Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag Res ; 37(12): 1217-1228, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31486742

RESUMO

With the rapid development of the electric vehicle market since 2012, lithium-iron phosphate (LFP) batteries face retirement intensively. Numerous LFP batteries have been generated given their short service life. Thus, recycling spent LFP batteries is crucial. However, published information on the recovery technology of spent LFP batteries is minimal. Traditional separators and separation theories of recovering technologies were unsuitable for guiding the separation process of recovering metals from spent LFP batteries. The separation rate of the current method for recovering spent LFP batteries was rather low. Furthermore, some wastewater was produced. In this study, spent LFP batteries were dismantled into individual parts of aluminium shells, cathode slices, polymer diaphragms and anode slices. The anode pieces were scraped to separate copper foil and anode powder. The cathode pieces were thermally treated to reduce adhesion between the cathode powder and the aluminium foil. The dissociation rate of the cathode slices reached 100% after crushing when the temperature and time reached 300℃ and 120 min, respectively. Eddy current separation was performed to separate nonferrous metals (aluminium) from aluminium and LFP mixture. The optimized operation parameters for the eddy current separation were feeding speed of 1 m/s and magnetic field rotation speed of 4 m/s. The separation rate of the eddy current separation reached 100%. Mass balance of the recovered materials was conducted. Results showed that the recovery rate of spent LFP can reach 92.52%. This study established a green and full material recovery process for spent LFP batteries.


Assuntos
Alumínio , Lítio , Fontes de Energia Elétrica , Eletrodos , Ferro , Fosfatos , Reciclagem
2.
Waste Manag Res ; 37(8): 767-780, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31218930

RESUMO

The recycling processes of spent lithium iron phosphate batteries comprise thermal, wet, and biological and mechanical treatments. Limited research has been conducted on the combined mechanical process recycling technology and such works are limited to the separation of metal and non-metal materials, which belongs to mechanical recovery. In this article the combined mechanical process recycling technology of spent lithium iron phosphate batteries and the separation of metals has been investigated. The spent lithium iron phosphate batteries monomer with the completely discharged electrolyte was subjected to perforation discharge. The shell was directly recycled and the inner core was directly separated into a positive electrode piece, dissepiment, and negative electrode piece. The dissociation rate of the positive and negative materials reached 100.0% after crushing when the temperature and time reached 300 °C and 120 min. The crushed products were collected and sequentially sieved after the low-temperature thermal treatment. Then, nonferrous metals (copper and aluminium) were separated from the crushed spent lithium iron phosphate batteries by eddy current separation with particle size -4 + 0.4. The optimised operation parameters of eddy current separation were fed at speeds of 40 r min-1, and the rotation speed of the magnetic field was 800 r min-1. The nonferrous metals of copper and aluminium were separated by the method of pneumatic separation. The optimal air speed was 0.34 m s-1 for the particle-size -1.6 + 0.4 mm and 12.85-14.23 m s-1 for the particle-size -4 + 1.6 mm. The present recycling process is eco-friendly and highly efficient and produces little waste.


Assuntos
Alumínio , Lítio , Cobre , Fontes de Energia Elétrica , Ferro , Fenômenos Mecânicos , Fosfatos , Reciclagem
3.
Waste Manag ; 182: 299-309, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703450

RESUMO

Enhancing the recovery efficiency of non-ferrous metals in eddy current separation is of great significance. In this study, the accuracy of the simulation model was verified by comparing the eddy current force. The transformation mechanism of the Lorentz forces into the eddy current force and torque in non-ferrous metal particles was revealed by analyzing various physical fields. Then, the influence of magnetic field parameters on eddy current, eddy current force, and torque was studied. It shows that the eddy current force and torque are affected by the vector gradient of the magnetic field and the magnetic flux density, respectively. Additionally, the time derivative of the magnetic field impacts the magnitude of the eddy current force and torque by controlling the eddy current. On this basis, the empirical models of eddy current force and torque were established by similarity theory. The results obtained can improve and expand the application of eddy current separation.


Assuntos
Modelos Teóricos , Torque , Metais , Campos Magnéticos
4.
Waste Manag ; 100: 1-9, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31493683

RESUMO

Eddy current separation (ECS) is an environment-friendly technology for separating nonferrous metallic particles whose size was from 2 mm to 10 mm. No wastes are generated in ECS. ECS quality of nonferrous metals from solid wastes is rather low in the production practice of spent lithium iron phosphate (LFP) batteries recovering. Repeating separation even manual sorting is required in the production. The traditional method of falling point prediction based on eddy current mechanics uses equivalent acceleration to replace separation motion curves. These curves have low precision and are unsuitable for predicting the motion trajectory of small particle size of sorted materials. In this work, eddy current separation of positive and negative plates in a crushed product of spent lithium iron phosphate battery is used as an example to establish the force and kinematics models of different materials in the eddy current separation. An iterative method, rather than average speed method, is used to improve the accuracy of the model. Displacement interval replaces disengagement angle as a separating index to improve the model's intuitiveness and practical guidance. In the range of 2-20 mm, test results are consistent with simulation results. The copper and aluminium foils at a magnetic roller speed of 800r/min can be separated to a maximum particle size ratio of 1.72, and the maximum particle size ratio of copper and positive electrode sheets can be large. This paper provided an environmental-friendly and effective technology for separating nonferrous metals from crushed spent LFP batteries.


Assuntos
Lítio , Reciclagem , Fontes de Energia Elétrica , Ferro , Fosfatos
5.
Waste Manag ; 60: 84-90, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27553908

RESUMO

Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and Sp. There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. Sp/Sm of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of Sp/Sm. This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater Sp of aluminum particles brought positive impact on separation efficiency. Greater Sp could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste.


Assuntos
Alumínio/análise , Resíduo Eletrônico/análise , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA