Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(19): e2309421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339983

RESUMO

Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure.


Assuntos
Eletrônica , Implantes Absorvíveis , Água/química , Tecnologia sem Fio , Materiais Biocompatíveis/química
2.
Materials (Basel) ; 17(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39274762

RESUMO

Sn-Bi-based, low-temperature solder alloys are being developed to offer the electronics manufacturing industry a path to lower temperature processes. A critical challenge is the significant microstructural and lattice parameter changes that these alloys undergo at typical service temperatures, largely due to the variable solubility of Bi during the Sn phase. The influence of alloying additions in improving the performance of these alloys is the subject of much research. This study aims to enhance the understanding of how alloying with In influences these properties, which are crucial for improving the alloy's reliability. Using in situ heating synchrotron powder X-ray diffraction (PXRD), we investigated the Sn-57 wt% Bi-xIn (x = 0, 0.2, 0.5, 1, 3 wt%) alloys during heating and cooling. Our findings reveal that In modifies the microstructure, promoting more homogeneous Bi distribution during thermal cycling. This study not only provides new insights into the dissolution and precipitation behaviour of Bi in Sn-Bi-based alloys, but also demonstrates the potential of In to improve the thermal stability of these alloys. These innovations contribute significantly to advancing the performance and reliability of Sn-Bi-based, low-temperature solder alloys.

3.
Adv Mater ; 36(15): e2307782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38303684

RESUMO

Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma-enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer-scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light-emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements.


Assuntos
Implantes Absorvíveis , Eletrônica , Água/química
4.
Materials (Basel) ; 17(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38204053

RESUMO

As the integration technology for integrated circuit (IC) packaging continues to advance, the issue of electromagnetic interference in IC packaging becomes increasingly prominent. Magnetic materials, acknowledged for their superior electromagnetic absorption capabilities, play a pivotal role in mitigating electromagnetic interference problems. In this study, we employed a liquid-phase reduction method. We prepared three types of cobalt (Co) particles with distinct morphologies. Through variations in the synthesis process conditions, we were able to control the aspect ratio of protrusions on the surface of the Co particles. It was found that the sword-like Co particles exhibit superior electromagnetic wave absorption capabilities, showing a reflection loss value of up to -50.96 dB. Notably, when the coating thickness is only 1.6 mm, the effective absorption bandwidth is extended up to 7.6 GHz. The spatially expansive sword-like Co particles, with their unique structure featuring dipole polarization and interfacial polarization, demonstrated enhanced dielectric and magnetic loss capabilities, concurrently showcasing superior impedance-matching performance.

5.
Micromachines (Basel) ; 14(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838115

RESUMO

Emerging trends like the Internet of Things require an increasing number of different sensors, actuators and electronic devices. To enable new applications, such as wearables and electronic skins, flexible sensor technologies are required. However, established technologies for the fabrication of sensors and actuators, as well as the related packaging, are based on rigid substrates, i.e., silicon wafer substrates and printed circuit boards (PCB). Moreover, most of the flexible substrates investigated until now are not compatible with the aforementioned fabrication technologies on wafers due to their lack of chemical inertness and handling issues. In this presented paper, we demonstrate a conceptually new approach to transfer structures, dies, and electronic components to a flexible substrate by lift-off. The structures to be transferred, including the related electrical contacts and packaging, are fabricated on a rigid carrier substrate, coated with the flexible substrate and finally lifted off from the carrier. The benefits of this approach are the combined advantages of using established semiconductor and microsystem fabrication technologies as well as packaging technologies, such as high precision and miniaturization, as well as a variety of available materials and processes together with those of flexible substrates, such as a geometry adaptivity, lightweight structures and low costs.

6.
Adv Mater ; 34(7): e2101339, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34978104

RESUMO

Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all-stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all-stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0  ≤ 5) is shown, compared with conventional solder-assisted connections which lose electrical conduction at a strain of less than 5% (R/R0  ≈ 30). As a proof of concept, a self-powered all-stretchable data-acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface-mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all-soft multifunctional systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA