Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2029): 20240352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39191280

RESUMO

Global climate change disrupts key ecological processes and biotic interactions. The recent increase in heatwave frequency and severity prompts the evaluation of physiological processes that ensure the maintenance of vital ecosystem services such as pollination. We used experimental heatwaves to determine how high temperatures affect the bumblebees' ability to detect floral scents. Heatwaves induced strong reductions in antennal responses to floral scents in both tested bumblebee species (Bombus terrestris and Bombus pascuorum). These reductions were generally stronger in workers than in males. Bumblebees showed no consistent pattern of recovery 24 h after heat events. Our results suggest that the projected increased frequency and severity of heatwaves may jeopardize bumblebee-mediated pollination services by disrupting the chemical communication between plants and pollinators. The reduced chemosensitivity can decrease the bumblebees' abilities to locate food sources and lead to declines in colonies and populations.


Assuntos
Flores , Polinização , Animais , Abelhas/fisiologia , Masculino , Temperatura Alta , Mudança Climática , Odorantes , Feminino , Antenas de Artrópodes/fisiologia
2.
J Chem Ecol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691267

RESUMO

Chemical control of Drosophila suzukii (Diptera: Drosophilidae) based on the use of insecticides is particularly challenging as the insect attacks ripening fruits shortly before harvest. An alternative strategy may rely on the use of yeasts as phagostimulants and baits, applied on canopy as attract-and-kill formulations. The aim of this research was to identify the most attractive among six yeast species for D. suzukii: Saccharomyces cerevisiae, Hanseniaspora uvarum, Clavispora santaluciae, Saccharomycopsis vini, Issatchenkia terricola, and Metschnikowia pulcherrima. The volatile profile of C. santaluciae was described for the first time. Behavioural experiments identified H. uvarum and S. vini as the most attractive yeasts. The characterization of yeast headspace volatiles using direct headspace (DHS) and solid-phase microextraction (SPME) revealed several strain-specific compounds. With DHS injection, 19 volatiles were characterised, while SPME revealed 71 compounds constituting the yeast headspace. Both analyses revealed terpenoids including ß-ocimene, citronellol, (Z)-geraniol (nerol), and geranial as distinct constituents of S. vini. H. uvarum and S. vini were further investigated using closed-loop stripping analysis (CSLA) and electroantennography. Out of 14 compounds quantified by CSLA, ethyl acetate, isoamyl acetate, ß-myrcene, benzaldehyde and linalool were detected by D. suzukii antennae and might generate the strong attractiveness of S. vini and H. uvarum. Our results highlight a strong attraction of D. suzukii to various yeasts associated with both the flies and their habitat and demonstrate how different sampling methods can impact the results of volatile compound characterization. It remains to be demonstrated whether the distinct attraction is based on special adaptations to certain yeasts and to what extent the metabolites causing attraction are interchangeable.

3.
Pestic Biochem Physiol ; 203: 106005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084800

RESUMO

Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.


Assuntos
Antenas de Artrópodes , Proteínas de Insetos , Receptores Odorantes , Spodoptera , Compostos Orgânicos Voláteis , Animais , Spodoptera/efeitos dos fármacos , Masculino , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Antenas de Artrópodes/metabolismo , Hexanóis/farmacologia , Hexanóis/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Benzaldeídos
4.
Pestic Biochem Physiol ; 201: 105856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685238

RESUMO

Plutella xylostella is an important pest showing resistance to various chemical pesticides, development of botanical pesticides is an effective strategy to resolve above problem and decrease utilization of chemical pesticides. Previous study showed that 2,3-dimethyl-6-(1-hydroxy)-pyrazine has significant repellent activity to P. xylostella adult which mainly effect to the olfactory system, however the molecular targets and mechanism are still unclear. Based on the RNA-Seq and RT-qPCR data, eight ORs (Odorant receptor) in P. xylostella were selected as candidate targets response to repellent activity of 2,3-dimethyl-6-(1-hydroxy)-pyrazine. Here, most of the ORs in P. xylostella were clustered into three branches, which showed similar functions such as recognition, feeding, and oviposition. PxylOR29, PxylOR31, and PxylOR46 were identified as the potential molecular targets based on the results of repellent activity and EAG response tests to the adults which have been injected with dsRNA, respectively. Additionally, the three ORs were higher expressed in antenna of P. xylostella, followed by those in the head segment. Furthermore, it was found that the bindings between these three ORs and 2,3-dimethyl-6-(1-hydroxy)-pyrazine mainly depend on the hydrophobic effect of active cavities, and the binding to PxylOR31 was more stabler and easier with an energy of -16.34 kcal/mol, together with the π-π T-shaped interaction at PHE195 site. These findings pave the way for the complete understanding of pyrazine repellent mechanisms.


Assuntos
Repelentes de Insetos , Mariposas , Pirazinas , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Pirazinas/farmacologia , Repelentes de Insetos/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
5.
Pestic Biochem Physiol ; 192: 105386, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105615

RESUMO

Small hive beetle (Aethina tumida) management has been highly dependent upon chemical and mechanical control over the past two decades; however, many of these methods have not been consistently effective or safe for European honey bee (Apis mellifera) colonies. Here we explore the behavioral and physiological effects of the attractants isopentyl acetate and pollen patty upon A. tumida adults, and also investigate the mixture of attractants with repellent compounds, which were previously untested against A. tumida. Electroantennograms established sensitivity of A. tumida antennae to both attractants and all repellents with the exception of DEET, with antennae displaying greatest sensitivity to the repellent pyrrolidine. A walking-response olfactometer, designed specifically for A. tumida, was used for all behavioral experiments. It was found that both pollen patty and isopentyl acetate were attractive to A. tumida adults; conversely, mixes of attractants and repellent volatiles led to less attraction or avoidance of what was previously a significantly attractive source. Of all repellents tested, pyrrolidine was found to be the most repelling molecule, with significant avoidance of the attractive source at a 10 mg treatment of pyrrolidine. The results of this study indicate that, at the behavioral level, the repellent compounds pyrrolidine and 1,4-dimethylpiperazine resulted in a negative preference index indicating a repellent behavioral response. By strategically implementing a repellent source in an apiary environment, A. tumida adults could be deterred from entering and invading hives.


Assuntos
Besouros , Animais , Abelhas , Besouros/fisiologia
6.
Pestic Biochem Physiol ; 195: 105555, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666593

RESUMO

Tribolium confusum is an important storage pest showing significant resistance to various chemical pesticides, development of botanical pesticides is an effective strategy to resolve above problem and decrease utilization of chemical pesticides. Present study attempts to explore the molecular mechanism about the repellent activity of limonene. When treatment concentration of limonene was 200.00 µg/cm2, the repellent level remained at grade V after 24 hours. Our study showed that limonene could be distinguished by T. confusum antenna with a maximal electroantennography test value of 0.90 mV. Simultaneously, 88 upregulated and 98 downregulated genes were sequenced in limonene-repellent T. confusum, and RT-qPCR analysis showed that four down-regulated and one up-regulated OR genes play an important role in the response to limonene. The repellent rate was decreased by 22.13% mediated with a knockdown of dsTconOR93, while the EAG value of the female and male adults was reduced to 0.26 mV (49.06%) and 0.20 mV (54.05%), respectively. In conclusion, limonene had a strong repellent activity against T. confusum and TconOR93 gene was determined to be a major effector in perception of limonene. This study provides a basis for the development of limonene as a novel botanical pesticide for the control to storage pests, which will reduce the utilization of chemical pesticides and postpone the development of resistance.


Assuntos
Besouros , Repelentes de Insetos , Praguicidas , Receptores Odorantes , Tribolium , Animais , Limoneno , Receptores Odorantes/genética , Tribolium/genética , Repelentes de Insetos/farmacologia
7.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069247

RESUMO

Pheromone-binding proteins (PBPs) play important roles in binding and transporting sex pheromones. However, the PBP genes identified in coleopteran insects and their information sensing mechanism are largely unknown. Cyrtotrachelus buqueti (Coleoptera: Curculionidae) is a major insect pest of bamboo plantations. In this study, a novel PBP gene, CbuqPBP2, from C. buqueti was functionally characterized. CbuqPBP2 was more abundantly expressed in the antennae of both sexes than other body parts, and its expression level was significantly male-biased. Fluorescence competitive binding assays showed that CbuqPBP2 exhibited the strongest binding affinity to dibutyl phthalate (Ki = 6.32 µM), followed by styrene (Ki = 11.37 µM), among twelve C. buqueti volatiles. CbuqPBP2, on the other hand, showed high binding affinity to linalool (Ki = 10.55), the main volatile of host plant Neosinocalamus affinis. Furthermore, molecular docking also demonstrated the strong binding ability of CbuqPBP2 to dibutyl phthalate, styrene, and linalool, with binding energy values of -5.7, -6.6, and -6.0 kcal/mol, respectively, and hydrophobic interactions were the prevailing forces. The knockdown of CbuqPBP2 expression via RNA interference significantly reduced the electroantennography (EAG) responses of male adults to dibutyl phthalate and styrene. In conclusion, these results will be conducive to understanding the olfactory mechanisms of C. buqueti and promoting the development of novel strategies for controlling this insect pest.


Assuntos
Besouros , Mariposas , Receptores Odorantes , Gorgulhos , Feminino , Animais , Masculino , Proteínas de Transporte/metabolismo , Besouros/metabolismo , Gorgulhos/genética , Gorgulhos/metabolismo , Feromônios/metabolismo , Dibutilftalato , Simulação de Acoplamento Molecular , Estirenos/metabolismo , Proteínas de Insetos/metabolismo , Mariposas/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ligação Proteica
8.
J Chem Ecol ; 48(9-10): 690-703, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36083414

RESUMO

The detection of dung odors is a crucial step in the food-searching behavior of dung beetles (Coleoptera: Scarabaeoidea). Yet, whether certain compounds characteristic of a given dung type contribute to a 'choosy generalism' behavior proposed for this taxonomic group is unknown. To address this, we analyzed the chemical composition of three types of dung (cow, horse, and rabbit) and conducted behavioral and electroantennogram (EAG) bioassays on 15 species of dung beetles using 19 volatile organic compounds representing the three dung samples. Chemical analyses revealed substantial qualitative and quantitative differences among dung types. When offered these food options in an olfactometer, 14 species exhibited a feeding preference. Surprisingly, all 19 compounds used in the EAG assays elicited antennal responses, with species displaying different olfactory profiles. The relationship between behavioral preferences and electrophysiological profiles highlighted that species with different food preferences had differences in antennal responses. Moreover, a specific set of EAG-active compounds (nonanal, sabinene, acetophenone, ρ-cresol, 2-heptanone, 1H-indole, and 6-methyl-5-hepten-2-one) were the strongest drivers in the distinct sensory profiles of the trophic preference groups. Our results point to the importance of the whole bouquet of dung-emanating compounds in driving food-searching behavior, but specific volatiles could aid in determining highly marked trophic preferences in certain species.


Assuntos
Besouros , Bovinos , Feminino , Cavalos , Coelhos , Animais , Besouros/fisiologia , Odorantes , Fezes/química , Preferências Alimentares , Olfato/fisiologia
9.
Arch Insect Biochem Physiol ; 110(3): e21911, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35599375

RESUMO

Odorants that bind well to odorant-binding proteins (OBPs) often trigger olfactory responses and have important biological significance. The locust Locusta migratoria (Meyen) (Orthoptera: Acrididae) is a serious agricultural pest. Twenty-one saturated aliphatic compounds with carbon-oxygen bonds and straight chains of 10-17 carbon atoms bind well to an L. migratoria OBP. In this study, olfactory activities of these aliphatic compounds on L. migratoria adult males were tested by electroantennography (EAG) and comparatively analyzed. Four alcohols (undecanol, dodecanol, tridecanol, and tetradecanol), two ketones (2-dodecanone and 2-tridecanone), and two esters (ethyl octanoate and ethyl nonanoate) triggered strong EAG responses, and there was no significant difference between them. The results suggest that the eight compounds are more likely to have important biological significance than the other compounds. Moreover, we found that there is not necessarily a positive correlation between the olfactory activity of odorants and their binding ability with OBP. The study contributes to understanding the odorants with biological significance for L. migratoria and the molecular mechanism of the locust's olfaction.


Assuntos
Locusta migratoria , Receptores Odorantes , Animais , Carbono/metabolismo , Proteínas de Insetos/metabolismo , Locusta migratoria/metabolismo , Masculino , Odorantes , Receptores Odorantes/metabolismo
10.
J Chem Ecol ; 47(6): 525-533, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33871786

RESUMO

The sex pheromone composition of alfalfa plant bugs, Adelphocoris lineolatus (Goeze), from Central Europe was investigated to test the hypothesis that insect species across a wide geographical area can vary in pheromone composition. Potential interactions between the pheromone and a known attractant, (E)-cinnamaldehyde, were also assessed. Coupled gas chromatography-electroantennography (GC-EAG) using male antennae and volatile extracts collected from females, previously shown to attract males in field experiments, revealed the presence of three physiologically active compounds. These were identified by coupled GC/mass spectrometry (GC/MS) and peak enhancement as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal. A ternary blend of these compounds in a 5.4:9.0:1.0 ratio attracted male A. lineolatus in field trials in Hungary. Omission of either (E)-2-hexenyl-butyrate or (E)-4-oxo-2-hexenal from the ternary blend or substitution of (E)-4-oxo-2-hexenal by (E)-2-hexenal resulted in loss of activity. These results indicate that this Central European population is similar in pheromone composition to that previously reported for an East Asian population. Interestingly, another EAG-active compound, 1-hexanol, was also present in female extract. When 1-hexanol was tested in combination with the ternary pheromone blend, male catches were reduced. This compound showed a dose-response effect with small doses showing a strong behavioral effect, suggesting that 1-hexanol may act as a sex pheromone antagonist in A. lineolatus. Furthermore, when (E)-cinnamaldehyde was field tested in combination with the sex pheromone, there was no increase in male catch, but the combination attracted both males and females. Prospects for practical application are discussed.


Assuntos
Heterópteros/efeitos dos fármacos , Hexanóis/farmacologia , Atrativos Sexuais/antagonistas & inibidores , Atrativos Sexuais/análise , Animais , Feminino , Heterópteros/química , Masculino
11.
J Chem Ecol ; 47(2): 167-174, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33475941

RESUMO

The study of insect semiochemicals, especially pheromones, is of fundamental importance for the development of strategies for controlling agricultural pests. In this study, volatile compounds involved in the communication between males and females of the fruit fly, Anastrepha obliqua (Diptera: Tephritidae), for mating purposes were characterized to develop attractant formulations for females of this species. Extracts containing volatile compounds released by males of A. obliqua were obtained by the dynamic headspace technique and analyzed by gas chromatography coupled with an electroantennographic detector (GC-EAD) and gas chromatography coupled with mass spectrometry (GC-MS). Twenty-one volatile compounds were identified in the aeration extracts of males. Five of them caused EAD responses from the antennae of females: 1-heptanol, linalool, (Z)-3-nonen-1-ol, (E,Z)-3,6-nonadien-1-ol, and (Z,E)-α-farnesene. Six synthetic mixtures of these compounds, including the five-component blend and all possible four-component blends, were formulated in a biopolymer and used in behavioral bioassays conducted in the laboratory arena with conspecific virgin females. One blend of 1-heptanol, linalool, (Z)-3-nonen-1-ol, and (Z,E)-α-farnesene attracted more females than the collection of volatiles from virgin males used as control. The other mixtures were as attractive to A. obliqua females as the control treatment. This study indicates potential for use of these compounds in monitoring and control strategies for this pest.


Assuntos
Monoterpenos Acíclicos/isolamento & purificação , Heptanol/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Atrativos Sexuais/fisiologia , Tephritidae/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Atrativos Sexuais/química , Tephritidae/química
12.
J Chem Ecol ; 47(2): 153-166, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33452962

RESUMO

The use of Erianthus arundinaceus as a trap plant in association with sugarcane reduces populations of the spotted sugarcane stalk borer Chilo sacchariphagus (Bojer) (Lepidoptera: Crambidae). This grass acts as a dead-end trap crop because it is the preferred plant for oviposition relative to sugarcane, and it precludes larval development. We explored the chemical mechanisms involved in host choice by C. sacchariphagus. We showed that the insect's antennal receptors are particularly sensitive to the shared compounds found in the volatile emissions produced by sugarcane and E. arundinaceus. In accordance with their phylogenetic proximity, the two plant species share many physicochemical properties, which suggests that C. sacchariphagus has few sensory cues to differentiate between the two. The terpene (E)-ß-ocimene is constitutively emitted by E. arundinaceus, but not by sugarcane. It elicits an electroantennographic response and behavioral responses from female C. sacchariphagus in Y-tube bioassays. Our study suggests that the sensory confusion between host plants, combined with a marginal sensory difference orienting the choice of an egg-laying site, constitutes a mechanism that is relevant to trap cropping. Systems based on this type of mechanism could provide long-term protection for crops vulnerable to insect pests.


Assuntos
Mariposas/fisiologia , Oviposição , Saccharum , Olfato , Compostos Orgânicos Voláteis , Animais , Antenas de Artrópodes/fisiologia , Sinais (Psicologia) , Feminino , Masculino , Controle Biológico de Vetores , Especificidade da Espécie
13.
J Chem Ecol ; 46(10): 935-946, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914252

RESUMO

The beech leaf-mining weevil, Orchestes fagi, is a common pest of European beech, Fagus sylvatica, and has recently become established in Nova Scotia, Canada where it similarly infests American beech, F. grandifolia. We collected volatile organic compounds (VOCs) emitted by F. grandifolia leaves at five developmental stages over one growing season and simultaneously analyzed them for volatile emissions and O. fagi antennal response using gas chromatography-electroantennographic detection (GC-EAD). Volatile profiles changed significantly throughout the growing season, shifting from primarily ß-caryophyllene, methyl jasmonate, and simple monoterpene emissions to dominance of the bicyclic monoterpene sabinene during maturity. Two VOCs dominant during bud burst, (R)-(+)-limonene and geranyl-p-cymene, may be of biological relevance due to the highly specific oviposition period of O. fagi at this stage though antennal responses were inconclusive. Senescence showed a decrease in blend complexity with an increase in (Z)-3-hexenyl acetate and (Z)-3-hexen-1-ol as well as a resurgence of α-terpinene and geranyl-p-cymene. We present a novel electroantennal preparation for O. fagi. Antennae of both male and female O. fagi responded to the majority of detectable peaks for host volatiles presented via GC-EAD. Females displayed greater overall sensitivities and less specificity to host volatiles and it is hypothesized that this translates to more generalist olfaction than males. It is clear that olfactory cues are important physiologically though their implications on behaviour are still unknown. The results presented in this study provide a baseline and tools on which to connect the complex and highly time-specific phenology of both F. grandifolia and the destructive pest O. fagi through which olfactory-based lures can be investigated for monitoring systems.


Assuntos
Fagus/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/farmacologia , Gorgulhos/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Fagus/crescimento & desenvolvimento , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Larva/fisiologia , Masculino , América do Norte , Percepção Olfatória/efeitos dos fármacos
14.
J Chem Ecol ; 46(10): 917-926, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33026596

RESUMO

The chemical signatures emitted by fungal substrates are key components for mycophagous insects in the search for food source or for suitable oviposition sites. These volatiles are usually emitted by the fruiting bodies and mycelia. The volatiles attract fungivorous insects, like flowers attract pollinators; certain flowers mimic the shape of mushroom fruiting bodies and even produce a typical mushroom odor to exploit on fungus-insect mutualism. There are numerous insects which are mycophagous or eat fungi additionally, but only a few are considered a threat in agriculture. Lycoriella ingenua is one of the most serious pests in mushroom cultivation worldwide. Here we attempt to examine the role of environmental volatiles upon behavioral oviposition preference. In two-choice bioassays, fungus gnats preferred uncolonized compost compared to colonized compost but preferred colonized compost against nothing. However, when colonized compost was paired against distilled water, no significant choice was observed. The comparison of fresh casing material and mycelium colonized casing material resulted in no significant preference. From colonized compost headspace, three antennally active volatiles were isolated by gas chromatography coupled with electroantennography and subsequently identified with gas chromatography coupled mass spectrometry as 1-hepten-3-ol, 3-octanone and 1-octen-3-ol. In behavioral assays the addition of said synthetic volatiles to uncolonized compost separately and in combination to mimic colonized compost resulted in avoidance. We thus partially elucidate the role of fungal volatiles in the habitat seeking behavior of Lycoriella ingenua.


Assuntos
Agaricus/crescimento & desenvolvimento , Compostagem , Dípteros/fisiologia , Micélio/crescimento & desenvolvimento , Percepção Olfatória/fisiologia , Compostos Orgânicos Voláteis/química , Animais , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Controle de Insetos/métodos , Oviposição , Compostos Orgânicos Voláteis/farmacologia
15.
J Chem Ecol ; 45(10): 858-868, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31637564

RESUMO

Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important pest species in many soft-fruit and ornamental crops. Economic losses arise from damage to the roots, caused by larvae, and to the leaves, caused by adults. As adults are nocturnal and larvae feed below ground, infestations can be missed initially, with controls applied too late. In the absence of a vine weevil sex or aggregation pheromone, the development of an effective semiochemical lure for better management of this pest is likely to focus on host-plant volatiles. Here, we investigate the electrophysiological and behavioral responses of adult vine weevils to volatile organic compounds (VOCs) originating from their preferred host plant Euonymus fortunei, and synthetic VOCs associated with this host when presented individually or as blends. Consistent electroantennographic responses were observed to a range of generalist VOCs. Behavioral responses of weevils to VOCs, when presented individually, were influenced by concentration. Vine weevil adults showed directional movement toward a mixture of seven plant volatiles, methyl salicylate, 1-octen-3-ol, (E)-2-hexenol, (Z)-3-hexenol, 1-hexanol, (E)-2-pentenol, and linalool, even though no, or negative, responses were recorded to each of these compounds presented individually. Similarly, vine weevils showed directional movement toward a 1:1 ratio mixture of (Z)-2-pentenol and methyl eugenol. Results presented here point to the importance of blends of generalist compounds and their concentrations in the optimization of a lure.


Assuntos
Euonymus/química , Compostos Orgânicos Voláteis/química , Gorgulhos/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Euonymus/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Larva/fisiologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/farmacologia
16.
J Chem Ecol ; 45(8): 649-656, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31407197

RESUMO

Pheromone-baited traps can be excellent tools for sensitive detection of insects of conservation concern. Here, identification of the sex pheromone of Trichopteryx polycommata (Denis & Schiffermüller, 1775), an under-recorded UK priority species, is reported. In analyses of extracts of the pheromone glands of female T. polycommata by gas chromatography coupled to electroantennographic recording from the antenna of a male moth, a single active component was detected. This was identified as (Z,Z)-6,9-nonadecadiene (Z,Z6,9-19:H) by comparison of its mass spectrum and retention times with those of the synthetic standard. In a pilot field trial in Kent, UK, T. polycommata males were caught in pheromone traps baited with lures loaded with 1 mg and 2 mg (Z,Z)-6,9-19:H. Optimum lure loading was identified in a further five trials in Kent, Sussex and Lancashire where lures of 0, 0.001, 0.01, 0.1, 1, 2, 5 and 10 mg loadings were tested. Traps baited with 1 to 10 mg of ZZ6,9-19:H caught significantly more T. polycommata than traps baited with 0 mg and 0.001 mg. In a pilot survey of T. polycommata using pheromone lures around Morecambe Bay, UK, T. polycommata males were captured at 122 new sites within the three counties where trials took place, demonstrating the potential of pheromone monitoring to increase knowledge of abundance, distribution and ecology of this elusive species.


Assuntos
Mariposas/fisiologia , Atrativos Sexuais/química , Animais , Espécies em Perigo de Extinção , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Feromônios/química , Feromônios/farmacologia , Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos
17.
Molecules ; 24(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261896

RESUMO

Ceratitis capitata, the Mediterranean fruit fly, is one of the most serious agricultural pests worldwide responsible for significant reduction in fruit and vegetable yields. Eradication is expensive and often not feasible. Current control methods include the application of conventional insecticides, leading to pesticide resistance and unwanted environmental effects. The aim of this study was to identify potential new attractants for incorporation into more environmentally sound management programs for C. capitata. In initial binary choice bioassays against control, a series of naturally occurring plant and fungal aromatic compounds and their related analogs were screened, identifying phenyllactic acid (7), estragole (24), o-eugenol (21), and 2-allylphenol (23) as promising attractants for male C. capitata. Subsequent binary choice tests evaluated five semisynthetic derivatives prepared from 2-allylphenol, but none of these were as attractive as 2-allylphenol. In binary choice bioassays with the four most attractive compounds, males were more attracted to o-eugenol (21) than to estragole (24), 2-allylphenol (23), or phenyllactic acid (7). In addition, electroantennography (EAG) was used to quantify antennal olfactory responses to the individual compounds (1-29), and the strongest EAG responses were elicited by 1-allyl-4-(trifluoromethyl)benzene (11), estragole (24), 4-allyltoluene (14), trans-anethole (9), o-eugenol (21), and 2-allylphenol (23). The compounds evaluated in the current investigation provide insight into chemical structure-function relationships and help direct future efforts in the development of improved attractants for the detection and control of invasive C. capitata.


Assuntos
Alcaloides/farmacologia , Ceratitis capitata/fisiologia , Controle de Insetos/métodos , Derivados de Alilbenzenos , Animais , Anisóis/farmacologia , Antenas de Artrópodes/efeitos dos fármacos , Antenas de Artrópodes/fisiologia , Ceratitis capitata/efeitos dos fármacos , Eugenol/farmacologia , Lactatos/farmacologia , Masculino , Fenóis/farmacologia
18.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543772

RESUMO

As one of the main lepidopteran pests in Chinese tea plantations, Ectropisobliqua Warren (tea geometrids) can severely decrease yields of tea products. The olfactory system of the adult tea geometrid plays a significant role in seeking behaviors, influencing their search for food, mating partners, and even spawning grounds. In this study, a general odorant-binding protein (OBP) gene, EoblGOBP2, was identified in the antennae of E. obliqua using reverse transcription quantification PCR (RT-qPCR). Results showed that EoblGOBP2 was more highly expressed in the antennae of males than in females relative to other tissues. The recombinant EoblGOBP2 protein was prepared in Escherichia coli and then purified through affinity chromatography. Ligand-binding assays showed that EoblGOBP2 had a strong binding affinity for some carbonyl-containing tea leaf volatiles (e.g., (E)-2-hexenal, methyl salicylate, and acetophenone). Electrophysiological tests confirmed that the male moths were more sensitive to these candidate tea plant volatiles than the female moths. Immunolocalization results indicated that EoblGOBP2 was regionally confined to the sensilla trichoid type-II in the male antennae. These results indicate that EoblGOBP2 may be primarily involved in the olfactory activity of male E. obliqua moths, influencing their ability to sense tea leaf volatiles. This study provides a new perspective of insect GOBPs and implies that olfactory function can be used to prevent and control the tea geometrid.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/metabolismo , Sítios de Ligação , Camellia sinensis/parasitologia , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Mariposas/patogenicidade , Mariposas/fisiologia , Óleos Voláteis/farmacologia , Ligação Proteica , Receptores Odorantes/química , Receptores Odorantes/genética , Fatores Sexuais , Olfato
19.
Artigo em Inglês | MEDLINE | ID: mdl-28852845

RESUMO

In insects, the olfactory system displays a high degree of plasticity. In Spodoptera littoralis, pre-exposure of males to the sex pheromone has been shown to increase the sensitivity of the olfactory sensory neurons at peripheral level. In this study, we have investigated this sensitization effect by recording the electroantennographic responses of male antennae to the major sex pheromone component (Z,E)-9,11-tetradecadienyl acetate and to the minor components (Z,E)-9,12-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate. Responses to the conjugated diene acetate at 1 and 10 µg and to the unconjugated ester at 10 µg at three different times (11, 22 and 33 min) after pre-exposure (T = 0 min) were significantly higher than those at T = 0, whereas no increase of sensitivity to the pheromone was elicited by any dose of the minor monoene acetate. In addition, pre-exposed antennae to sub-threshold amounts (0.1, 1 and 10 ng) of the major pheromone component also induced an increased response to the chemical at different times (5 and 15 min) after exposure. Our results revealed that pre-exposed isolated antennae display a short-term higher sensitivity at the peripheral level when compared to naive antennae. In addition, we provide evidence of a peripheral sensitization mediated not only by the major pheromone component, but also by the minor unconjugated diene acetate, and the induction of this sensitivity appears to be dependent on the pre-exposure dose and the time span between pre-exposure and subsequent recordings. Possible implications of the sensitization effect displayed by the minor component for a more effective discrimination of the pheromone bouquets of other closely related species are highlighted.


Assuntos
Antenas de Artrópodes/fisiologia , Plasticidade Neuronal/fisiologia , Atrativos Sexuais/farmacologia , Animais , Antenas de Artrópodes/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Neurônios Receptores Olfatórios/fisiologia , Spodoptera
20.
J Chem Ecol ; 43(1): 4-12, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28032267

RESUMO

The pollen diet provided by adult bees to their offspring varies immensely. While some species collect pollen on several plants irrespective of their phylogenetic relatedness (polyleges), others collect only on plants within a genus or family (oligoleges). Floral scents play a central role in bee-plant interactions. To locate flowers, polyleges are assumed to rely on compounds commonly found as floral scent constituents, whereas oligoleges rely on unusual compounds to recognize host flowers unambiguously. Campanula flowers are visited by both polylectic and oligolectic species, and their scent bouquets consist of common and unusual (e.g., spiroacetals) volatiles. In a comparative approach, we performed electroantennographic analyses to investigate the antennal responses of three polyleges and three oligoleges to three common volatiles and four spiroacetals. We hypothesized that: 1) oligoleges and polyleges should respond similarly to common flower volatiles, and 2) Campanula oligoleges should be more sensitive to spiroacetals than are polyleges. In corroboration, we found that antennal sensitivity to common volatiles was similar among bees irrespective of pollen diet, whereas oligoleges of Campanula were more sensitive to spiroacetals than polyleges. Newly emerged bees of the Campanula oligolege Chelostoma rapunculi rely on spiroacetals for recognizing host-flowers, and our results suggest that this might also be true for other Campanula oligoleges, since Chelostoma campanularum and Hoplitis mitis also were able to perceive these specific volatiles at very low concentrations. Together, our results provide interesting insights into the significance of olfactory adaptations in oligolectic and polylectic bee species.


Assuntos
Abelhas/fisiologia , Campanulaceae , Flores/química , Odorantes/análise , Polinização , Acetais/análise , Animais , Antenas de Artrópodes/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Especificidade da Espécie , Compostos de Espiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA