Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biotechnol Bioeng ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978393

RESUMO

ß-Alanine is the only ß-amino acid in nature and one of the most important three-carbon chemicals. This work was aimed to construct a non-inducible ß-alanine producer with enhanced metabolic flux towards ß-alanine biosynthesis in Escherichia coli. First of all, the assembled E. coli endogenous promoters and 5'-untranslated regions (PUTR) were screened to finely regulate the combinatorial expression of genes panDBS and aspBCG for an optimal flux match between two key pathways. Subsequently, additional copies of key genes (panDBS K104S and ppc) were chromosomally introduced into the host A1. On these bases, dynamical regulation of the gene thrA was performed to reduce the carbon flux directed in the competitive pathway. Finally, the ß-alanine titer reached 10.25 g/L by strain A14-R15, 361.7% higher than that of the original strain. Under fed-batch fermentation in a 5-L fermentor, a titer of 57.13 g/L ß-alanine was achieved at 80 h. This is the highest titer of ß-alanine production ever reported using non-inducible engineered E. coli. This metabolic modification strategy for optimal carbon flux distribution developed in this work could also be used for the production of various metabolic products.

2.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540366

RESUMO

The xylose operon is an efficient biological element used for the regulation of gene expression in Bacillus licheniformis. Although the mechanism underlying the xylose-mediated regulation of this operon has been elucidated, the transcriptional changes that occur under various fermentation conditions remain unclear. In this study, the effects of different conditions on xylose operon expression were investigated. Significant upregulation was observed during the transition from the logarithmic phase to the stationary phase (2.5-fold, n = 3, p < 0.01). Glucose suppressed transcription over 168-fold (n = 3, p < 0.01). Meanwhile, the inhibitory effect of glucose hardly strengthened at concentrations from 20 to 180 g/L. Furthermore, the transcription of the xylose operon increased at elevated temperatures (25-42 °C) and was optimal at a neutral pH (pH 6.5-7.0). Based on these findings, relevant fermentation strategies (delaying the induction time, using dextrin as a carbon source, increasing the fermentation temperature, and maintaining a neutral pH) were proposed. Subsequently, these strategies were validated through the use of maltogenic amylase as a reporter protein, as an 8-fold (n = 3, p < 0.01) increase in recombinant enzyme activity compared to that under unoptimized conditions was observed. This work contributes to the development of fermentation optimization and furthers the use of the xylose operon as an efficient expression element.


Assuntos
Bacillus licheniformis/genética , Regulação Bacteriana da Expressão Gênica , Xilose/genética , Bacillus licheniformis/metabolismo , Fermentação , Glucose/metabolismo , Óperon , Ativação Transcricional , Xilose/metabolismo
3.
Plant Mol Biol ; 98(4-5): 303-317, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30225747

RESUMO

KEY MESSAGE: Two intercistronic regions were identified as functional intercistronic expression elements (IEE) for the simultaneous expression of aphA-6 and gfp in a synthetic operon in the chloroplast of C. reinhardtii. Chlamydomonas reinhardtii, a biflagellate photosynthetic microalga, has been widely used in basic and applied science. Already three decades ago, Chlamydomonas had its chloroplast genome transformed and to this day constitutes the only alga routinely used in transplastomic technology. Despite the fact that over a 100 foreign genes have been expressed from the chloroplast genome, little has been done to address the challenge of expressing multiple genes in the form of operons, a development that is needed and crucial to push forward metabolic engineering and synthetic biology in this organism. Here, we studied five intercistronic regions and investigated if they can be used as intercistronic expression elements (IEE) in synthetic operons to drive the expression of foreign genes in the chloroplast of C. reinhardtii. The intercistronic regions were those from the psbB-psbT, psbN-psbH, psaC-petL, petL-trnN and tscA-chlN chloroplast operons, and the foreign genes were the aminoglycoside 3'-phosphotransferase (aphA-6), which confers resistance to kanamycin, and the green fluorescent protein gene (gfp). While all the intercistronic regions yielded lines that were resistant to kanamycin, only two (obtained with intercistronic regions from psbN-psbH and tscA-chlN) were identified as functional IEEs, yielding lines in which the second cistron (gfp) was translated and generated GFP. The IEEs we have identified could be useful for the stacking of genes for metabolic engineering or synthetic biology circuits in the chloroplast of C. reinhardtii.


Assuntos
Chlamydomonas reinhardtii/genética , Cloroplastos/metabolismo , DNA Intergênico/genética , Genes de Plantas/genética , Óperon/genética , Plantas Geneticamente Modificadas/genética , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Engenharia Metabólica/métodos , Plantas Geneticamente Modificadas/metabolismo
4.
J Agric Food Chem ; 70(43): 13935-13944, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36278912

RESUMO

d-Allulose is an attractive rare sugar that can be used as a low-calorie sweetener with significant health benefits. To meet the increasing market demands, it is necessary to develop an efficient and extensive microbial fermentation platform for the synthesis of d-allulose. Here, we applied a comprehensive systematic engineering strategy in Bacillus subtilis WB600 by introducing d-allulose 3-epimerase (DAEase), combined with the deactivation of fruA, levDEFG, and gmuE, to balance the metabolic network for the efficient production of d-allulose. This resulting strain initially produced 3.24 g/L of d-allulose with a yield of 0.93 g of d-allulose/g d-fructose. We further screened and obtained a suitable dual promoter combination and performed fine-tuning of its spacer region. After 64 h of fed-batch fermentation, the optimized engineered B. subtilis produced d-allulose at titers of 74.2 g/L with a yield of 0.93 g/g and a conversion rate of 27.6%. This d-allulose production strain is a promising platform for the industrial production of rare sugar.


Assuntos
Bacillus subtilis , Frutose , Bacillus subtilis/metabolismo , Frutose/metabolismo , Racemases e Epimerases/metabolismo , Ciclo do Carbono
5.
Microbiol Spectr ; 10(3): e0005922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35543560

RESUMO

Candida tropicalis, a nonmodel diploid microbe, has been applied in industry as a chassis cell. Metabolic engineering of C. tropicalis is challenging due to a lack of gene editing and regulation tools. Here, we report a tRNA:guide RNA (gRNA) platform for boosting gene editing and silencing efficiency in C. tropicalis. As the endogenous tRNA-processing system enables autocleavage for producing a large number of mature gRNAs, a tRNAGly sequence from the genome of C. tropicalis ATCC 20336 was selected for constructing the tRNA:gRNA platform. In the CRISPR-Cas9 system, the tRNA:gRNA platform proved to be efficient in single-gene and multi-gene editing. Furthermore, based on the tRNA:gRNA platform, a CRISPR interference (CRISPRi) system was developed to construct an efficient dCas9-mediated gene expression regulation system for C. tropicalis. The CRISPRi system was employed to regulate the expression of the exogenous gene GFP3 (green fluorescent protein) and the endogenous gene ADE2 (phosphoribosylaminoimidazole carboxylase). Different regions of GFP3 and ADE2 were targeted with the gRNAs processed by the tRNAGly, and the transcription levels of GFP3 and ADE2 were successfully downregulated to 23.9% ± 4.1% and 38.0% ± 7.4%, respectively. The effects of the target regions on gene regulation were also investigated. Additionally, the regulation system was applied to silence ERG9 (squalene synthase) to enhance ß-carotene biosynthesis in a metabolically modified C. tropicalis strain. The results suggest that the endogenous tRNAGly and the CRISPRi system have great potential for metabolic engineering of C. tropicalis. IMPORTANCE In the nonmodel yeast Candida tropicalis, a lack of available RNA polymerase type III (Pol III) promoters hindered the development of guide RNA (gRNA) expression platforms for the establishment of CRISPR-Cas-mediated genome editing and silencing strategies. Here, a tRNA:gRNA platform was constructed. We show that this platform allows efficient and precise expression and processing of different gRNAs from a single polycistronic gene capable of mediating multi-gene editing in combination with CRISPR-Cas9. Furthermore, in combination with dCas9, the tRNA:gRNA platform was efficiently used for silencing of exogenous and endogenous genes, representing the first CRISPR interference tool (CRISPRi) in C. tropicalis. Importantly, the established CRISPRi-tRNA:gRNA tool was also used for metabolic engineering by regulating ß-carotene biosynthesis in C. tropicalis. The results suggest that the tRNA:gRNA platform and the CRISPRi system will further advance the application of the CRISPR-Cas-based editing and CRISPRi systems for metabolic engineering in C. tropicalis.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Candida tropicalis/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , RNA de Transferência/genética , RNA de Transferência de Glicina , beta Caroteno
6.
Synth Syst Biotechnol ; 7(1): 567-573, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35155838

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a natural polymer with various applications, and its high-viscosity hinders oxygen transmission and improvement of synthesis level. Vitreoscilla hemoglobin (VHB) has been introduced into various hosts as oxygen carrier, however, its expression strength and contact efficiency with oxygen hindered efficient oxygen transfer and metabolite synthesis. Here, we want to optimize the expression cassette of VHB for γ-PGA production. Firstly, our results implied that γ-PGA yields were enhanced when introducing twin-arginine translocation (Tat) signal peptides (SPYwbN, SPPhoD and SPTorA) into VHB expression cassette, and the best performance was attained by SPYwbN from Bacillus subtilis, the γ-PGA yield of which was 18.53% higher than that of control strain, and intracellular ATP content and oxygen transfer coefficient (KLa) were increased by 29.71% and 73.12%, respectively, indicating that VHB mediated by SPYwbN benefited oxygen transfer and ATP generation for γ-PGA synthesis. Furthermore, four promoters were screened, and P vgb was proven as the more suitable promoter for VHB expression and γ-PGA synthesis, and γ-PGA yield of attaining strain WX/pPvgb-YwbN-Vgb was further increased to 40.59 g/L by 10.18%. Finally, WX/pPvgb-YwbN-Vgb was cultivated in 3 L fermentor for fed-batch fermentation, and 46.39 g/L γ-PGA was attained by glucose feeding, increased by 49.26% compared with the initial yield (31.01 g/L). Taken together, this study has attained an efficient VHB expression cassette for oxygen transfer and γ-PGA synthesis, which could also be applied in the production of other metabolites.

7.
Bioresour Technol ; 341: 125836, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34469820

RESUMO

Diacetylchitobiose deacetylase (Dac) from Pyrococcus horikoshii can realize the one-step production of glucosamine (GlcN). The efficient expression and secretion of Dac play a central role in the green production of GlcN. In this study, Bacillus subtilis WB600 was used as the expression host. Firstly, we screened 12 signal peptides, among which signal peptide NprB had the strongest ability of guiding Dac secretion. Further optimization of the functional region showed that the extracellular Dac activity of NprB mutant was increased to 3682.2 U/mL. Next, the extracellular Dac activity was increased to 4807.6 U/mL by RBS sequence optimization. Then we got a new recombinant B. subtilis C6 for plasmid-free expression of Dac by integrating comK gene and silencing bpr, nprB, aprE, mpr and nprE genes. Finally, the extracellular Dac activity of genome-integrating strain reached 6357.38 U/mL, which was the highest level reported so far.


Assuntos
Bacillus subtilis , Glucosamina , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA