Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mar Drugs ; 20(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36005507

RESUMO

Cathepsins are lysosomal cysteine proteases belonging to the papain family and play crucial roles in intracellular protein degradation/turnover, hormone maturation, antigen processing, and immune responses. In the present study, 18 cathepsins were systematically identified from the fish S. schlegelii genome. Phylogenetic analysis indicated that cathepsin superfamilies are categorized into eleven major clusters. Synteny and genome organization analysis revealed that whole-genome duplication led to the expansion of S. schlegelii cathepsins. Evolutionary rate analyses indicated that the lowest Ka/Ks ratios were observed in CTSBa (0.13) and CTSBb (0.14), and the highest Ka/Ks ratios were observed in CTSZa (1.97) and CTSZb (1.75). In addition, cathepsins were ubiquitously expressed in all examined tissues, with high expression levels observed in the gill, intestine, head kidney, and spleen. Additionally, most cathepsins were differentially expressed in the head kidney, gill, spleen, and liver following Aeromonas salmonicida infection, and their expression signatures showed tissue-specific and time-dependent patterns. Finally, protein-protein interaction network (PPI) analyses revealed that cathepsins are closely related to a few immune-related genes, such as interleukins, chemokines, and TLR genes. These results are expected to be valuable for comparative immunological studies and provide insights for further functional characterization of cathepsins in fish species.


Assuntos
Aeromonas salmonicida , Doenças dos Peixes , Perciformes , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Sequência de Aminoácidos , Animais , Catepsinas/genética , Catepsinas/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Imunidade Inata/genética , Perciformes/metabolismo , Filogenia
2.
Proc Biol Sci ; 286(1895): 20182352, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963952

RESUMO

Understanding phenotypic diversification and the conditions that spur morphological novelty or constraint is a major theme in evolutionary biology. Unequal morphological diversity between sister clades can result from either differences in the rate of morphological change or in the ability of clades to explore novel phenotype ranges. We combine an existing phylogenetic framework with new phylogenomic data and geometric morphometrics to explore the relative roles of rate versus mode of morphological evolution for a hyperdiverse group: cryptine ichneumonid wasps. Data from genomic ultraconserved elements confirm that cryptines are divided into two large clades: one specialized in the use of hosts that are deeply concealed under hard substrates, and another with a much more diversified host range. Using a phylomorphospace approach, we show that both clades have experienced similar rates of morphological evolution. Nonetheless, the more specialized group is much more restricted in morphospace occupation, indicating that it repeatedly evolved morphological change through the same morphospace regions. This is in agreement with our prediction that host use imposes constraints in the morphospace available to lineages, and reinforces an important distinction between evolutionary stasis as opposed to a scenario of continual morphological change restricted to a certain range of morphotypes.


Assuntos
Evolução Biológica , Meio Ambiente , Interações Hospedeiro-Parasita , Vespas/anatomia & histologia , Animais , Filogenia , Vespas/classificação , Vespas/genética
3.
Mol Biol Evol ; 32(4): 906-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534026

RESUMO

Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes' evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I-ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions.


Assuntos
Evolução Molecular , Sialiltransferases/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Cordados/genética , Equinodermos/genética , Dados de Sequência Molecular , Filogenia , beta-Galactosídeo alfa-2,3-Sialiltransferase
4.
Pathogens ; 12(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003808

RESUMO

This study addresses the variability of the mitochondrial cytochrome oxidase subunit I (COI) and 16S rDNA (16S), and nuclear internal transcriber spacer ITS2 (ITS2) genes in a set of field-collected samples of the cattle tick, Rhipicephalus microplus (Canestrini, 1888), and in geo-referenced sequences obtained from GenBank. Since the tick is currently considered to be a complex of cryptic taxa in several regions of the world, the main aims of the study are (i) to provide evidence of the clades of the tick present in the Neotropics, (ii) to explore if there is an effect of climate traits on the divergence rates of the target genes, and (iii) to check for a relationship between geographical and genetic distance among populations (the closest, the most similar, meaning for slow spread). We included published sequences of Rhipicephalus annulatus (Nearctic, Afrotropical, and Mediterranean) and R. microplus (Afrotropical, Indomalayan) to fully characterize the Neotropical populations (total: 74 16S, 44 COI, and 49 ITS2 sequences included in the analysis). Only the clade A of R. microplus spread in the Nearctic-Neotropics. Both the K and Lambda's statistics, two measures of phylogenetic signal, support low divergence rates of the tested genes in populations of R. microplus in the Neotropics. These tests demonstrate that genetic diversity of the continental populations does not correlate either with the geographic distance among samples or with environmental variables. The low variability of these genes may be due to a combination of factors like (i) the recent introduction of the tick in the Neotropics, (ii) a large, effective, and fast exchange of populations, and (iii) a low effect of climate on the evolution rates of the target genes. These results have implications for the ecological studies and control of cattle tick infestations.

5.
Evolution ; 74(8): 1620-1639, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510165

RESUMO

As species richness varies along the tree of life, there is a great interest in identifying factors that affect the rates by which lineages speciate or go extinct. To this end, theoretical biologists have developed a suite of phylogenetic comparative methods that aim to identify where shifts in diversification rates had occurred along a phylogeny and whether they are associated with some traits. Using these methods, numerous studies have predicted that speciation and extinction rates vary across the tree of life. In this study, we show that asymmetric rates of sequence evolution lead to systematic biases in the inferred phylogeny, which in turn lead to erroneous inferences regarding lineage diversification patterns. The results demonstrate that as the asymmetry in sequence evolution rates increases, so does the tendency to select more complicated models that include the possibility of diversification rate shifts. These results thus suggest that any inference regarding shifts in diversification pattern should be treated with great caution, at least until any biases regarding the molecular substitution rate have been ruled out.


Assuntos
Evolução Biológica , Modelos Genéticos , Simulação por Computador
6.
Mar Biotechnol (NY) ; 21(5): 614-622, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31203476

RESUMO

Estimation of adaptive evolution rates at the molecular level is important in evolutionary genomics. However, knowledge of adaptive evolutionary patterns in Mollusca is very scarce, especially for oysters. Such information would help clarify how oysters adapt to pathogen-rich and dynamically changing intertidal environments. In this study, we characterized the patterns of adaptive evolution in the Crassostrea gigas genome, using population diversity analysis and congeneric comparison. Our analysis revealed that gene expression patterns were positively associated with adaptive evolution rates, which suggested that positive selection played an important role in gene evolution. The genes with more exons and alternative splicing events had higher adaptive evolution rates. The rates of adaptive evolution in immune-related and stress-response genes were higher than those in other genes, suggesting that these groups of genes experienced strong positive selection. This study represents the first analysis of adaptive evolution rates in oysters and the first comprehensive study of a Mollusca species. These results provide a system-level investigation of association between adaptive evolution rates with some intrinsic genetic factors. They also suggest that adaptation to pathogens and environmental stressors are important forces driving the adaptive evolution of genes.


Assuntos
Adaptação Fisiológica/genética , Crassostrea/genética , Evolução Molecular , Transcriptoma , Adaptação Fisiológica/imunologia , Processamento Alternativo , Animais , Crassostrea/imunologia , Éxons , Genoma , Imunidade Inata/genética , Íntrons , Seleção Genética
7.
Oecologia ; 109(4): 490-498, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28307332

RESUMO

We evaluated the hypothesis that photosynthetic traits differ between leaves produced at the beginning (May) and the end (November-December) of the rainy season in the canopy of a seasonally dry forest in Panama. Leaves produced at the end of the wet season were predicted to have higher photosynthetic capacities and higher water-use efficiencies than leaves produced during the early rainy season. Such seasonal phenotypic differentiation may be adaptive, since leaves produced immediately preceding the dry season are likely to experience greater light availability during their lifetime due to reduced cloud cover during the dry season. We used a construction crane for access to the upper canopy and sampled 1- to 2-month-old leaves marked in monthly censuses for six common tree species with various ecological habits and leaf phenologies. Photosynthetic capacity was quantified as light- and CO2-saturated oxygen evolution rates with a leaf-disk oxygen electrode in the laboratory (O2max) and as light-saturated CO2 assimilation rates of intact leaves under ambient CO2 (Amax). In four species, pre-dry season leaves had significantly higher leaf mass per unit area. In these four species, O2max and Amax per unit area and maximum stomatal conductances were significantly greater in pre-dry season leaves than in early wet season leaves. In two species, Amax for a given stomatal conductance was greater in pre-dry season leaves than in early wet season leaves, suggesting a higher photosynthetic water-use efficiency in the former. Photosynthetic capacity per unit mass was not significantly different between seasons of leaf production in any species. In both early wet season and pre-dry season leaves, mean photosynthetic capacity per unit mass was positively correlated with nitrogen content per unit mass both within and among species. Seasonal phenotypic differentiation observed in canopy tree species is achieved through changes in leaf mass per unit area and increased maximum stomatal conductance rather than by changes in nitrogen allocation patterns.

8.
Genome Biol Evol ; 6(6): 1268-78, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24812293

RESUMO

Gene evolution is traditionally considered within the framework of the molecular clock (MC) model whereby each gene is characterized by an approximately constant rate of evolution. Recent comparative analysis of numerous phylogenies of prokaryotic genes has shown that a different model of evolution, denoted the Universal PaceMaker (UPM), which postulates conservation of relative, rather than absolute evolutionary rates, yields a better fit to the phylogenetic data. Here, we show that the UPM model is a better fit than the MC for genome wide sets of phylogenetic trees from six species of Drosophila and nine species of yeast, with extremely high statistical significance. Unlike the prokaryotic phylogenies that include distant organisms and multiple horizontal gene transfers, these are simple data sets that cover groups of closely related organisms and consist of gene trees with the same topology as the species tree. The results indicate that both lineage-specific and gene-specific rates are important in genome evolution but the lineage-specific contribution is greater. Similar to the MC, the gene evolution rates under the UPM are strongly overdispersed, approximately 2-fold compared with the expectation from sampling error alone. However, we show that neither Drosophila nor yeast genes form distinct clusters in the tree space. Thus, the gene-specific deviations from the UPM, although substantial, are uncorrelated and most likely depend on selective factors that are largely unique to individual genes. Thus, the UPM appears to be a key feature of genome evolution across the history of cellular life.


Assuntos
Drosophila/genética , Evolução Molecular , Genoma , Filogenia , Saccharomyces/genética , Animais , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA