Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102811, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539036

RESUMO

The Na+/K+-ATPase is an integral plasma membrane glycoprotein of all animal cells that couples the exchange of intracellular Na+ for extracellular K+ to the hydrolysis of ATP. The asymmetric distribution of Na+ and K+ is essential for cellular life and constitutes the physical basis of a series of fundamental biological phenomena. The pumping mechanism is explained by the Albers-Post model. It involves the presence of gates alternatively exposing Na+/K+-ATPase transport sites to the intracellular and extracellular sides and includes occluded states in which both gates are simultaneously closed. Unlike for K+, information is lacking about Na+-occluded intermediates, as occluded Na+ was only detected in states incapable of performing a catalytic cycle, including two Na+-containing crystallographic structures. The current knowledge is that intracellular Na+ must bind to the transport sites and become occluded upon phosphorylation by ATP to be transported to the extracellular medium. Here, taking advantage of epigallocatechin-3-gallate to instantaneously stabilize native Na+-occluded intermediates, we isolated species with tightly bound Na+ in an enzyme able to perform a catalytic cycle, consistent with a genuine occluded state. We found that Na+ becomes spontaneously occluded in the E1 dephosphorylated form of the Na+/K+-ATPase, exhibiting positive interactions between binding sites. In fact, the addition of ATP does not produce an increase in Na+ occlusion as it would have been expected; on the contrary, occluded Na+ transiently decreases, whereas ATP lasts. These results reveal new properties of E1 intermediates of the Albers-Post model for explaining the Na+ transport pathway.


Assuntos
Biocatálise , ATPase Trocadora de Sódio-Potássio , Sódio , Animais , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Cinética , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Transporte de Íons , Fosforilação , Cátions Monovalentes/metabolismo
2.
Curr Issues Mol Biol ; 46(2): 1516-1529, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38392216

RESUMO

Carcinogens, such as arecoline, play a crucial role in cancer progression and continuous gene mutations by generating reactive oxygen species (ROS). Antioxidants can reduce ROS levels and potentially prevent cancer progression but may paradoxically enhance the survival of cancer cells. This study investigated whether epigallocatechin-3-gallate (EGCG), an antioxidant from green tea, could resolve this paradox. Prostate cancer cells (PC-3 cell line) were cultured and treated with arecoline combined with NAC (N-acetylcysteine) or EGCG; the combined effects on intracellular ROS levels and cell viability were examined using the MTT and DCFDA assays, respectively. In addition, apoptosis, cell cycle, and protein expression were investigated using flow cytometry and western blot analysis. Our results showed that EGCG, similar to NAC (N-acetylcysteine), reduced the intracellular ROS levels, which were elevated by arecoline. Moreover, EGCG not only caused cell cycle arrest but also facilitated cell apoptosis in arecoline-treated cells in a synergistic manner. These were evidenced by elevated levels of cyclin B1 and p27, and increased fragmentation of procaspase-3, PARP, and DNA. Our findings highlight the potential use of EGCG for cancer prevention and therapy.

3.
BMC Cancer ; 24(1): 486, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632501

RESUMO

BACKGROUND: The antiviral drug Nirmatrelvir was found to be a key drug in controlling the progression of pneumonia during the infectious phase of COVID-19. However, there are very few options for effective treatment for cancer patients who have viral pneumonia. Glucocorticoids is one of the effective means to control pneumonia, but there are many adverse events. EGCG is a natural low toxic compound with anti-inflammatory function. Thus, this study was designed to investigate the safety and efficacy of epigallocatechin-3-gallate (EGCG) aerosol to control COVID-19 pneumonia in cancer populations. METHODS: The study was designed as a prospective, single-arm, open-label phase I/II trial at Shandong Cancer Hospital and Institute, between January 5, 2023 to March 31,2023 with viral pneumonia on radiographic signs after confirmed novel coronavirus infection. These patients were treated with EGCG nebulization 10 ml three times daily for at least seven days. EGCG concentrations were increased from 1760-8817umol/L to 4 levels with dose escalation following a standard Phase I design of 3-6 patients per level. Any grade adverse event caused by EGCG was considered a dose-limiting toxicity (DLT). The maximum tolerated dose (MTD) is defined as the highest dose with less than one-third of patients experiencing dose limiting toxicity (DLT) due to EGCG. The primary end points were the toxicity of EGCG and CT findings, and the former was graded by Common Terminology Criteria for Adverse Events (CTCAE) v. 5.0. The secondary end point was the laboratory parameters before and after treatment. RESULT: A total of 60 patients with high risk factors for severe COVID-19 pneumonia (factors such as old age, smoking and combined complications)were included in this phase I-II study. The 54 patients in the final analysis were pathologically confirmed to have tumor burden and completed the whole course of treatment. A patient with bucking at a level of 1760 umol/L and no acute toxicity associated with EGCG has been reported at the second or third dose gradients. At dose escalation to 8817umol/L, Grade 1 adverse events of nausea and stomach discomfort occurred in two patients, which resolved spontaneously within 1 hour. After one week of treatment, CT showed that the incidence of non-progression of pneumonia was 82% (32/39), and the improvement rate of pneumonia was 56.4% (22/39). There was no significant difference in inflammation-related laboratory parameters (white blood cell count, lymphocyte count, IL-6, ferritin, C-reactive protein and lactate dehydrogenase) before and after treatment. CONCLUSION: Aerosol inhalation of EGCG is well tolerated, and preliminary investigation in cancer population suggests that EGCG may be effective in COVID-19-induced pneumonia, which can promote the improvement of patients with moderate pneumonia or prevent them from developing into severe pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05758571. Date of registration: 8 February 2023.


Assuntos
COVID-19 , Catequina , Neoplasias , Pneumonia Viral , Humanos , Catequina/efeitos adversos , Catequina/análogos & derivados , Catequina/uso terapêutico , Oxigênio , Pneumonia Viral/epidemiologia , Estudos Prospectivos , Aerossóis e Gotículas Respiratórios , Resultado do Tratamento
4.
Microbiol Immunol ; 68(8): 281-293, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886542

RESUMO

The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.


Assuntos
Proteínas Quinases Ativadas por AMP , Catequina , Lipopolissacarídeos , Transdução de Sinais , Sirtuína 1 , Timo , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Sirtuína 1/metabolismo , Camundongos , Feminino , Timo/efeitos dos fármacos , Timo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Atrofia
5.
Biol Pharm Bull ; 47(2): 509-517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38403661

RESUMO

(-)-Epigallocatechin-3-gallate (EGCg), a major constituent of green tea extract, is well-known to exhibit many beneficial actions for human health by interacting with numerous proteins. In this study we identified synaptic vesicle membrane protein VAT-1 homolog (VAT1) as a novel EGCg-binding protein in human neuroglioma cell extracts using a magnetic pull-down assay and LC-tandem mass spectrometry. We prepared recombinant human VAT1 and analyzed its direct binding to EGCg and its alkylated derivatives using surface plasmon resonance. For EGCg and the derivative NUP-15, we measured an association constant of 0.02-0.85 ×103 M-1s-1 and a dissociation constant of nearly 8 × 10-4 s-1. The affinity Km(affinity) of their binding to VAT1 was in the 10-20 µM range and comparable with that of other EGCg-binding proteins reported previously. Based on the common structure of the compounds, VAT1 appeared to recognize a catechol or pyrogallol moiety around the B-, C- and G-rings of EGCg. Next, we examined whether VAT1 mediates the effects of EGCg and NUP-15 on expression of neprilysin (NEP). Treatments of mock cells with these compounds upregulated NEP, as observed previously, whereas no effect was observed in the VAT1-overexpressing cells, indicating that VAT1 prevented the effects of EGCg or NUP-15 by binding to and inactivating them in the cells overexpressing VAT1. Further investigation is required to determine the biological significance of the VAT1-EGCg interaction.


Assuntos
Catequina , Proteínas de Transporte Vesicular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Chá/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Biol Pharm Bull ; 47(7): 1248-1254, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38866477

RESUMO

Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.


Assuntos
Catequina , Etanol , Fator 2 Relacionado a NF-E2 , NF-kappa B , Transdução de Sinais , Etanol/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , NF-kappa B/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38826134

RESUMO

Medial arterial calcification (MAC) accompanying chronic kidney disease (CKD) leads to increased vessel wall stiffness, myocardial ischemia, heart failure, and increased cardiovascular morbidity and mortality. Unfortunately, there are currently no drugs available to treat MAC. The natural polyphenol epigallocatechin-3-gallate (EGCG) has been demonstrated to protect against cardiovascular disease; however, whether EGCG supplementation inhibits MAC in CKD remains unclear. In this study, we utilize a CKD-associated MAC model to investigate the effects of EGCG on vascular calcification and elucidate the underlying mechanisms involved. Our findings demonstrate that EGCG treatment significantly reduces calcium phosphate deposition and osteogenic differentiation of VSMCs in vivo and in vitro in a dose-dependent manner. In addition, through RNA sequencing (RNA-seq) analysis, we show a significant activation of the transcription factor JunB both in CKD mouse arteries and in osteoblast-like VSMCs. Notably, EGCG effectively suppresses CKD-associated MAC by inhibiting the activity of JunB. In addition, overexpression of JunB can abolish while knockdown of JunB can enhance the inhibitory effect of EGCG on the osteogenic differentiation of VSMCs. Furthermore, EGCG supplementation inhibits MAC in CKD via modulation of the JunB-dependent Ras/Raf/MEK/ERK signaling pathway. In conclusion, our study highlights the potential therapeutic value of EGCG for managing CKD-associated MAC, as it mitigates this pathological process through targeted inactivation of JunB.

8.
Phytochem Anal ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623624

RESUMO

INTRODUCTION: Skin cancer poses a significant health risk globally, necessitating effective and safe therapeutic interventions. Epigallocatechin-3-gallate (EGCG) from green tea and rosmarinic acid (RA) from herbs like rosemary offer promising anticancer properties. Combining these compounds may enhance their effectiveness, prompting the need for a reliable analytical method to quantify them. OBJECTIVE: Herein, we present the development and validation of a high-performance thin-layer chromatography (HPTLC) method for concurrent quantification of EGCG and RA in lipid-based nanoparticles and biological samples. METHODOLOGY: The method underwent optimisation through design of experiments (DoE), resulting in the establishment of robust chromatographic conditions. The separation process utilised aluminium HPTLC plates coated with silica gel 60 F254 as the stationary phase, with the mobile phase comprising ethyl acetate, toluene, formic acid, and methanol in a ratio of 4:4:1:1 v/v. RESULTS: The retention factor (Rf) values obtained were 0.38 for EGCG and 0.61 for RA. The method demonstrated linearity over a range of 100-500 ng/band for both compounds with excellent correlation coefficients. Limits of detection and quantification were determined, indicating high sensitivity. Precision evaluations revealed relative standard deviation below 2%, ensuring method reproducibility. Recovery assays in lipid-based nanoparticles, plasma, and urine samples demonstrated excellent recoveries (96.2%-102.1%). Forced degradation studies revealed minimal degradation under various stress conditions, with photolytic degradation showing the least impact. CONCLUSION: The developed HPTLC method offers a rapid, sensitive, and reliable approach for quantifying EGCG and RA, laying the groundwork for their further investigation as anticancer agents alone and in combination therapies.

9.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338914

RESUMO

Alzheimer's disease and Type 2 diabetes are two epidemiologically linked diseases which are closely associated with the misfolding and aggregation of amyloid proteins amyloid-ß (Aß) and human islet amyloid polypeptide (hIAPP), respectively. The co-aggregation of the two amyloid proteins is regarded as the fundamental molecular mechanism underlying their pathological association. The green tea extract epigallocatechin-3-gallate (EGCG) has been extensively demonstrated to inhibit the amyloid aggregation of Aß and hIAPP proteins. However, its potential role in amyloid co-aggregation has not been thoroughly investigated. In this study, we employed the enhanced-sampling replica exchange molecular dynamics simulation (REMD) method to investigate the effect of EGCG on the co-aggregation of Aß and hIAPP. We found that EGCG molecules substantially diminish the ß-sheet structures within the amyloid core regions of Aß and hIAPP in their co-aggregates. Through hydrogen-bond, π-π and cation-π interactions targeting polar and aromatic residues of Aß and hIAPP, EGCG effectively attenuates both inter-chain and intra-chain interactions within the co-aggregates. All these findings indicated that EGCG can effectively inhibit the co-aggregation of Aß and hIAPP. Our study expands the potential applications of EGCG as an anti-amyloidosis agent and provides therapeutic options for the pathological association of amyloid misfolding disorders.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Diabetes Mellitus Tipo 2/metabolismo , Simulação de Dinâmica Molecular , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/uso terapêutico , Amiloide/metabolismo
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732012

RESUMO

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Assuntos
Catequina , MicroRNAs , Neuroblastoma , Proteínas de Ligação a RNA , Catequina/análogos & derivados , Catequina/farmacologia , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
11.
AAPS PharmSciTech ; 25(6): 176, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085673

RESUMO

The objective of this study was to create a new treatment for lung cancer using solid lipid nanoparticles (SLNs) loaded with gemcitabine (GEM) and epigallocatechin-3-gallate (EGCG) that can be administered through the nose. We analyzed the formulation for its effectiveness in terms of micromeritics, drug release, and anti-cancer activity in the benzopyrene-induced Swiss albino mice lung cancer model. We also assessed the pharmacokinetics, biodistribution, biocompatibility, and hemocompatibility of GEM-EGCG SLNs. The GEM-EGCG SLNs had an average particle size of 93.54 ± 11.02 nm, a polydispersity index of 0.146 ± 0.05, and a zeta potential of -34.7 ± 0.4 mV. The entrapment efficiency of GEM and EGCG was 93.39 ± 4.2% and 89.49 ± 5.1%, respectively, with a sustained release profile for both drugs. GEM-EGCG SLNs had better pharmacokinetics than other treatments, and a high drug targeting index value of 17.605 for GEM and 2.118 for EGCG, indicating their effectiveness in targeting the lungs. Blank SLNs showed no pathological lesions in the liver, kidney, and nasal region validating the safety of SLNs. GEM-EGCG SLNs also showed fewer pathological lesions than other treatments and a lower hemolysis rate of 1.62 ± 0.10%. These results suggest that GEM-EGCG SLNs could effectively treat lung cancer.


Assuntos
Catequina , Desoxicitidina , Gencitabina , Neoplasias Pulmonares , Nanopartículas , Animais , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacocinética , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Camundongos , Catequina/análogos & derivados , Catequina/administração & dosagem , Catequina/farmacocinética , Catequina/química , Nanopartículas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Distribuição Tecidual , Administração Intranasal , Tamanho da Partícula , Liberação Controlada de Fármacos , Lipídeos/química , Portadores de Fármacos/química , Masculino , Lipossomos
12.
AAPS PharmSciTech ; 25(4): 66, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519779

RESUMO

Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-ß1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-ß1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.


Assuntos
Catequina/análogos & derivados , Fibrose Oral Submucosa , Ratos , Animais , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/induzido quimicamente , Fator de Crescimento Transformador beta1/efeitos adversos , Hidrogéis , Mucosa Bucal , Colágeno
13.
Bull Exp Biol Med ; 177(1): 88-92, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38960956

RESUMO

We studied antimicrobial activity of epigallocatechin-3-gallate (EGCG), a green tea polyphenolic catechin, and its combined use with ceftazidime (CAZ) against bacterial strains of Klebsiella pneumoniae. EGCG exhibited no activity against strains of K. pneumoniae with a different sensitivity to CAZ. However, for a "sensitive" strain, a decrease in minimum inhibitory concentration (MIC) of CAZ (from 0.064 to 0.023 mg/liter) was revealed when CAZ was co-administered with EGCG. For a "resistant" stain, MIC of CAZ remained high, but activation of EGCG at its high concentrations was observed. Indirect evidence of antimicrobial effect of EGCG co-administered with CAZ on Klebsiella was obtained.


Assuntos
Antibacterianos , Catequina , Ceftazidima , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Klebsiella pneumoniae/efeitos dos fármacos , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Chá/química
14.
Dokl Biochem Biophys ; 515(1): 29-35, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189882

RESUMO

Although epigallocatechin-3-gallate (EGCG) can potentiate chemotherapeutic drugs at high concentrations, its clinical translation is hampered by exceeding possible concentration thresholds. This study proposes a dichotomous use of low-concentration EGCG in chemotherapy. During the first cycle of combined treatment with oxaliplatin (OXA), low-concentration EGCG antagonized the cytotoxic effect of OXA on colorectal cancer (CRC) cells. However, when OXA was subsequently administered, the sensitivity of CRC cells markedly increased. Although low-concentration EGCG counteracted OXA, it reduced the OXA-induced secretion of vascular endothelial growth factor by tumor cells, thereby contributing to the increase in the sensitivity of tumor cells to the second round of OXA treatment. Therefore, low-concentration EGCG showed potential as a viable adjunct to modulate chemosensitivity in CRC.


Assuntos
Antineoplásicos , Catequina/análogos & derivados , Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Neoplasias Colorretais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
15.
Semin Cancer Biol ; 80: 256-275, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461153

RESUMO

Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.


Assuntos
Catequina , Neoplasias , Apoptose , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Estudos Prospectivos , Reprodutibilidade dos Testes
16.
Biochem Biophys Res Commun ; 671: 116-123, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37300941

RESUMO

Quercetin, a dietary flavonoid, has been shown to protect against various neurodegenerative diseases with mechanisms largely unknown. After oral administration, quercetin is rapidly conjugated, and the aglycone is not detectable in the plasma and brain. However, its glucuronide and sulfate conjugates are present only at low nanomolar concentrations in the brain. Since quercetin and its conjugates have limited antioxidant capability at low nanomolar concentrations, it is crucial to determine whether they induce neuroprotection by binding to high-affinity receptors. Previously we found that (-)-epigallocatechin-3-gallate (EGCG), a polyphenol from green tea, induces neuroprotection by binding to the 67-kDa laminin receptor (67LR). Therefore, in this study, we determined whether quercetin and its conjugates bind 67LR to induce neuroprotection and compared their ability with EGCG. Based on the quenching of intrinsic tryptophan fluorescence of peptide G (residues 161-180 in 67LR), we found quercetin, quercetin-3-O-glucuronide, and quercetin-3-O-sulfate bind to this peptide with a high affinity comparable to EGCG. Molecular docking using the crystal structure of 37-kDa laminin receptor precursor supported the high-affinity binding of all these ligands to the site corresponding to peptide G. A pretreatment with quercetin (1-1000 nM) did not effectively protect Neuroscreen-1 cells from death induced by serum starvation. Contrarily, a pretreatment with low concentrations (1-10 nM) of quercetin conjugates better protected these cells than quercetin and EGCG. The 67LR-blocking antibody substantially prevented neuroprotection by all these agents, suggesting the role of 67LR in this process. Collectively, these studies reveal that quercetin induces neuroprotection primarily through its conjugates via high affinity binding to 67LR.


Assuntos
Catequina , Flavonoides , Flavonoides/farmacologia , Quercetina/farmacologia , Glucuronídeos/farmacologia , Sulfatos , Simulação de Acoplamento Molecular , Polifenóis/farmacologia , Receptores de Laminina/metabolismo , Catequina/farmacologia , Moléculas de Adesão Celular , Morte Celular
17.
Cancer Cell Int ; 23(1): 241, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838685

RESUMO

MicroRNAs (miRNAs) are a group of small non-coding RNAs that affect gene expression. The role of miRNAs in different types of cancers has been published and it was shown that several miRNAs are inappropriately expressed in different cancers. Among the mechanisms that can cause this lack of proper expression are epigenetics, chromosomal changes, polymorphisms or defects in processing proteins. Recent research shows that phytochemicals, including epigallocatechin-3-gallate (EGCG), exert important epigenetic-based anticancer effects such as pro-apoptotic or anti proliferative through miRNA gene silencing. Given that EGCG is able to modulate a variety of cancer-related process i.e., angiogenesis, proliferation, metastasis and apoptosis via targeting various miRNAs such as let-7, miR-16, and miR-210. The discovery of new miRNAs and the differences observed in their expression when exposed to EGCG provides evidence that targeting these miRNAs may be beneficial as a form of treatment. In this review, we aim to provide an overview, based on current knowledge, on how phytochemicals, including epigallocatechin-3-gallate, can be considered as potential miRNAs modulator to improve efficacy of current cancer treatments.

18.
Cancer Cell Int ; 23(1): 335, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129839

RESUMO

Green tea, a popular and healthy nonalcoholic drink consumed globally, is abundant in natural polyphenols. One of these polyphenols is epigallocatechin-3-gallate (EGCG), which offers a range of health benefits, such as metabolic regulation, antioxidant properties, anti-inflammatory effects, and potential anticancer properties. Clinical research has shown that EGCG can inhibit cancers in the male and female reproductive systems, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Further research on cervical cancer has revealed the crucial role of epigenetic mechanisms in the initiation and progression of this type of cancer. These include changes to the DNA, histones, and non-coding RNAs, such as microRNAs. These changes are reversible and can occur even before genetic mutations, making them a potential target for intervention therapies. One promising approach to cancer prevention and treatment is the use of specific agents (known as epi-drugs) that target the cancer epigenome or epigenetic dysregulation. Phytochemicals, a group of diverse molecules, have shown potential in modulating cancer processes through their interaction with the epigenetic machinery. Among these, green tea and its main polyphenol EGCG have been extensively studied. This review highlights the therapeutic effects of EGCG and its nanoformulations on cervical cancer. It also discusses the epigenetic events involved in cervical cancer, such as DNA methylation and microRNA dysregulation, which may be affected by EGCG.

19.
Mol Cell Biochem ; 478(4): 887-898, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36112238

RESUMO

Colon cancer is a common malignant tumor of the digestive tract. Tea catechin exerts anti-tumor effects in colon cancer. This work aimed to determine the functions of epigallocatechin-3-gallate (EGCG), one of the main active components of Tea catechins, in the progression of colon cancer. In this work, enzyme-linked immune-sorbent assay, quantitative real-time PCR and western blotting was utilized to examine the levels of IL-1ß, TNF-α, STAT3, p-STAT3 and CXCL8 in colon cancer patients and healthy controls. Compared with healthy controls, the levels of IL-1ß and TNF-α were significantly increased in the peripheral blood of colon cancer patients, and the expression of STAT3, p-STAT3 and CXCL8 was elevated in the neutrophils derived from colon cancer patients. Moreover, neutrophils were treated with phorbol ester (PMA) or DNase I to induce or impede the formation of neutrophil extracellular traps (NETs). Both STAT3 overexpression and PMA treatment promoted the expression of CXCL8, myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in the colon cancer-derived neutrophils, indicating that STAT3 overexpression facilitated the formation of NETs. STAT3 deficiency suppressed the formation of NETs, which consistent with the results of DNase I treatment. Transwell assay was utilized to detect the migration and invasion of colon cancer cell line SW480. EGCG treatment suppressed the formation of NETs and the expression of STAT3 and CXCL8 in the colon cancer-derived neutrophils, and then inhibited the migration and invasion of SW480 cells. In conclusion, this work demonstrated that EGCG inhibited the formation of NETs and subsequent suppressed the migration and invasion of colon cancer cells by regulating STAT3/CXCL8 signalling pathway. Thus, this study suggests that EGCG may become a potential drug for colon cancer therapy.


Assuntos
Catequina , Neoplasias do Colo , Armadilhas Extracelulares , Humanos , Catequina/farmacologia , Armadilhas Extracelulares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neutrófilos/metabolismo , Chá , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/farmacologia , Fator de Transcrição STAT3/metabolismo
20.
Crit Rev Food Sci Nutr ; 63(30): 10382-10411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35491671

RESUMO

Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.


Assuntos
Catequina , Humanos , Disponibilidade Biológica , Chá/química , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA