Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 27(5): e14430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714364

RESUMO

Wintering birds serve as vital climate sentinels, yet they are often overlooked in studies of avian diversity change. Here, we provide a continental-scale characterization of change in multifaceted wintering avifauna and examine the effects of climate change on these dynamics. We reveal a strong functional reorganization of wintering bird communities marked by a north-south gradient in functional diversity change, along with a superimposed mild east-west gradient in trait composition change. Assemblages in the northern United States saw contractions of the functional space and increases in functional evenness and originality, while the southern United States saw smaller contractions of the functional space and stasis in evenness and originality. Shifts in functional diversity were underlined by significant reshuffling in trait composition, particularly pronounced in the western and northern United States. Finally, we find strong contributions of climate change to this functional reorganization, underscoring the importance of wintering birds in tracking climate change impacts on biodiversity.


Assuntos
Biodiversidade , Aves , Mudança Climática , Estações do Ano , Animais , Aves/fisiologia , Estados Unidos
2.
Ecol Appl ; 34(4): e2943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504599

RESUMO

Evaluating the impacts of farming systems on biodiversity is increasingly important given the need to stem biodiversity loss, decrease fossil fuel dependency, and maintain ecosystem services benefiting farmers. We recorded woody and herbaceous plant species diversity, composition, and abundance in 43 wetland-adjacent prairie remnants beside crop fields managed using conventional, minimum tillage, organic, or perennial cover (wildlife-friendly) land management in the Prairie Pothole Region. We used a hierarchical framework to estimate diversity at regional and local scales (gamma, alpha), and how these are related through species turnover (beta diversity). We tested the expectation that gamma richness/evenness and beta diversity of all plants would be higher in remnants adjacent to perennial cover and organic fields than in conventional and minimum tillage fields. We expected the same findings for plants providing ecosystem services (bee-pollinated species) and disservices (introduced species). We predicted similar relative effects of land management on alpha diversity, but with the expectation that the benefits of organic farming would decrease with increasing grassland in surrounding landscapes. Gamma richness and evenness of all plants were highest for perennial cover, followed by minimum tillage, organic, and conventional sites. Bee-pollinated species followed a similar pattern for richness, but for evenness organic farming came second, after perennial cover sites, followed by minimum tillage and conventional. For introduced species, organic sites had the highest gamma richness and evenness. Grassland amount moderated the effect of land management type on all plants and bee-pollinated plant richness, but not as expected. The richness of organic sites increased with the amount of grassland in the surrounding landscape. Conversely, for conventional sites, richness increased as the amount of grassland in the landscape declined. Our results are consistent with the expectation that adopting wildlife-friendly land management practices can benefit biodiversity at regional and local scales, in particular the use of perennial cover to benefit plant diversity at regional scales. At more local extents, organic farming increased plant richness, but only when sufficient grassland was available in the surrounding landscape; organic farms also had the highest beta diversity for all plants and bee-pollinated plants. Maintaining native cover in agroecosystems, in addition to low-intensity farming practices, could sustain plant biodiversity and facilitate important ecosystem services.


Assuntos
Agricultura , Biodiversidade , Plantas , Áreas Alagadas , Agricultura/métodos , Plantas/classificação , Pradaria , Conservação dos Recursos Naturais/métodos
3.
J Anim Ecol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979934

RESUMO

Understanding patterns of species diversity is crucial for ecological research and conservation, and this understanding may be improved by studying patterns in the two components of species diversity, species richness and evenness of abundance of species. Variation in species richness and evenness has previously been linked to variation in total abundance of communities as well as productivity gradients. Exploring both components of species diversity is essential because these components could be unrelated or driven by different mechanisms. The aim of this study was to investigate the relationship between species richness and evenness in European bird communities along an extensive latitudinal gradient. We examined their relationships with latitude and Net Primary Productivity, which determines energy and matter availability for heterotrophs, as well as their responses to territory densities (i.e. the number of territories per area) and community biomass (i.e. the bird biomass per area). We applied a multivariate Poisson log-normal distribution to unique long-term, high-quality time-series data, allowing us to estimate species richness of the community as well as the variance of this distribution, which acts as an inverse measure of evenness. Evenness in the distribution of abundance of species in the community was independent of species richness. Species richness increased with increasing community biomass, as well as with increasing density. Since both measures of abundance were explained by NPP, species richness was partially explained by energy-diversity theory (i.e. the more energy, the more species sustained by the ecosystem). However, species richness did not increase linearly with NPP but rather showed a unimodal relationship. Evenness was not explained either by productivity nor by any of the aspects of community abundance. This study highlights the importance of considering both richness and evenness to gain a better understanding of variation in species diversity. We encourage the study of both components of species diversity in future studies, as well as use of simulation studies to verify observed patterns between richness and evenness.

4.
Oecologia ; 205(3-4): 487-496, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38976074

RESUMO

Litter-derived dissolved organic matter (DOM) plays an essential role in biogeochemical cycles. In wetlands, species relative abundance and its change have great influences on input features of litter-derived DOM, including chemical characteristics per se and functional diversity of chemical characteristics. Functional diversity is an important factor controlling organic matter biodegradation, but little is known in terms of the DOM. We mixed litter leachates of four macrophytes with a constant concentration (20 mg DOC L-1) but varying dominant species and volume ratios, i.e. 15:1:1:1 (low-evenness), 5:1:1:1 (mid-evenness), and 2:1:1:1 (high-evenness), generating a gradient of chemical characteristics and functional diversity (represented by functional dispersion index FDis). Based on a 42-d incubation, we measured degradation dynamics of these DOM mixtures, and analyzed potential determinants. After 42 days of incubation, the high-evenness treatments, along with mid-evenness treatments sometimes, had most degradation, while the low-evenness treatments always had least degradation. The degradation of mixtures related significantly to not only the volume-weighted mean chemical characteristics but also FDis. Furthermore, the FDis even explained more variation of degradation. The non-additive mixing effects, synergistic effects (faster degradation than predicted) in particular, on degradation of DOM mixtures were rather common, especially in the high- and mid-evenness treatments. Remarkably, the mixing effects increased linearly with the FDis values (r2adj. = 0.426). This study highlights the critical role of functional diversity in regulating degradation of mixed litter-derived DOM. Resulting changes in chemistry and composition of litter leachates due to plant community succession may exert substantial influences on biogeochemical cycling.


Assuntos
Biodegradação Ambiental , Água Doce , Áreas Alagadas , Compostos Orgânicos/análise
5.
New Phytol ; 237(4): 1333-1346, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305241

RESUMO

The host-associated microbiome highly determines plant health. Available organic resources, such as food for microbes, are important in shaping microbial community structure and multifunctionality. However, how using organic resources precisely manipulates the soil microbiome and makes it supportive of plant health remains unclear. Here, we experimentally tested the influence of carbon resource diversity on the microbial trophic network and pathogen invasion success in a microcosm study. We further explored how resource diversity affects microbial evenness, community functions, and plant disease outcomes in systems involving tomato plants and the in vivo soil microbiome. Increasing available resource diversity altered trophic network architecture, increased microbial evenness, and thus increased the certainty of successful pathogen control. By contrast, the invasion resistance effects of low resource diversity were less effective and highly varied. Accordingly, increases in the evenness and connection of dominant species induced by high resource diversity significantly contributed to plant disease suppression. Furthermore, high carbohydrate diversity upregulated plant immune system regulation-related microbial functions. Our results deepen the biodiversity-invasion resistance theory and provide practical guidance for the control of plant pathogens and diseases by using organic resource-mediated approaches, such as crop rotation, intercropping, and organic amendments.


Assuntos
Biodiversidade , Carbono , Plantas , Consórcios Microbianos , Solo , Microbiologia do Solo
6.
Glob Chang Biol ; 29(13): 3781-3793, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37070402

RESUMO

Climate change impacts on freshwater ecosystems and freshwater biodiversity show strong spatial variability, highlighting the importance of a global perspective. While previous studies on biodiversity mostly focused on species richness, functional diversity, which is a better predictor of ecosystem functioning, has received much less attention. This study aims to comprehensively assess climate change threats to the functional diversity of freshwater fish across the world, considering three complementary metrics-functional richness, evenness and divergence. We built on existing spatially explicit projections of geographical ranges for 11,425 riverine fish species as affected by changes in streamflow and water temperature extremes at four warming levels (1.5°C, 2.0°C, 3.2°C and 4.5°C). To estimate functional diversity, we considered the following four continuous, morphological and physiological traits: relative head length, relative body depth, trophic level and relative growth rate. Together, these traits cover five ecological functions. We treated missing trait values in two different ways: we either removed species with missing trait values or imputed them. Depending on the warming level, 6%-25% of the locations globally face a complete loss of functional diversity when assuming no dispersal (6%-17% when assuming maximal dispersal), with hotspots in the Amazon and Paraná River basins. The three facets of functional diversity do not always follow the same pattern. Sometimes, functional richness is not yet affected despite species loss, while functional evenness and divergence are already reducing. Other times, functional richness reduces, while functional evenness and/or divergence increase instead. The contrasting patterns of the three facets of functional diversity show their complementarity among each other and their added value compared to species richness. With increasing climate change, impacts on freshwater communities accelerate, making early mitigation critically important.


Assuntos
Mudança Climática , Ecossistema , Animais , Biodiversidade , Água Doce , Peixes
7.
Crit Rev Food Sci Nutr ; 63(25): 7837-7851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35297716

RESUMO

Dietary diversity is an established public health principle, and its measurement is essential for studies of diet quality and food security. However, conventional between food group scores fail to capture the nutritional variability and ecosystem services delivered by dietary richness and dissimilarity within food groups, or the relative distribution (i.e., evenness or moderation) of e.g., species or varieties across whole diets. Summarizing food biodiversity in an all-encompassing index is problematic. Therefore, various diversity indices have been proposed in ecology, yet these require methodological adaption for integration in dietary assessments. In this narrative review, we summarize the key conceptual issues underlying the measurement of food biodiversity at an edible species level, assess the ecological diversity indices previously applied to food consumption and food supply data, discuss their relative suitability, and potential amendments for use in (quantitative) dietary intake studies. Ecological diversity indices are often used without justification through the lens of nutrition. To illustrate: (i) dietary species richness fails to account for the distribution of foods across the diet or their functional traits; (ii) evenness indices, such as the Gini-Simpson index, require widely accepted relative abundance units (e.g., kcal, g, cups) and evidence-based moderation weighting factors; and (iii) functional dissimilarity indices are constructed based on an arbitrary selection of distance measures, cutoff criteria, and number of phylogenetic, nutritional, and morphological traits. Disregard for these limitations can lead to counterintuitive results and ambiguous or incorrect conclusions about the food biodiversity within diets or food systems. To ensure comparability and robustness of future research, we advocate food biodiversity indices that: (i) satisfy key axioms; (ii) can be extended to account for disparity between edible species; and (iii) are used in combination, rather than in isolation.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2051163 .


Assuntos
Biodiversidade , Dieta , Humanos , Ingestão de Alimentos , Filogenia
8.
Bull Entomol Res ; 113(4): 565-573, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37434448

RESUMO

Arthropod species diversity enhances ecosystem productivity and sustainability by increasing pollination and biological control services. Although, it is declining rapidly due to conventional agricultural intensification, organic agriculture with reduced reliance on agronomic inputs can regenerate ecosystems' resilience and restore them. Here, we report whether hexapod communities differ on both types of farming systems in small-scale field plot experiments, wherein Maize variety AG-589 was grown organically and conventionally in the 2020 and 2021 seasons. Livestock manure was applied in organic fields, whereas nitrogen and phosphorous were used as synthetic fertilizers in conventional fields. Hexapods were sampled three weeks after sowing once a week from the middle rows of subplots from both organically and conventionally grown maize. Twelve species of herbivores and four species of predators were recorded. Hexapod abundance overall and that of herbivores only was higher in conventionally cultivated maize, while predator abundance was higher in organic maize. Herbivores species diversity and evenness were significantly higher in conventional maize. Predator species diversity and evenness were significantly higher in organic maize fields. We noted predator abundance, diversity, and evenness as strong predictors to lower herbivore populations. These findings suggest that organic farming conserves natural enemies' biodiversity and regulates herbivores with increased provision of suitable habitats and prey resources for natural enemies, leading to enhanced relative abundance in their specialized niches. Thus, organic agriculture can potentially mediate better ecosystem services.


Assuntos
Artrópodes , Ecossistema , Animais , Agricultura Orgânica , Zea mays , Insetos , Biodiversidade , Agricultura
9.
Proc Natl Acad Sci U S A ; 117(39): 24345-24351, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32900958

RESUMO

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.


Assuntos
Plantas/classificação , Sequestro de Carbono , Mudança Climática , Ecossistema , Desenvolvimento Vegetal , Plantas/metabolismo , Solo/química
10.
J Environ Manage ; 327: 116858, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436465

RESUMO

Trait-based approaches are being increasingly applied in ecology, and the influence of individual-level trait variation on communities and species has been demonstrated. However, the responses of individual trait variation to environmental changes remain to be explored. To examine the indicating functions of multidimensional traits, individual-level measurements of the dominant diatom genus Aulacoseira Thwaites in the Pearl River Delta were performed, and corresponding responses of three trait indices (trait richness, trait evenness, and trait dispersion) to abiotic and biotic factors were examined. Our results indicated that the three individual trait diversity indices were regulated by different factors. Trait richness was only significantly affected by abiotic factors (temperature), while trait evenness and trait dispersion were regulated by both abiotic and biotic factors. In addition, the direct influence of abiotic factors was more significant than that of biotic factors, implying that the multidimensional trait variation of Aulacoseira was more responsive to environmental changes than to interspecific interactions. Therefore, the multidimensional trait variation of Aulacoseira could be used as an effective indicator to track environmental changes. Our study elucidated the mechanisms relating individual-level trait variation to phytoplankton community dynamics; this could improve our ability to forecast changes in ecosystem properties across environmental gradients.


Assuntos
Diatomáceas , Ecossistema , Rios , Ecologia , Fenótipo , Biodiversidade
11.
J Environ Manage ; 328: 116990, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36508980

RESUMO

Methane (CH4) is the main greenhouse gas emitted from rice paddy fields driven by methanogens, for which methanogenic abundance on CH4 production has been intensively investigated. However, information is limited about the relationship between methanogenic diversity (e.g., richness and evenness) and CH4 production. Three independent field experiments with different straw managements including returning method, burial depth, and burial amount were used to identify the effects of methanogenic diversity on CH4 production, and its regulating factors from soil properties in a rice-wheat cropping system. The results showed that methanogenic evenness (dominance) can explain 23% of variations in CH4 production potential. CH4 production potential was positively related to methanogenic evenness (R2 = 0.310, p < 0.001), which is driven by soil organic carbon (SOC), available phosphorus (AP), and nitrate (NO3-) through structure equation model (SEM). These findings indicate that methanogenic evenness has a critical role in evaluating the responses of CH4 production to agricultural practices following changes in soil properties. The SEM also revealed that SOC concentration influenced CH4 production potential indirectly via complementarity of methanogenic evenness (dominance) and available phosphorus (AP). Increasing SOC accumulation improved AP release and stimulated CH4 production when SOC was at a low level, whereas decreased evenness and suppressed CH4 production when SOC was at a high level. A nonlinear relationship was detected between SOC and CH4 production potential, and CH4 production potential decreased when SOC was ≥14.16 g kg-1. Our results indicated that the higher SOC sequestration can not only mitigate CO2 emissions directly but CH4 emissions indirectly, highlighting the importance to enhance SOC sequestration using optimum agricultural practices in a rice-wheat cropping system.


Assuntos
Euryarchaeota , Gases de Efeito Estufa , Oryza , Solo/química , Carbono/análise , Agricultura/métodos , Metano/análise , Triticum , Óxido Nitroso/análise
12.
Environ Monit Assess ; 195(12): 1555, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036716

RESUMO

This research quantitatively evaluated the diversity of plants to protect vulnerable species. To measure vegetation information, the appropriate sampling plot size was determined based on the canopy cover of the dominant species of the study area (1 m2). Then, in each unit, sampling was done along 3 transects of 100 m. Along each transect, 10 plots with dimensions of one square meter were placed at a distance of 10 m from each other. In each plot, the type, life forms, frequency of plant species, and species density were recorded. Species diversity indices were calculated using Ecological Methodology software. The values obtained from these indicators were analyzed in SPSS 24 statistical software and using the F test. The results of the Analysis of variance (ANOVA) showed that the highest values of the species diversity indices are in the middle altitudes (ecotone) class. ANOVA of the richness, evenness, and heterogeneity indices in different altitude classes showed that the values of the richness indices were not significant, but among the indices related to the heterogeneity, the Hill index and all the evenness indices were significant. Comparing the numerical indices of our communities enables us to determine the impact of environmental stress in a single community to choose the best habitat among a similar group for conservation. A community that has high diversity and richness is important for conservation. Therefore, the authorities must prevent the destruction of the vegetation of the study area in connection with the implementation of principled and correct management by the potential of the region, but also to reduce the pressure of livestock grazing and carry out corrective and restoration operations, to turn these rangelands towards rich diversity.


Assuntos
Biodiversidade , Ecossistema , Irã (Geográfico) , Monitoramento Ambiental , Plantas
13.
Entropy (Basel) ; 25(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37509976

RESUMO

This paper starts by presenting an empirical finding in the U.S. stock market: Between 2001 and 2021, high productivity was achieved when the Shannon evenness-measuring the inverse of concentration-dropped. Conversely, when the Shannon evenness soared, productivity plunged. The same inverse relationship between evenness and productivity has been observed in several ecosystems. This suggests explaining this result by adopting the business ecosystem perspective, i.e., regarding the tangle of interactions between companies as an ecological network, in which companies play the role of species. A useful strategy to model such ecological communities is through ensembles of synthetic communities of pairwise interacting species, whose dynamics is described by the Lotka-Volterra generalized equations. Each community is specified by a random interaction matrix whose elements are drawn from a uniform distribution centered around 0. It is shown that the inverse relationship between productivity and evenness can be generated by varying the strength of the interaction between companies. When the strength increases, productivity increases and simultaneously the market evenness decreases. Conversely, when the strength decreases, productivity decreases and evenness increases. This strength can be interpreted as reflecting the looseness of monetary policy, thus providing a link between interest rates and market structure.

14.
New Phytol ; 235(4): 1629-1640, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35194792

RESUMO

The evolution of floral traits is often considered to reflect selection for increased pollination efficiency. Known as the pollination-precision hypothesis, increased pollination efficiency is achieved by enhancing pollen deposition on precise areas of the pollinator. Most research to date addressing this hypothesis has examined plant species that are a priori predicted to place pollen precisely, but we still lack comparisons with species predicted to have low pollination efficiency. We studied 39 plant species with diverse floral morphologies and measured the precision of pollen placement on two pollinator groups: honey bees (genus Apis) and nectar bats (family Pteropodidae). Pollen was collected from four locations of each pollinator's body (bees: dorsal thorax, ventral thorax, dorsal abdomen, ventral abdomen; bats: crown, face, chest, wing) to calculate pollen placement precision using Pielou's evenness index. We also quantified variation in floral design by scoring floral symmetry, corolla fusion, floral orientation and stamen number. We confirm the importance of four floral character states (bilateral symmetry, fused corollas, horizontal orientation and reduced stamen number) in promoting precise pollen placement on diverse pollinators. Our findings provide phylogenetically corrected, empirical support that the evolution of the four floral characters reflect selection for enhanced precision of pollen placed on pollinators.


Assuntos
Quirópteros , Polinização , Animais , Abelhas , Flores , Néctar de Plantas , Pólen
15.
Anim Cogn ; 25(3): 581-587, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34741669

RESUMO

Animals can reduce their uncertainty of predation risk by gathering new information via exploration behaviour. However, a decision to explore may also be costly due to increased predator exposure. Here, we found contextual effects of predation risk on the exploratory activity of Trinidadian guppies Poecilia reticulata in a novel environment. First, guppies were exposed to a 3-day period of either high or low background predation risk in the form of repeated exposure to either injured conspecific cues (i.e. alarm cues) or control water, respectively. A day later, guppies were moved into a testing arena with limited visual information due to structural barriers and were then presented with an acute chemical stimulus, either alarm cues (a known and reliable indicator of risk), a novel odour (an ambiguous cue), or control water. In the presence of control water, guppies from high and low background risk showed a similar willingness to explore the arena. However, high-risk individuals significantly reduced their spatial evenness, although not their movement latency, in the presence of both the alarm and novel cues. When these high-risk individuals were a member of a shoal, they became willing to explore the environment more evenly in the presence of alarm cues while remaining cautious toward the novel cue, indicating an effect of the greater uncertainty associated with the novel cue. In contrast, low-risk guppies showed a willingness to explore the arena regardless of acute threat or social context. Such contextual effects of background risk and social context highlight the complexity of exploratory decisions when uncertain.


Assuntos
Poecilia , Animais , Sinais (Psicologia) , Comportamento Predatório , Incerteza , Água
16.
Ann Bot ; 130(4): 525-534, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35809261

RESUMO

BACKGROUND AND AIMS: Plant disease can dramatically affect population dynamics, community composition and ecosystem functions. However, most empirical studies focus on diseases at a certain time point and largely ignore their temporal stability, which directly affects our ability to predict when and where disease outbreaks will occur. METHODS: Using a removal experiment that manipulates plant diversity (i.e. a plant biodiversity and ecosystem function experiment) and a fertilization experiment in a Tibetan alpine meadow, we investigated how different plant biodiversity indices and nitrogen fertilization affect the temporal stability of foliar fungal diseases (measured as the mean value of community pathogen load divided by its standard deviation) over seven consecutive years. KEY RESULTS: We found that the temporal stability of foliar fungal diseases increased with plant diversity indices in the plant biodiversity and ecosystem function experiment. Meanwhile, we observed a weakly positive relationship between host diversity and temporal stability in the fertilization experiment. However, the nitrogen treatment did not affect temporal stability, given that fertilization increased both the mean and standard deviation of pathogen load by roughly the same magnitude. CONCLUSIONS: We conclude that host diversity regulates the temporal stability of pathogen load, but we note that this effect may be attenuated under rapid biodiversity loss in the Anthropocene.


Assuntos
Pradaria , Micoses , Biodiversidade , Ecossistema , Nitrogênio/análise , Solo , Tibet
17.
Ecol Appl ; 32(8): e2698, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35748488

RESUMO

The associations of habitat area and fragmentation with species richness long have been major topics within community ecology. Recent discussion has focused on properly assessing fragmentation independent of habitat area (fragmentation per se), and on whether fragmentation has significant negative or positive associations with species richness. We created a novel, multiple-region, N-mixture community model (MNCM) to examine the relations of riparian area and fragmentation with species richness of breeding birds in mountain ranges within the Great Basin, Nevada, USA. Our MNCM accounts for imperfect detection in count data at the survey-point level while allowing comparisons of species richness among regions in which those points are embedded. We used individual canyons within mountain ranges as regions in our model and measured riparian area and the Normalized Landscape Shape Index, a metric of fragmentation that is independent of total riparian area. We found that riparian area, but not its fragmentation, was a primary predictor of canyon-level species richness of both riparian obligates and all species. The relationship between riparian area and riparian obligate species richness was nonlinear: canyons with ≥25 ha woody riparian vegetation had relatively high species richness, whereas species richness was considerably lower in canyons with <25 ha. Our MNCM can be used to calculate other metrics of diversity that require abundance estimates. For example, Simpson's evenness of riparian obligate species had a weak negative association with riparian area and was not associated with fragmentation. Projections of future riparian contraction suggested that decreases in species richness are likely to be greatest in canyons that currently have moderate (~10-25 ha) amounts of riparian vegetation. Our results suggest that if a goal of management is to maximize the species richness of breeding birds in montane riparian areas in the Great Basin, it may be more effective to focus on total habitat area than on fragmentation of patches within canyons, and that canyons with at least moderate amounts of riparian vegetation should be prioritized.


Assuntos
Biodiversidade , Rios , Animais , Melhoramento Vegetal , Ecossistema , Aves
18.
Oecologia ; 200(1-2): 209-219, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36114943

RESUMO

Community-level studies linking plant mycorrhizal status to environment usually do not account for within-plot mycorrhizal status variability; thus, patterns of plant mycorrhizal status diversity are largely unknown. Here, we assessed the relative importance of within- and between-plot variability components in mycorrhizal status and examined how plant mycorrhizal status diversity is related to soil nutrient availability. We hypothesised larger between-plot variability in mycorrhizal status and higher plant mycorrhizal status diversity in P-poor soils. To test these hypotheses, we used plant phylogenies, vegetation, soil and plant mycorrhizal status data from Czech semi-natural grasslands and Scottish coastal habitats. We divided plant mycorrhizal status diversity into divergence and evenness and tested their relations to soil P, K, Ca and Mg. Within-plot variability component of mycorrhizal status was always, on average, at least 2.2 times larger than between-plot variability in our datasets. Plant mycorrhizal status divergence was positively related to Ca (in both datasets) and Mg (only in grasslands and when accounting for phylogeny). In grasslands, the relationship between Mg and plant mycorrhizal status evenness was negative when accounting for phylogeny, while it was positive when not accounting for phylogeny. Plant mycorrhizal status diversity was not linked to P and its relation to K was inconsistent. Our results suggest that high Ca in the soil can promote coexistence of mycorrhizal, facultatively mycorrhizal and non-mycorrhizal plant species. We encourage future studies to also focus on within-plot variability in mycorrhizal status, because it appears to be highly relevant in herbaceous systems.


Assuntos
Micorrizas , Biodiversidade , Ecossistema , Pradaria , Plantas , Solo , Microbiologia do Solo
19.
Ecol Lett ; 24(9): 1892-1904, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34170615

RESUMO

Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments-species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.


Assuntos
Biodiversidade , Ecossistema , Plantas
20.
J Theor Biol ; 531: 110902, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34534570

RESUMO

While recent work has established divergence as a key framework for understanding evenness, there is currently no research exploring how the families of measures within the divergence-based framework relate to each other. This paper uses geometry to show that, holding order and richness constant, the families of divergence-based evenness measures nest. This property allows them to be ranked based on their reactivity to changes in relatively even assemblages or changes in relatively uneven ones. We establish this ranking and explore how the distance-based measures relate to it for both order q = 2 and q = 1. We also derive a new family of distance-based measures that captures the angular distance between the vector of relative abundances and a perfectly even vector and is highly reactive to changes in even assemblages. Finally, we show that if we only require evenness to be a divergence, then any smooth, monotonically increasing function of diversity can be made into an evenness measure. A deeper understanding of how to measure evenness will require empirical or theoretical research that uncovers which kind of divergence best reflects the underlying concept.


Assuntos
Biodiversidade , Ecossistema , Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA