Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402946, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881253

RESUMO

Oil-water separation based on superwettable materials offers a promising way for the treatment of oil-water mixtures and emulsions. Nevertheless, such separation techniques often require complex devices and external energy input. Therefore, it remains a great challenge to separate oil-water mixtures and emulsions through an energy-efficient, economical, and sustainable way. Here, a novel approach demonstrating the successful separation of oil-water emulsions using antigravity-driven autonomous superwettable pumps is presented. By transitioning from traditional gravity-driven to antigravity-driven separation, the study showcases the unprecedented success in purifying oil/water from emulsions by capillary/siphon-driven superwettable autonomous pumps. These pumps, composed of self-organized interconnected channels formed by the packing of superhydrophobic and superhydrophilic sand particles, exhibit outstanding separation flux, efficiency, and recyclability. The findings of this study not only open up a new avenue for oil-water emulsion separation but also hold promise for profound impacts in the field.

2.
Small ; : e2402538, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770748

RESUMO

Solving the problem of oil and water pollution is an important topic in environmental protection. The separation of oil-water emulsion with high efficiency and low consumption has been the direction of social efforts. Membrane separation technology combined with surface wettability and pore size screening is considered to be one of the most promising ways to separate oil-water emulsions. In this paper, the polyvinylidene difluoride (PVDF) membrane is prepared by combining the two methods of blending and coating modification as a double barrier. The prepared PVDF membrane can completely wet water, achieve superhydrophilic in air, and superoleophobic underwater. The separation efficiency and flux are 99.57% and 678 L h-1 m-2 bar-1, respectively, for toluene emulsions containing surfactants with an average particle size of 1.7 µm. At the same time, it can also effectively separate different kinds of light/heavy oils. After three cycles of testing still maintain high efficiency of separation. The results show that the prepared PVDF membrane can effectively separate the emulsion containing surfactant with smaller particle size distribution of oil droplets. This method provides a new strategy for the separation of oil-water emulsions and has broad application prospects.

3.
Small ; : e2401719, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874065

RESUMO

Considering the potential threats posed by oily wastewater to the ecosystem, it is urgently in demand to develop efficient, eco-friendly, and intelligent oil/water separation materials to enhance the safety of the water environment. Herein, an intelligent hydrogel-coated wood (PPT/PPy@DW) membrane with self-healing, self-cleaning, and oil pollution detection performances is fabricated for the controllable separation of oil-in-water (O/W) emulsions and water-in-oil (W/O) emulsions. The PPT/PPy@DW is prepared by loading polypyrrole (PPy) particles on the delignified wood (DW) membranes, further modifying the hydrogel layer as an oil-repellent barrier. The layered porous structure and selective wettability endow PPT/PPy@DW with great separation performance for various O/W emulsions (≥98.69% for separation efficiency and ≈1000 L m-2 h-1 bar-1 for permeance). Notably, the oil pollution degree of PPT/PPy@DW can be monitored in real-time based on the changed voltage generated during O/W emulsion separation, and the oil-polluted PPT/PPy@DW can be self-cleaned by soaking in water to recover its separation performance. The high affinity of PPT/PPy@DW for water makes it effective in trapping water from the mixed surfactant-stabilized W/O emulsions. The prepared eco-friendly and low-cost multifunctional hydrogel wood membrane shows promising potential in on-demand oil/water separation and provides new ideas for the functional improvement of new biomass oil/water separation membrane materials.

4.
Small ; : e2402589, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881318

RESUMO

The fouling phenomenon of membranes has hindered the rapid development of separation technology in wastewater treatment. The integration of materials into membranes with both excellent separation performance and self-cleaning properties still pose challenges. Here, a self-assembled composite membrane with solar-driven self-cleaning performance is reported for the treatment of complex oil-water emulsions. The mechanical robustness of the composite membrane is enhanced by the electrostatic attraction between chitosan and metal-organic frameworks (MOF) CuCo-HHTP as well as the crosslinking effect of glutaraldehyde. Molecular dynamics (MD) simulations also revealed the hydrogen bonding interaction between chitosan and CuCo-HHTP. The composite membrane of CuCo-HHTP-5@CS/MPVDF exhibits a high flux ranging from 700.6 to 2350.6 L∙m-2∙h-1∙bar-1 and excellent separation efficiency (>99.0%) for various oil-water emulsions, including crude oil, kerosene, and other light oils. The addition of CuCo-HHTP shows remarkable photothermal effects, thus demonstrating excellent solar-driven self-cleaning capability and antibacterial performance (with an efficiency of ≈100%). Furthermore, CuCo-HHTP-5@CS/MPVDF can activate peroxomonosulfate (PMS) under sunlight, quickly removing oil-fouling and dyes. Density functional theory (DFT) calculations indicate that the bimetallic sites of Cu and Co in CuCo-HHTP effectively promoted the activation of PMS. This study provides distinctive insights into the multifaceted applications of MOFs-derived photothermal anti-fouling composite membranes.

5.
Environ Res ; 248: 118262, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280523

RESUMO

The accelerated development of special-wetting polymeric materials with hierarchical pores for membrane applications is crucial to effectively separating water-soluble and insoluble pollutants, such as oily wastewater, emulsion, organic pollutants, and heavy metals. This pressing environmental and socioeconomic issue requires the implementation of effective remediation technologies. In this study, we successfully fabricated an environmentally friendly membrane with a flexible property by combining biopolymers and magnetic nanohybrids of iron oxide (Fe3O4)-doped tungsten oxide (WO3) through a thermal-induced phase separation process (TIPS). The resulting membrane exhibited a well-defined 3D-interconnected porous network structure when blending poly (ε-caprolactone)/poly (D,L-lactide) (PCL)/(PDLLA) in an 8:2 volume ratio. The Fe3O4@WO3 nanohybrids were synthesized using a hydrothermal process, resulting in a star-shaped morphology from the sea urchin-like WO3 clusters, which showed great potential to efficiently separate water/oil contamination and facilitate visible-light-driven photocatalytic degradation of organic dyes (MB, Rh B, BY, and CR) and photoreduction of hexavalent chromium (Cr (VI)). The obtained PCL/PDLLA/Fe3O4@WO3 nanocomposite membrane demonstrated hydrophobic properties, showing a water contact angle of 95 ± 2° and an excellent oil adsorption capacity of ∼4-4.5 g/g without fouling. The interconnected porous structure of the composite membrane enabled the efficient separation of emulsions (≥99.4 %) and achieved a high permeation flux of up to 1524 L m-2 h-1 under gravity separation. Overall, we obtained a novel high-performance composite material with specialized wetting properties, offering significant potential for effectively removing insoluble and soluble organic contaminants from wastewater.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Águas Residuárias , Porosidade , Água , Polímeros
6.
J Environ Sci (China) ; 146: 118-126, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969440

RESUMO

With the increasing demand of recycling disposal of industrial wastewater, oil-in-water (O/W) emulsion has been paid much attention in recent years owing to its high oil content. However, due to the presence of surfactant and salt, the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing difficulty. Herein, a novel flow-through electrode-based demulsification reactor (FEDR) was well designed for the treatment of saline O/W emulsion. In contrast to 53.7% for electrical demulsification only and 80.3% for filtration only, the COD removal efficiency increased to 92.8% under FEDR system. Moreover, the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance. By observing the morphology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions, the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through electrode by sieving effect, subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode, leading to a high-performing demulsification. This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.


Assuntos
Eletrodos , Filtração , Eliminação de Resíduos Líquidos , Purificação da Água , Purificação da Água/métodos , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Óleos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Emulsões/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação
7.
Chemistry ; 29(37): e202300662, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37040121

RESUMO

Developing a straightforward and effective hydrophobic modification for metal-organic frameworks (MOFs) under mild conditions is meaningful for MOF applications. Here, a post-synthetic modification approach assisted with metal hydroxyl groups at room temperature is reported to induce hydrophobicity in the hydrophilic UiO-66. The bonding between Zr-OH in UiO-66 and n-tetradecylphosphonic acid (TDPA) is the vital force for the modifier TDPA. Superhydrophobic and superoleophilic composites were constructed for efficient oil-water separation by coating TDPA-modified UiO-66 (P-UiO-66) on commercial melamine sponges (MS) and filter papers (FP) with water contact angles of 153.2° and 155.6°, respectively. The P-UiO-66/MS composite could quickly and selectively absorb oily liquids up to 43 times its weight from water. The P-UiO-66/MS achieved continuous oil collection with high separation efficiencies (≥99.4 %). In addition, P-UiO-66/FP and P-UiO-66/MS showed high separation efficiencies for water-in-oil emulsions (≥98.5 %) and oil-in-water emulsions, respectively, with high resistance to low/high temperatures and acid/base conditions. The metal hydroxyl group-assisted post-synthetic modification strategy offers a facile and broad way to prepare hydrophobic MOFs for promising applications in environmental fields.

8.
Environ Sci Technol ; 57(32): 12083-12093, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37530558

RESUMO

Demulsification using membranes is a promising method to coalesce highly stable emulsified oil droplets for oil recovery. Nevertheless, a structure of the current filtration medium that is not efficient for oil droplet coalescence impedes rapid permeability, thereby inevitably restricting their practical applications. Herein, we report a hydrophobic-hydrophilic-hydrophobic (3H) demulsification medium that exhibits a benchmark permeability of ∼2.1 × 104 L m-2 h-1 with a demulsification efficiency of >98.0%. Remarkably, this 3H demulsification medium maintains over 90% demulsification efficiency in the oil-in-water (O/W) emulsions with a wide range of surfactant concentrations, which shows excellent applicability. Based on the combined results of quasi situ microscope images and molecular dynamics simulations, we show that the polydimethylsiloxane-modified hydrophobic layer facilitates the capture and coalescence of oil droplets, the hydrophilic inner layer assists in squeezing the coalescence of enlarged droplets, and the third hydrophobic layer accelerates the discharge of demulsified oil to sustain permeability. The sequential demulsification mechanism between this 3H filtration layer provides a general guide for designing a demulsifying membrane with high demulsification efficiency and high flux toward oil recovery.

9.
Environ Res ; 219: 114959, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535398

RESUMO

A ceramic-polymeric membrane was fabricated through in-situ oxidative polymerization of pyrrole (Py) on alumina (Al2O3) ceramic ultrafiltration support. The establishment of polypyrrole (PPy) active layer on the ceramic support led to a new PPy coated ceramic-polymeric membrane. Various salient features such as surface wettability, surface morphology, composition and functional goups of PPy coated ceramic-polymeric membrane were determined by various characterization techniques water contact angle (WCA), scanning electron microscopy (SEM), energy dispersive x-ray (EDX) analysis and attenuated total reflectance fourier transform infrared (ATR-FTIR). The PPy coated ceramic-polymeric membrane showed superhydrophilic nature owing to its under water oil contact angle of ≥160° (superoleophobic). Thanks to stable deposition of PPy active layer on ceramic support, the membrane retained a separation efficiency of >99% for O/W emulsions at varied transmembrane pressures ranging from 0.5 bar to 2 bar with a feed concentration of 125 ppm of oil in water. Moreover, the PPy coated ceramic-polymeric membrane exhibited an ideal behaviour to the applied transmembrane pressure with a linear increase from 380 LMH to 2112 LMH in permeate flux as the pressure increased from 0.5 bar to 2 bar. As the concentration of oil was raised from 50 ppm to 250 ppm, the separation efficeincy separation remained at >99%. From among the different types of oils (Motor oil, Diesel oil and Crude oil) to mimic the oily waste water streams, the permeate flux was found to be highest in case of motor oil with a value reaching to 1690 LMH at 1 bar. The stability test revealed that the PPy coated ceramic-polymeric membrane was able to separate >99% of 125 ppm O/W surfactant stabilized emulsion for a period of 420 min.


Assuntos
Petróleo , Purificação da Água , Águas Residuárias , Polímeros , Pirróis , Porosidade , Membranas Artificiais , Purificação da Água/métodos , Óleos , Cerâmica , Emulsões
10.
Ecotoxicol Environ Saf ; 255: 114824, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966613

RESUMO

The present study was set out to synthesize Mxene (Ti3C2Tx) and functionalized Mxene nanoparticles and fabricating Mxene coated stainless steel meshes using the dip-coating methodology to investigate the capability of Mxene nanoparticles in oil-water emulsion separation. O/W mixtures separation with extraordinary 100% of effectiveness and purity using designed grid was observed. Most specifically, Mxene fabricated mesh showed good resistance to corrosive solutions of HCl and NaOH and was used to separate O/W at harsh medium condition with a separation efficiency of more than after 96.0% replicated experiment, and its super-hydrophilicity persisted in spite of the air exposure condition, extreme fluids immersion, or abrasion. The XRD, FTIR, SEM, FESEM, AFM and DLS tests have been performed to characterize the Mxene coating and its effectiveness on the O/W separation. These analyzes confirm the fabricated tough super-hydrophilic stainless-steel mesh explored in this research can basically be utilized as a highly effective useful mesh for O/W fluid separation under different sever circumstances. The XRD pattern of the resulting powder shows a single phase formation of Mxene, the SEM and FESEM images confirms creation of coated mesh with approximately 30 µ pore size, AFM tests verify that structures (both in nm and µm sizes) formation with high RMS (Root Mean Square) roughness values of 0.18 µm and 0.22 µm for Mxene and carboxylic-Mxene coated mesh. The DLS tests prove the droplets size distribution of emulsion has been augmented after several O/W separation, which confirmed the coagulating mechanism of oil droplets once contacting with the Mxene and carboxylic Mxene coatings of the mesh.


Assuntos
Óleos , Água , Água/química , Propriedades de Superfície , Emulsões/química , Aço Inoxidável/química
11.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067632

RESUMO

Although membrane separation technology has been widely used in the treatment of oily wastewater, the complexity and high cost of the membrane preparation, as well as its poor stability, limit its further development. In this study, via the vacuum-assisted suction filtration method, polydopamine (PDA)-coated TiO2 nanoparticles were tightly attached and embedded on both sides of laboratory filter paper (FP). The resultant FP possessed the typical wettability of high hydrophilicity in the air with the water contact angle (WCA) of 28°, superoleophilicity with the oil contact angle (OCA) close to 0°, underwater superoleophobicity with the underwater OCA greater than 150°, and superhydrophobicity under the water with the underoil WCA over 150° for five kinds of organic solvents (carbon tetrachloride, toluene, n-hexane, n-octane, and iso-octane). The separation efficiency of immiscible oil/water, oil-in-water, and water-in-oil emulsions using the modified FP is higher than 99%. After 17 cycles of emulsion separation, a high separation efficiency of 99% was still maintained for the FP, along with good chemical and mechanical stability. In addition, successful separation and purification were also realized for the oil-in-water emulsion that contained the methylene blue (MB) dye, along with the complete degradation of MB in an aqueous solution under UV irradiation.

12.
Environ Sci Technol ; 56(7): 4151-4161, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266701

RESUMO

Oily wastewater treatment has been restricted by the existence of stable oil-in-water (O/W) emulsions containing micrometer-sized oil droplets. However, the strong adhesion and stacking of emulsified oil droplets on the surface of current separation media cause serious fouling of the treatment unit and the rapid decline of treatment efficiency. Herein, a novel flow-through titanium (Ti) electrode-based filtration device with remarkable oil droplet rejection property was well designed for the continuously separating O/W emulsion. In contrast to the pristine Ti foam, the permeance of the TiO2 nanoarray-coated Ti foam (NATF) increased from 2538 to 4364 L m-2 h-1 bar-1 through gravity-driven flow. Further, more than ∼70% permeability can be maintained after 6 h of O/W emulsion filtration using the current device, the value of which was markedly higher than that of conventional oil/water separation filters (less than 5%). According to the results of wettability test, the super-oil-repellent surface endowed by this nanoarray structure primarily avoided the formation of a compact oil fouling layer. When the voltage was applied, accompanied by the electrophoresis effect, redistribution of surfactant molecules on the surface of oil droplets induced by an electric field made them readily captured by the microbubbles continuously generated from the electrode, thereby rapidly migrating these bubble-adhered oil droplets far from the filtration medium.

13.
Angew Chem Int Ed Engl ; 61(41): e202210507, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35972219

RESUMO

Covalent organic frameworks (COFs) having high specific surface area, tunable pore size and high crystallinity are mostly post modified following fluorine-based and complex synthetic approaches to achieve a bio-inspired liquid wettability, i.e. superhydrophobicity. Herein, a facile, non-fluorinated and robust chemical approach is introduced for tailoring the water wettability of a new COF-which was prepared through Schiff-base condensation reaction. A silane precursor was readily reacted with selected alkyl acrylates through 1,4-conjugate addition reaction, prior to grafting on the prepared C4-COF for tailoring different water wettability-including robust superhydrophobicity. The superhydrophobic C4-COF (SH-C4-COF) that displayed significantly enhanced (>5 times; from 220 wt. % to 1156 wt. %) oil-absorption capacity, was extended to address the relevant challenges of "oil-in-water" emulsion separation, rapidly (<1 minute) and repetitively (50 times) at diverse and harsh conditions.

14.
J Environ Manage ; 288: 112402, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774564

RESUMO

Membrane is a considerable precursor for emulsions separation and organic dyes degradation used in water purification and oil reclamation. However, the tedious preparation method, the surface smears easily, and low degradation efficiency, these characteristics usually significantly hinder its applicability toward wastewater governance. Herein, a green, facile, and efficient fabrication strategy to prepare a bi-functional palladium nanoparticles (PdNPs)-loaded bacterial cellulose membrane (BCMPd) is proposed. A tri-functional bacterial cellulose membrane (BCM) was obtained by percolating bacterial cellulose (BC) on a basal membrane, and BCM served as a support, reducing agent, and stabilizer in the subsequent reduction of PdNPs. Bi-functional BCMPd was successfully obtained and used for continuously removing emulsions and reducing methylene blue (MB) from simulated wastewater via the integration of physical sieving and chemical reaction. Meanwhile, the enhancement factors for the water transfer ability and demulsification capacity correlated directly with the wettability and surface structure of BCMPd. Furthermore, the dosage of BC was adjusted to reveal the mechanism for the enhanced water transferability and demulsification capacity. Notably, PdNPs of BCMPd decreased Fermi potential difference between BH4- and MB, accelerating the electron transfer of the reduction reaction and thus exhibiting a remarkable MB degradation efficiency. Together, the information obtained in this work can be useful for comprehensively addressing the bottleneck of forming a cost-effective, eco-friendly, and bi-functional membrane reactor, providing an alternative approach for better treatment of complex wastewater.


Assuntos
Nanopartículas Metálicas , Paládio , Celulose , Corantes , Emulsões
15.
Macromol Rapid Commun ; 41(10): e2000089, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32270558

RESUMO

Oil or chemical purification is significant not only for industrial safety production but also because it conforms to the principle of sustainable development. In this paper, based on the synergistic concept of superwettability and nanopores sieve effect, a superoleophilic and under-oil superhydrophobic carbon nanotube/poly(vinylidene fluoride-co-hexafluoropropylene) nanofiber composite membrane is prepared via electrospinning, pressure-driven filtration, and chemical vapor modification. The as-prepared membrane with durable mechanical and chemical stabilities achieves separation efficiency higher than 99.9% and high flux up to 632.5 L m-2 h-1 bar-1 for different water-in-oil emulsions. This membrane is highly promising for the petroleum and chemical industries for both product quality improvement and green recycling manufacturing processes.


Assuntos
Fluorocarbonos/química , Nanofibras/química , Nanotubos de Carbono/química , Polivinil/química , Emulsões/química , Emulsões/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
16.
Chemistry ; 24(43): 10953-10958, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29900598

RESUMO

Superhydrophobic materials hold great promise in emulsion separation, but they have inherent mechanical weakness and are ineffective to separate mixed surfactant-stabilized emulsions. Herein, we combined the adhesion ability of polyphenol-Fe3+ bis-complexes with the high mechanical strength of carbon nanotubes (CNTs) to construct a mechanically robust and superhydrophobic coating on a collagen fiber membrane (CFM). We demonstrated that both CNTs and polyphenolic complexes competed with the surfactants adsorbed onto the emulsion droplets, serving as efficient demulsifiers to various mixed surfactant-stabilized emulsions. CFM has a 3D fibrous structure and a high limiting oxygen index, which provides high flux and flame resistance. The as-prepared superhydrophobic membrane can separate diverse anionic/nonionic and cationic/nonionic surfactant-stabilized micro- and nanoemulsions under gravity, with a separation efficiency and flux up to 99.999 % and 1695 L m-2 h-1 , respectively. The membranes also retained the emulsion separation ability after sandpaper abrasion. These features demonstrate a practical technology for emulsion separation.

17.
Angew Chem Int Ed Engl ; 57(20): 5740-5745, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29578276

RESUMO

A thermoresponsive Poly(N-isopropylacrylamide) (PNIPAAm)-modified nylon membrane was fabricated via hydrothermal route. Combining rough structure, proper pore size, and thermoresponsive wettability, the membrane can separate at least 16 types of stabilized oil-in-water and water-in-oil emulsions at different temperatures. Below the LCST (ca. 25 °C), the material exhibits hydrophilicity and underwater superoleophobicity, which can be used for the separation of various kinds of oil-in-water emulsions. Above the LCST (ca. 45 °C), the membrane shows the opposite property with high hydrophobicity and superoleophilicity, and it can then separate stabilized water-in-oil emulsions. The material exhibits excellent recyclability and high separation efficiency for various kinds of emulsions and the hydrothermal method is facile and low-cost. The membrane shows good potential in real situations such as on-demand oil-spill cleanup, industrial wastewater treatment, remote operation of oil/water emulsion separation units, and fuel purification.

18.
J Ind Microbiol Biotechnol ; 43(11): 1527-1535, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27650629

RESUMO

Biphasic whole-cell biotransformations are known to be efficient alternatives to common chemical synthesis routes, especially for the production of, e.g. apolar enantiopure organic compounds. They provide high stereoselectivity combined with high product concentrations owing to the presence of an organic phase serving as substrate reservoir and product sink. Industrial implementation suffers from the formation of stable Pickering emulsions caused by the presence of cells. State-of-the-art downstream processing includes inefficient strategies such as excessive centrifugation, use of de-emulsifiers or thermal stress. In contrast, using the catastrophic phase inversion (CPI) phenomenon (sudden switch of emulsion type caused by addition of dispersed phase), Pickering-type emulsions can be destabilized efficiently. Within this work a model system using bis(2-ethylhexyl) phthalate (BEHP) as organic phase in combination with E. coli, JM101 was successfully separated using a continuous mixer settler setup. Compared to the state-of-the-art centrifugal separations, this process allows complete phase separation with no detectable water content or cells in the organic phase with no utilities/additives required. Furthermore, the concentration of the product is not affected by the separation. It is therefore a simple applicable method that can be used for separation of stable Pickering-type emulsions based on the knowledge of the point of inversion.


Assuntos
Biotransformação , Biocatálise , Centrifugação , Dietilexilftalato/química , Emulsões , Escherichia coli/metabolismo , Microbiologia Industrial
19.
Int J Biol Macromol ; 256(Pt 2): 128579, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048931

RESUMO

As a well-known natural and innocuous plant constituent, cellulose consists of abundant hydroxyl groups and can tightly adsorb onto material surfaces hydrogen bonding, resulting in a superhydrophilic surface. In this work, the hydrophobic polyvinylidene fluoride (PVDF) membranes were modified by immersing them in cellulose hydrogel using a simple one-step process. The modified PVDF membrane exhibited excellent resistance to fouling and oil adhesion, making it highly effective in separating various oil-in-water emulsions. The cellulose-modified PVDF membranes achieved a high oil rejection rate (>99 %) and a maximum separation flux of 2675.2 L·m-2·h-1. Furthermore, even an oil-in-water emulsion containing bovine serum albumin maintained a steady permeation flux after four filtration cycles. Additionally, these cellulose-modified PVDF membranes demonstrated excellent underwater superoleophobicity across a wide range of pH levels and high saline conditions. Overall, these cellulose-modified superhydrophilic PVDF membranes are sustainable, environmentally friendly, easily scalable, and hold great promise for practical applications in oily wastewater treatment.


Assuntos
Incrustação Biológica , Celulose , Polímeros de Fluorcarboneto , Polivinil , Celulose/química , Emulsões , Hidrogéis , Óleos
20.
J Hazard Mater ; 476: 135131, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39018593

RESUMO

Extracting clean water from oily wastewater and seawater is one of the effective strategies to alleviate the freshwater crisis. However, achieving both high separation efficiency and excellent salt resistance remain challenges for materials. Herein, a novel methyltrichlorosilane-modified polyvinyl alcohol/cellulose aerogel (MPCA) was prepared by freeze drying, chemical cross-linking, and chemical vapor deposition (CVD) methods. The superwetting MPCA presented an asymmetric structure, in which the small dense pores at the top surface facilitated the efficient separation of water-in-oil (W/O) emulsions and the large pores on the bottom surface were beneficial for brine exchange. The as-prepared superwetting aerogel was suitable for the separation of various W/O emulsions with excellent separation flux (631.9-2368.7 L·m-2·h-1) and outstanding separation efficiency (99.5 %). In addition, MPCA achieved a high evaporation efficiency of 1.39 kg·m-2·h-1 and a satisfactory energy conversion efficiency of 89.7 %. Moreover, the unique asymmetric structure endowed the evaporator excellent salt resistance and could self-dissolve the accumulated salt in 20 min. The as-prepared MPCA could achieve efficient W/O emulsion separation as well as produce freshwater in seawater, providing a new strategy for oily waste seawater purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA