Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 53(2): 384-397.e5, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32673565

RESUMO

Dysregulated Th17 cell responses underlie multiple inflammatory and autoimmune diseases, including autoimmune uveitis and its animal model, EAU. However, clinical trials targeting IL-17A in uveitis were not successful. Here, we report that Th17 cells were regulated by their own signature cytokine, IL-17A. Loss of IL-17A in autopathogenic Th17 cells did not reduce their pathogenicity and instead elevated their expression of the Th17 cytokines GM-CSF and IL-17F. Mechanistic in vitro studies revealed a Th17 cell-intrinsic autocrine loop triggered by binding of IL-17A to its receptor, leading to activation of the transcription factor NF-κB and induction of IL-24, which repressed the Th17 cytokine program. In vivo, IL-24 treatment ameliorated Th17-induced EAU, whereas silencing of IL-24 in Th17 cells enhanced disease. This regulatory pathway also operated in human Th17 cells. Thus, IL-17A limits pathogenicity of Th17 cells by inducing IL-24. These findings may explain the disappointing therapeutic effect of targeting IL-17A in uveitis.


Assuntos
Citocinas/metabolismo , Interleucina-17/metabolismo , Células Th17/patologia , Uveíte/patologia , Adulto , Animais , Citocinas/genética , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-17/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células Th17/imunologia , Uveíte/imunologia , Adulto Jovem
2.
FASEB J ; 38(7): e23607, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581245

RESUMO

Pathogenic Th17 cells play a crucial role in autoimmune diseases like uveitis and its animal model, experimental autoimmune uveitis (EAU). Dimethyl itaconate (DMI) possesses potent anti-inflammatory effects. However, there is still a lack of knowledge about the role of DMI in regulating pathogenic Th17 cells and EAU. Here, we reported that intraperitoneal administration of DMI significantly inhibited the severity of EAU via selectively suppressing Th17 cell responses. In vitro antigen stimulation studies revealed that DMI dramatically decreased the frequencies and function of antigen-specific Th17, but not Th1, cells. Moreover, DMI hampered the differentiation of naive CD4+ T cells toward pathogenic Th17 cells. DMI-treated DCs produced less IL-1ß, IL-6, and IL-23, and displayed an impaired ability to stimulate antigen-specific Th17 activation. Mechanistically, DMI activated the NRF2/HO-1 pathway and suppressed STAT3 signaling, which subsequently restrains p-STAT3 nuclear translocation, leading to decreased pathogenic Th17 cell responses. Thus, we have identified an important role for DMI in regulating pathogenic Th17 cells, supporting DMI as a promising therapy in Th17 cell-driven autoimmune diseases including uveitis.


Assuntos
Doenças Autoimunes , Succinatos , Uveíte , Animais , Camundongos , Células Th17 , Fator 2 Relacionado a NF-E2/metabolismo , Inflamação/metabolismo , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Th1
3.
J Neuroinflammation ; 21(1): 136, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802924

RESUMO

Autoimmune uveitis is a leading cause of severe vision loss, and animal models provide unique opportunities for studying its pathogenesis and therapeutic strategies. Here we employ scRNA-seq, RNA-seq and various molecular and cellular approaches to characterize mouse models of classical experimental autoimmune uveitis (EAU), revealing that EAU causes broad retinal neuron degeneration and marker downregulation, and that Müller glia may act as antigen-presenting cells. Moreover, EAU immune response is primarily driven by Th1 cells, and results in dramatic upregulation of CC chemokines, especially CCL5, in the EAU retina. Accordingly, overexpression of CCR5, a CCL5 receptor, in mesenchymal stem cells (MSCs) enhances their homing capacity and improves their immunomodulatory outcomes in preventing EAU, by reducing infiltrating T cells and activated microglia and suppressing Nlrp3 inflammasome activation. Taken together, our data not only provide valuable insights into the molecular characteristics of EAU but also open an avenue for innovative MSC-based therapy.


Assuntos
Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Receptores CCR5 , Análise de Célula Única , Uveíte , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Uveíte/imunologia , Receptores CCR5/metabolismo , Receptores CCR5/genética , Doenças Autoimunes/terapia , Perfilação da Expressão Gênica , Modelos Animais de Doenças , Feminino , Análise da Expressão Gênica de Célula Única
4.
Exp Eye Res ; 244: 109936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763351

RESUMO

Non-infectious uveitis is an intraocular autoimmune disease mainly characterized by immune dysregulation of the eye, which may cause blindness if not well treated. Interleukin 10 (IL-10) is a potent cytokine with multiple immunoregulatory functions. However, it's in vivo activity is unstable owing to its inherent protein instability and short plasma half-life. Therefore, our previous research tried to establish IL-10-overexpressing MSC-sEVs (sEVs-IL10) using lentiviral transfection. While this approach indeed improved drug delivery, it also suffered from tedious procedures and limited loading efficiency. Accordingly, we constructed a novel MSC-sEVs-based delivery system for IL-10 (IL-10@sEVs) by sonication. The obtained formulation (IL-10@sEVs) had relatively higher loading efficiency and exerted a more profound immunomodulatory effect than sEVs-IL10 in vitro. Furthermore, IL-10@sEVs had significant therapeutic effects in a mouse model of experimental autoimmune uveitis (EAU) by decreasing the percentage of Th17 cells, increasing regulatory T cells in the eye, and draining lymph nodes. In summary, sonication outperforms conventional transfection methods for loading IL-10 into MSC-sEVs.


Assuntos
Doenças Autoimunes , Vesículas Extracelulares , Interleucina-10 , Uveíte , Animais , Feminino , Camundongos , Doenças Autoimunes/tratamento farmacológico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Transfecção , Uveíte/tratamento farmacológico
5.
J Neuroinflammation ; 20(1): 24, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739434

RESUMO

BACKGROUND: Previous reports have indicated that disrupting the Wnt/ß-catenin pathway in dendritic cells (DCs) may affect the progression of autoimmune inflammation; however, the factors and timing that regulate Wnt/ß-catenin signaling have not been clearly understood. METHODS: Experimental autoimmune uveitis (EAU) mice and Vogt-Koyanagi-Harada disease (VKH) patient samples were used to detect the expression of Wnt/ß-catenin pathway genes. Western blot, real-time PCR, flow cytometry, and ELISA were performed to examine the expression of components of the Wnt/ß-catenin pathway and inflammatory factors. DC-specific ß-catenin knockout mice and 6-bromoindirubin-3'-oxime (BIO) administered mice were used to observe the effect of disrupting the Wnt pathway on EAU pathogenesis. RESULTS: Wnt/ß-catenin signaling was inhibited in DCs during the induction phase of EAU. The inhibition was mediated by pertussis toxin (PTX), which promoted DC maturation, in turn promoting pathogenic T cell proliferation and differentiation. In vivo experiments confirmed that deleting ß-catenin in DCs enhanced EAU severity, and pre-injection of PTX advanced EAU onset. Administration of a Wnt activator (BIO) limited the effects of PTX, in turn ameliorating EAU. CONCLUSIONS: Our results demonstrate that PTX plays a key role as a virulence factor in initiating autoimmune inflammation via DCs by inhibiting Wnt/ß-catenin signaling in EAU, and highlight the potential mechanism by which infection can trigger apparent autoimmunity.


Assuntos
Doenças Autoimunes , Uveíte , Camundongos , Animais , Toxina Pertussis/toxicidade , Autoimunidade , Via de Sinalização Wnt , beta Catenina/metabolismo , Uveíte/induzido quimicamente , Uveíte/tratamento farmacológico , Inflamação/metabolismo , Células Dendríticas
6.
Clin Immunol ; 236: 108939, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121106

RESUMO

Galectin-3, an attractive molecule of innate immunity, has been reported to be involved in the neuroinflammatory diseases. However, the role of Galectin-3 in autoimmune uveitis is still unclear. The purpose of this study was to investigate the effect and mechanism of Galectin-3 on microglial activation and inflammation of experimental autoimmune uveitis (EAU). We immunized female C57BL/6 J mice with IRBP651-670 to induce EAU and the specific inhibitor was intravitreally injected in EAU mice. Disease severity was evaluated by clinical and histopathological scores. Immunofluorescence, western blot, qRT-PCR analysis and immunoprecipitation were used to detect the functional phenotypes and mechanisms on microglia after Galectin-3 inhibition. Our results showed that the expression of Galectin-3 was conspicuously increased in microglia of EAU retinas. The specific inhibitor of Galectin-3, TD139 was found to ameliorate the clinical and histological manifestations of EAU mice. In addition, TD139 reduced the expression of proinflammatory factors in vivo and vitro, which are related to the severity of uveitis. In mechanism, TD139 down-regulated the expression of TLR4 and MyD88, and then inhibited the activation of NF-κB p65 in microglia. In conclusion, Galectin-3 may play important roles in a variety of immune related diseases including autoimmune uveitis. Additionally, the inhibition of Galectin-3 may attenuate the microglial activation and inflammatory response through TLR4/MyD88/NF-κB pathway, highlighting a potential therapeutic target of Galectin-3 for autoimmune uveitis.


Assuntos
Doenças Autoimunes , Uveíte , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacologia , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Uveíte/tratamento farmacológico
7.
Clin Immunol ; 240: 109056, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35659924

RESUMO

Aberrant lipid metabolism plays a role in inflammation and progression of autoimmune diseases but the definite mechanism remains unclear. In this study we investigate lipidomic profiles in Behçet's disease (BD) and the role of triglyceride (TAG) in the pathogenesis of autoimmune uveitis. Lipidomics revealed a distinct lipid metabolite profile including increased TAG metabolites in plasma of active BD patients. TAG could stimulate the proliferation, IL-17 and IFN-γ expression by CD4+ T cells and Th1, Th17 cell differentiation in vitro, but did not influence neutrophils. A922500 inhibited the TAG generation, ameliorated the EAU severity, decreased Th17 frequency and IL-17 expression by CD4+ T cells in vivo. The proteomocis analysis showed an up-regulation of apoptosis-related protein, Pik3r2, in CD4+ T cells from A922500-treated mice. In conclusion, TAG can stimulate human CD4+ T cells and the inhibition of its generation could significantly ameliorate EAU activity in association with down-regulated Th17 cell response.


Assuntos
Doenças Autoimunes , Síndrome de Behçet , Linfócitos T CD4-Positivos , Uveíte , Animais , Modelos Animais de Doenças , Humanos , Interleucina-17/metabolismo , Camundongos , Células Th1 , Células Th17 , Triglicerídeos/metabolismo , Triglicerídeos/farmacologia , Uveíte/etiologia
8.
Clin Immunol ; 241: 109080, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878734

RESUMO

OBJECTIVE: Uveitis is an intraocular inflammatory disease. Epigenetics has been associated with its pathogenesis. However, the role of N6-methyladenosine (m6A) in uveitis has not been reported. We aimed to examine the role of m6A and its regulatory mechanism in experimental autoimmune uveitis (EAU). METHODS: The mRNA expression of m6A-related methylase and demethylase of retinal pigment epithelium (RPE) between mice with EAU and control mice was detected by RT-qPCR. The overall m6A level of ARPE-19 cells was detected by an m6A quantitative detection kit. Cell proliferation was observed by CCK-8 assays, and ELISA was used to test the secretion of inflammatory factors. The expression of tight junction proteins and the target genes of FTO were examined by western blotting and MeRIP-PCR. RESULTS: A decreased expression of FTO in RPE cells was found in mice with EAU. Increased overall m6A%, proliferation of cells and secretion of IL-6, IL-8 and MCP-1 were found after FTO knockdown in ARPE-19 cells. However, ZO-1 and occludin protein expression was decreased. ATF4 protein expression was decreased in the FTO knockdown (shFTO) group as compared with the control (shNC) group. In contrast, the m6A level of ATF4 was elevated, as shown by MeRIP-PCR. Functional analysis showed that p-STAT3 expression was increased in the shFTO group, and the change in occludin expression was reversed in ATF4 rescue experiment. CONCLUSION: FTO may affect the translation of ATF4 by regulating its m6A level, resulting in the increased expression of p-STAT3 and inflammatory factors, and leading to uveitis.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Epitélio Pigmentado da Retina , Uveíte , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Citocinas/metabolismo , Camundongos , Ocludina/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Junções Íntimas/metabolismo , Uveíte/genética
9.
J Neuroinflammation ; 19(1): 124, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624485

RESUMO

BACKGROUND: Melatonin, an indoleamine produced by the pineal gland, plays a pivotal role in maintaining circadian rhythm homeostasis. Recently, the strong antioxidant and anti-inflammatory properties of melatonin have attracted attention of researchers. We evaluated the therapeutic efficacy of melatonin in experimental autoimmune uveitis (EAU), which is a representative animal model of human autoimmune uveitis. METHODS: EAU was induced in mice via immunization with the peptide interphotoreceptor retinoid binding protein 1-20 (IRBP1-20). Melatonin was then administered via intraperitoneal injection to induce protection against EAU. With EAU induction for 14 days, clinical and histopathological scores were graded to evaluate the disease progression. T lymphocytes accumulation and the expression of inflammatory cytokines in the retinas were assessed via flow cytometry and RT-PCR, respectively. T helper 1 (Th1), T helper 17 (Th17), and regulatory T (Treg) cells were detected via flow cytometry for both in vivo and in vitro experiments. Reactive-oxygen species (ROS) from CD4 + T cells was tested via flow cytometry. The expression of thioredoxin-interacting protein (TXNIP) and hypoxia-inducible factor 1 alpha (HIF-1α) proteins were quantified via western blot. RESULTS: Melatonin treatment resulted in notable attenuation of ocular inflammation in EAU mice, evidenced by decreasing optic disc edema, few signs of retinal vasculitis, and minimal retinal and choroidal infiltrates. Mechanistic studies revealed that melatonin restricted the proliferation of peripheral Th1 and Th17 cells by suppressing their transcription factors and potentiated Treg cells. In vitro studies corroborated that melatonin restrained the polarization of retina-specific T cells towards Th17 and Th1 cells in addition to enhancing the proportion of Treg cells. Pretreatment of retina-specific T cells with melatonin failed to induce EAU in naïve recipients. Furthermore, the ROS/ TXNIP/ HIF-1α pathway was shown to mediate the therapeutic effect of melatonin in EAU. CONCLUSIONS: Melatonin regulates autoimmune T cells by restraining effector T cells and facilitating Treg generation, indicating that melatonin could be a hopeful treatment alternative for autoimmune uveitis.


Assuntos
Doenças Autoimunes , Melatonina , Uveíte , Animais , Proteínas de Transporte , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Th17 , Tiorredoxinas/metabolismo
10.
Exp Eye Res ; 219: 109056, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367248

RESUMO

Our previous study demonstrated that parental uveitis in a susceptible population can cause hair loss and increase the susceptibility to experimental autoimmune uveitis (EAU) in offspring. However, it is unclear whether parental uveitis affects the development of offspring in an EAU-moderate-susceptible population. Herein, moderate-susceptible C57BL/6J mice were immunized with inter-photoreceptor retinoid binding protein (IRBP) 651-670 to develop EAU and were kept together for mating. Gross examination and histopathological changes of the offspring gestated with parental uveitis were observed to evaluate the impact of parental uveitis on the development of the offspring. Differentially expressed genes (DEGs) were screened by RNA sequencing in the affected skin and eyeball of the offspring on postnatal day 27. Adult offspring were injected 75 µg IRBP651-670 to evaluate their susceptibility to EAU. Gross examination in the offspring revealed hair loss on postnatal days 11-31. Histopathological observation showed increased melanin granules and hair follicles of skin in the affected offspring with hair loss. Gene Ontology (GO) analysis in the skin revealed differential expression of genes involved in the mitotic cell cycle, response to endogenous stimulus, hair follicle development, and hair cycle. The DEGs in the skin were predominately associated with the cell cycle and peroxisome proliferator-activated receptor (PPAR) signaling pathway. The GO enrichment analysis in the eyeball showed differential expression of genes involved in the nervous system development, camera-type eye photoreceptor cell differentiation, neuron projection morphogenesis, axon development, and calcium-induced calcium release activity; enriched pathways included the circadian entrainment and glutamatergic synapses. No increased susceptibility to EAU in offspring gestated from parental remitting EAU was observed at a low-dose 75 µg IRBP induction. These results suggested that parental uveitis in a moderate-susceptible population could affect the skin development and DEG profiles of skin and eyeball related to the response to endogenous stimulus, the PPAR signaling pathway, and glutamatergic synapse, which provides the molecular evidence to explain the influence of parental uveitis on offspring development.


Assuntos
Doenças Autoimunes , Uveíte , Alopecia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteínas do Olho/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Ativados por Proliferador de Peroxissomo , Proteínas de Ligação ao Retinol
11.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897732

RESUMO

Interleukin-27 is constitutively secreted by microglia in the retina or brain, and upregulation of IL-27 during neuroinflammation suppresses encephalomyelitis and autoimmune uveitis. However, while IL-35 is structurally and functionally similar to IL-27, the intrinsic roles of IL-35 in CNS tissues are unknown. Thus, we generated IL-35/YFP-knock-in reporter mice (p35-KI) and demonstrated that photoreceptor neurons constitutively secrete IL-35, which might protect the retina from persistent low-grade inflammation that can impair photoreceptor functions. Furthermore, the p35-KI mouse, which is hemizygous at the il12a locus, develops more severe uveitis because of reduced IL-35 expression. Interestingly, onset and exacerbation of uveitis in p35-KI mice caused by extravasation of proinflammatory Th1/Th17 lymphocytes into the retina were preceded by a dramatic decrease of IL-35, attributable to massive death of photoreceptor cells. Thus, while inflammation-induced death of photoreceptors and loss of protective effects of IL-35 exacerbated uveitis, our data also suggest that constitutive production of IL-35 in the retina might have housekeeping functions that promote sterilization immunity in the neuroretina and maintain ocular immune privilege.


Assuntos
Doenças Autoimunes , Interleucinas , Uveíte , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Privilégio Imunológico , Inflamação/metabolismo , Interleucina-27/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Células Th17 , Uveíte/metabolismo
12.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008929

RESUMO

Non-infectious uveitis (NIU) is an inflammatory eye disease initiated via CD4+ T-cell activation and transmigration, resulting in focal retinal tissue damage and visual acuity disturbance. Cell adhesion molecules (CAMs) are activated during the inflammatory process to facilitate the leukocyte recruitment cascade. Our review focused on CAM-targeted therapies in experimental autoimmune uveitis (EAU) and NIU. We concluded that CAM-based therapies have demonstrated benefits for controlling EAU severity with decreases in immune cell migration, especially via ICAM-1/LFA-1 and VCAM-1/VLA-4 (integrin) pathways. P-selectin and E-selectin are more involved specifically in uveitis related to vasculitis. These therapies have potential clinical applications for the development of a more personalized and specific treatment. Localized therapies are the future direction to avoid serious systemic side effects.


Assuntos
Moléculas de Adesão Celular , Terapia de Alvo Molecular , Uveíte/terapia , Humanos , Inflamação , Uveíte/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6687-6695, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36604919

RESUMO

By integrating network pharmacology and animal experiments, we studied the pharmacodynamic mechanism of the Tibetan medicine Liurui Capsules in the treatment of experimental autoimmune uveitis(EAU). The active ingredients and targets of Liurui Capsules were searched against the Encyclopedia of Traditional Chinese Medicine(ETCM), Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine(BATMAN-TCM), and relevant literatures. The EAU-related targets were obtained from Gene Expression Omnibus(GEO), GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). The common targets shared by Liurui Capsules and EAU were identified, and the protein-protein interaction(PPI) network was established via STRING. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were conducted via g: Profiler. The rat model of EAU was induced by interphotoreceptor retinoid-binding protein(IRBP) and treated with Liurui Capsules. The inflammatory response of anterior segment and the pathological morphology of retina were observed. The mRNA and protein levels of delta-like ligand 4(DLL4), Notch1, interleukin-17(IL-17), and tumor necrosis factor-alpha(TNF-α) were determined by real-time quantitative PCR(q-PCR) and Western blot, respectively. The network pharmacology analysis predicted 51 common targets of Liurui Capsules and EAU, which were mainly involved in IL-17, TNF, and nuclear factor-kappa B(NF-κB) signaling pathways, as well as liposome receptors and other biological processes. Compared with the control group, the modeling of EAU caused inflammatory changes in the anterior segment and retina and up-regulated mRNA and protein levels of DLL4, Notch1, IL-17, and TNF-α in ocular tissue. Compared with the model group, Liurui Capsules reduced the inflammatory reaction of anterior segment and retina and down-regulated the mRNA and protein levels of DLL4, Notch1, IL-17, and TNF-α. Liurui Capsules can down-regulate the expression of the proteins involved in DLL4/Notch1/IL-17 signaling pathway in ocular tissue and alleviate the ocular inflammation, which may be one of the mechanisms of Liurui Capsules in the treatment of EAU.


Assuntos
Experimentação Animal , Medicamentos de Ervas Chinesas , Uveíte , Ratos , Animais , Interleucina-17/efeitos adversos , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa , Medicina Tradicional Tibetana , Cápsulas , Farmacologia em Rede , Uveíte/tratamento farmacológico , Uveíte/genética , Inflamação , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos , Simulação de Acoplamento Molecular
14.
Eur J Immunol ; 50(12): 1941-1951, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32652562

RESUMO

Immunopathogenic roles for both Th1 (CD4+ IFN-γ+ ) and Th17 (CD4+ IL-17A+ ) cells have been demonstrated in experimental autoimmune uveitis (EAU). However, the role for Th17/Th1 (CD4+ T cells co-expressing IFN-γ and IL-17A) cells in EAU is not yet understood. Using interphotoreceptor retinoid-binding protein peptide-induced EAU in mice, we found increased levels of Th17/Th1 cells in EAU retinae (mean 9.6 ± 4.2%) and draining LNs (mean 8.4 ± 3.9%; p = 0.01) relative to controls. Topical dexamethasone treatment effectively reduced EAU severity and decreased retinal Th1 cells (p = 0.01), but had no impact on retinal Th17/Th1 or Th17 cells compared to saline controls. Using in vitro migration assays with mouse CNS endothelium, we demonstrated that Th17/Th1 cells were significantly increased within the migrated population relative to controls (mean 15.6 ± 9.5% vs. 1.9 ± 1.5%; p = 0.01). Chemokine receptor profiles of Th17/Th1 cells (CXCR3 and CCR6) did not change throughout the transendothelial migration process and were unaffected by dexamethasone treatment. These findings support a role for Th17/Th1 cells in EAU and their resistance to steroid inhibition suggests the importance of targeting both Th17 and Th17/Th1 cells for improving therapy.


Assuntos
Doenças Autoimunes/imunologia , Movimento Celular/imunologia , Interferon gama/imunologia , Interleucina-17/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
15.
J Neuroinflammation ; 18(1): 49, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602234

RESUMO

BACKGROUND: The integrin VLA-4 (α4ß1) plays an important role in leukocyte trafficking. This study investigated the efficacy of a novel topical α4ß1 integrin inhibitor (GW559090, GW) in a mouse model for non-infectious posterior uveitis (experimental autoimmune uveitis; EAU) and its effect on intraocular leukocyte subsets. METHODS: Mice (female; B10.RIII or C57Bl/6; aged 6-8 weeks) were immunized with specific interphotoreceptor retinoid-binding protein (IRBP) peptides to induce EAU. Topically administered GW (3, 10, and 30 mg/ml) were given twice daily either therapeutically once disease was evident, or prophylactically, and compared with vehicle-treated (Veh) and 0.1% dexamethasone-treated (Dex) controls. Mice were sacrificed at peak disease. The retinal T cell subsets were investigated by immunohistochemistry and immunofluorescence staining. The immune cells within the retina, blood, and draining lymph nodes (dLNs) were phenotyped by flow cytometry. The effect of GW559090 on non-adherent, adherent, and migrated CD4+ T cell subsets across a central nervous system (CNS) endothelium was further assayed in vitro and quantitated by flow cytometry. RESULTS: There was a significant reduction in clinical and histological scores in GW10- and Dex-treated groups as compared to controls either administered therapeutically or prophylactically. There were fewer CD45+ leukocytes infiltrating the retinae and vitreous fluids in the treated GW10 group (P < 0.05). Immunofluorescence staining and flow cytometry data identified decreased levels of retinal Th17 cells (P ≤ 0.001) in the GW10-treated eyes, leaving systemic T cell subsets unaffected. In addition, fewer Ly6C+ inflammatory monocyte/macrophages (P = 0.002) and dendritic cells (P = 0.017) crossed the BRB following GW10 treatment. In vitro migration assays confirmed that Th17 cells were selectively suppressed by GW559090 in adhering to endothelial monolayers. CONCLUSIONS: This α4ß1 integrin inhibitor may exert a modulatory effect in EAU progression by selectively blocking Th17 cell migration across the blood-retinal barrier without affecting systemic CD4+ T cell subsets. Local α4ß1 integrin-directed inhibition could be clinically relevant in treating a Th17-dominant form of uveitis.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Barreira Hematorretiniana/efeitos dos fármacos , Integrina alfa4beta1/antagonistas & inibidores , Fenilalanina/análogos & derivados , Piperidinas/administração & dosagem , Células Th17/efeitos dos fármacos , Uveíte/tratamento farmacológico , Animais , Doenças Autoimunes/metabolismo , Barreira Hematorretiniana/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Integrina alfa4beta1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenilalanina/administração & dosagem , Fenilalanina/metabolismo , Piperidinas/metabolismo , Células Th17/metabolismo , Uveíte/metabolismo
16.
Immunol Invest ; 50(2-3): 164-183, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31985304

RESUMO

Our previous study reveals that gamma delta (γδ) T cells were activated and dendritic cells (DCs) underwent maturation during the inflammation phase in experimental autoimmune uveitis (EAU) mice, and the interaction between DCs and γδ T cells may significantly exacerbate the development of EAU. However, the interactions between DCs and γδ T cells that can affect DCs maturation to influence EAU development must be further addressed. In this study we showed that mature DC numbers in TCR-δ-/- (KO) EAU mice were lower than those in wild-type (WT) C57BL/6 (B6) mice. The γδ T cells harvested from WT EAU mice secreted more interferon-γ (IFN-γ), however, after blocking IFN-γ, the maturation of DCs was significantly downregulated. By contrast, the percentage of IFN-γ- and IL-17-producing CD4+ T cells in KO EAU mice decreased to a greater extent than that in WT EAU mice during the inflammatory phase. Additionally, the levels of IFN-γ/IL-17 in serum were in agreement with those of CD4+ T cells. Furthermore, after activated γδ T cells injection, the inflammatory symptoms of EAU mice were more aggravated. In vitro co-cultures of both cell types showed that activated γδ T cells may induce DCs to generate higher levels of intracellular cell adhesion molecule-1 (ICAM-1/CD54), CD80, CD83, and CD86. Moreover, co-culture of the two cells may induce the activation of CD4+ T cells. Taken together, our results demonstrated that activated γδ T cells may promote DCs maturation and further enhance the generation of Th1/Th17 cells in EAU mice, resulting in exacerbated EAU.


Assuntos
Doenças Autoimunes/imunologia , Células Dendríticas/imunologia , Linfócitos T/imunologia , Células Th17/imunologia , Uveíte/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T/genética , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
17.
Adv Exp Med Biol ; 1278: 205-227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523450

RESUMO

Uveitis is a chronic disease with relapsing and remitting ocular attack, which requires corticosteroids and systemic immunosuppression to prevent severe vision loss. Classically, uveitis is referred to an autoimmune disease, mediated by pro-inflammatory Th17 cells and immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs). More and more evidence indicates that Tregs are involved in development, resolution, and remission of uveitis. Clinically, many researchers have conducted quantitative and functional analyses of peripheral blood from patients with different subtypes of uveitis, in an attempt to find the changing rules of Tregs. Consistently, using the experimental autoimmune uveitis (EAU) model, researchers have explored the development and resolution mechanism of uveitis in many aspects. In addition, many drug and Tregs therapy investigations have yielded encouraging results. In this chapter, we introduced the current understanding of Tregs, summarized the clinical changes in the number and function of patients with uveitis and the immune mechanism of Tregs involved in EAU model, as well as discussed the progress and shortcomings of Tregs-related drug therapy and Tregs therapy. Although the exact mechanism of Tregs-mediated uveitis protection remains to be elucidated, the strategy of Tregs regulation may provide a specific and meaningful way for the prevention and treatment of uveitis.


Assuntos
Doenças Autoimunes , Uveíte , Fatores de Transcrição Forkhead , Humanos , Tolerância Imunológica , Linfócitos T Reguladores , Células Th17
18.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502490

RESUMO

Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these 'plastic CD4+ T cells' are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Plasticidade Celular/imunologia , Doenças Retinianas/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Doenças Retinianas/patologia
19.
AAPS PharmSciTech ; 22(1): 35, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404988

RESUMO

Non-infectious uveitis, an ocular inflammatory condition that affects the iris, ciliary body, choroid, and adjacent tissues (retina, optic nerve, and vitreous), is an important cause of blindness worldwide. Sirolimus (SRL), a potent immunomodulatory drug, has shown promising results in the treatment of inflammatory ocular diseases. Despite this therapeutic potential, its clinical use is a major challenge due to low bioavailability and poor solubility. Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer commonly used for ophthalmic drug delivery due to its suitable characteristics such as biocompatibility, good mechanical properties, and improvement of the pharmacokinetic profile of the drug. In the present study, we investigated the effects of SRL-PLGA implant on experimental autoimmune uveitis in rabbits. Clinical and histopathological examinations were performed, followed by assessment of protein levels and determination of myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) activity in the aqueous humor/vitreous. As a result, treated eyes had decreased average inflammatory scores, protein significant decreases in treated eyes, assessed after 35 days. Histopathological examination showed less severe intraocular inflammation and decreased tissue damage in treated eyes. According to these results, the SRL-PLGA implant evaluated in this study was apparently safe, reducing inflammation in treated eyes, with an extended effect possibly associated with prolonged release of SRL in the posterior segment of the eye. Therefore, intravitreal SRL-PLGA implant could be a promising alternative for treatment of non-infectious uveitis.


Assuntos
Implantes de Medicamento , Imunossupressores/administração & dosagem , Sirolimo/administração & dosagem , Uveíte/tratamento farmacológico , Corpo Vítreo , Animais , Imunossupressores/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Coelhos , Sirolimo/uso terapêutico , Solubilidade
20.
Eur J Immunol ; 49(11): 2074-2082, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31177529

RESUMO

Tissue-specific immune regulation is an important component of the immune response relevant to many areas of immunology. The focus of this study is on tissue-specific mechanisms that contribute to autoimmune uveitis. Precise gene regulation is necessary for the proper expression of an inflammatory or regulatory response. This precision gene regulation can be accomplished by microRNA at the level of the mRNA transcript. miR-155, in particular, has a complicated role in the immune response with positive and negative inflammatory effects. In this work, we identify a decrease in miR-155 in suppressor macrophages and further examine how tissue-specific production of miR-155 impacts experimental autoimmune uveitis. Importantly, we show that eliminating miR-155 expression by the target tissue before initiation reduces disease severity, but elimination of miR-155 after the onset of inflammation does not alter the course of disease. Additionally, expression of miR-155 by the target tissue before initiation is necessary for the induction of regulatory immunity that protects from further autoimmune disease, but not after the onset of inflammation. In summary, we find a MC5r-dependent decrease in miR-155 in postexperimental autoimmune uveitis APC, miR-155 production by the target tissue is necessary for the initiation of autoimmune uveitis, and may have a role in establishing protective regulatory immunity.


Assuntos
Doenças Autoimunes/genética , Macrófagos/imunologia , MicroRNAs/genética , Receptores de Melanocortina/genética , Epitélio Pigmentado da Retina/imunologia , Uveíte/genética , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Adjuvante de Freund/administração & dosagem , Regulação da Expressão Gênica/imunologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , Especificidade de Órgãos , Receptores de Melanocortina/imunologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Uveíte/induzido quimicamente , Uveíte/imunologia , Uveíte/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA