiences, the Historical Loss Scale for collective trauma, the Historical Loss Associated Symptoms Scale for collective trauma symptoms, the Afghan Symptom Checklist-22 for mental health symptoms, and the Post-Migration Living Difficulties Scale for post-migration stressors. Statistical analyses involved Pearson's correlation for variable associations, with nonparametric Mann-Whitney U and Kruskal-Wallis tests conducted to assess sociodemographic impacts due to data's non-normal distribution. The analysis revealed significant variations in collective trauma and mental health outcomes across subgroups. Afghan women, minoritized ethnic groups, those who experienced extended displacement, and refugees with uncertain visa statuses reported higher collective trauma levels and worse mental health outcomes. Statistical significance was noted in the correlations between collective trauma and mental health symptoms (r = .53, p < .01) and between post-migration difficulties and mental health (r = .33, p < .01). The disparities in mental health outcomes based on sociodemographic characteristics were significant, with nonparametric tests showing clear distinctions across different groups (Kruskal-Wallis H = 14.76, p < .05 for trauma experience by visa status). This study emphasizes the critical need for mental health interventions that account for the complex experiences of collective trauma among Afghan refugees, especially among identified subgroups. Tailoring mental health services to address the specific needs highlighted through disaggregated data can enhance support for Afghan refugees in the United States. This research contributes to a deeper understanding of the relationship between collective trauma and refugee mental health, advocating for nuanced care strategies in resettlement environments.
Assuntos
Refugiados , Humanos , Refugiados/psicologia , Refugiados/estatística & dados numéricos , Feminino , Masculino , Adulto , Afeganistão/etnologia , Estudos Transversais , Adulto Jovem , Pessoa de Meia-Idade , Saúde Mental , Estados Unidos , Adolescente , Inquéritos e Questionários , Transtornos de Estresse Pós-Traumáticos/etnologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos Mentais/etnologia , Transtornos Mentais/psicologia , Fatores SociodemográficosRESUMO
The effect of Kamchatka crab hepatopancreas containing three collagenolytic isoenzymes Collagenase KK and proteinases of Streptomyces lavendulae on metabolic activity and cell death were carried out on in vitro models. It was shown that changes in the protein structure under the influence of Collagenase KK occurred earlier than under the effect of bacterial proteinases. At the same time, activity of Collagenase KK was significantly higher than that of bacterial proteinases (p<0.01). Both preparations had a pronounced time- and dose-dependent effects on metabolic activity of cells. Collagenase KK had low cytotoxic effect, and cells mainly died by apoptosis. Thus, hepatopancreas collagenase has a high activity and proapoptotic effect on cells and can be used in low concentrations for enzymatic disaggregation of tissues.
Assuntos
Braquiúros , Animais , Braquiúros/metabolismo , Hepatopâncreas/metabolismo , Colagenases/metabolismo , Endopeptidases , Peptídeo HidrolasesRESUMO
Cancer stem cells are pivotal players in tumors initiation, growth, and metastasis. While several markers have been identified, there remain challenges particularly in heterogeneous malignancies like adult soft tissue sarcomas, where conventional markers are inherently overexpressed. Here, we designed BODIPY scaffold fluorescence probes (BD-IMC-1, BD-IMC-2) that activate via disaggregation targeting for cyclooxygenase (COX), a potential marker for CSCs in sarcoma in clinical pathology. Based on their structures, BD-IMC-1 showcased higher susceptibility to disaggregation compared to BD-IMC-2, consistent with their selective interaction with COX. Notably, the BD-IMC-1 revealed positive cooperativity binding to COX-2 at sub-micromolar ranges. Both probes showed significant fluorescence turn-on upon LPS or PMA triggered COX-2 upregulation in live RAW264.7, HeLa, and human sarcoma cell line (Saos-LM2) up to 2-fold increase with negligible toxicity. More importantly, the BD-IMC-1 demonstrated their practical imaging for COX-2 positive cells in paraffin-fixed human sarcoma tissue. Considering the fixed tissues are most practiced pathological sample, our finding suggests a potential of disaggregation activated chemosensor for clinical applications.
Assuntos
Ciclo-Oxigenase 2 , Corantes Fluorescentes , Sarcoma , Humanos , Sarcoma/diagnóstico por imagem , Sarcoma/patologia , Sarcoma/metabolismo , Ciclo-Oxigenase 2/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Compostos de Boro/química , Animais , Camundongos , Linhagem Celular Tumoral , Estrutura MolecularRESUMO
Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown. As sessile plants experience stressful conditions more severe than those experienced by animals, we asked whether a plant HSP110 could also play a role in collaborating with HSP70/HSP40 in a system that increases the efficiency of disaggregation. Thus, the gene for a putative HSP110 from the cereal Sorghum bicolor was cloned and the protein, named SbHSP110, purified. For comparison purposes, human HsHSP110 (HSPH1/HSP105) was also purified and investigated in parallel. First, a combination of spectroscopic and hydrodynamic techniques was used for the characterization of the conformation and stability of recombinant SbHSP110, which was produced folded. Second, small-angle X-ray scattering and combined predictors of protein structure indicated that SbHSP110 and HsHSP110 have similar conformations. Then, the chaperone activities, which included protection against aggregation, refolding, and reactivation, were investigated, showing that SbHSP110 and HsHSP110 have similar functional activities. Altogether, the results add to the structure/function relationship study of HSP110s and support the hypothesis that plants have multiple strategies to act upon the reactivation of protein aggregates.
Assuntos
Proteínas de Saccharomyces cerevisiae , Sorghum , Animais , Humanos , Sorghum/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismoRESUMO
Policy Points Despite decades of research exposing health disparities between populations and communities in the US, health equity goals remain largely unfulfilled. We argue these failures call for applying an equity lens in the way we approach data systems, from collection and analysis to interpretation and distribution. Hence, health equity requires data equity. There is notable federal interest in policy changes and federal investments to improve health equity. With this, we outline the opportunities to align these health equity goals with data equity by improving the way communities are engaged and how population data are collected, analyzed, interpreted, made accessible, and distributed. Policy priority areas for data equity include increasing the use of disaggregated data, increasing the use of currently underused federal data, building capacity for equity assessments, developing partnerships between government and community, and increasing data accountability to the public.