RESUMO
The execution of shock following high dose E. coli lipopolysaccharide (LPS) or bacterial sepsis in mice required pro-apoptotic caspase-8 in addition to pro-pyroptotic caspase-11 and gasdermin D. Hematopoietic cells produced MyD88- and TRIF-dependent inflammatory cytokines sufficient to initiate shock without any contribution from caspase-8 or caspase-11. Both proteases had to be present to support tumor necrosis factor- and interferon-ß-dependent tissue injury first observed in the small intestine and later in spleen and thymus. Caspase-11 enhanced the activation of caspase-8 and extrinsic cell death machinery within the lower small intestine. Neither caspase-8 nor caspase-11 was individually sufficient for shock. Both caspases collaborated to amplify inflammatory signals associated with tissue damage. Therefore, combined pyroptotic and apoptotic signaling mediated endotoxemia independently of RIPK1 kinase activity and RIPK3 function. These observations bring to light the relevance of tissue compartmentalization to disease processes in vivo where cytokines act in parallel to execute diverse cell death pathways.
Assuntos
Caspase 8/metabolismo , Caspases/metabolismo , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/fisiopatologia , Choque Séptico/enzimologia , Choque Séptico/fisiopatologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/genética , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fator Regulador 3 de Interferon/genética , Interferon beta/sangue , Interferon beta/metabolismo , Intestino Delgado/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Sialic acids (Sias) on the B cell membrane are involved in cell migration, in the control of the complement system and, as sialic acid-binding immunoglobulin-like lectin (Siglec) ligands, in the regulation of cellular signaling. We studied the role of sialoglycans on B cells in a mouse model with B cell-specific deletion of cytidine monophosphate sialic acid synthase (CMAS), the enzyme essential for the synthesis of sialoglycans. Surprisingly, these mice showed a severe B cell deficiency in secondary lymphoid organs. Additional depletion of the complement factor C3 rescued the phenotype only marginally, demonstrating a complement-independent mechanism. The B cell survival receptor BAFF receptor was not up-regulated, and levels of activated caspase 3 and processed caspase 8 were high in B cells of Cmas-deficient mice, indicating ongoing apoptosis. Overexpressed Bcl-2 could not rescue this phenotype, pointing to extrinsic apoptosis. These results show that sialoglycans on the B cell surface are crucial for B cell survival by counteracting several death-inducing pathways.
Assuntos
Apoptose , Linfócitos B , Polissacarídeos , Ácidos Siálicos , Animais , Receptor do Fator Ativador de Células B/metabolismo , Linfócitos B/fisiologia , Sobrevivência Celular , Deleção de Genes , Camundongos , N-Acilneuraminato Citidililtransferase/genética , Polissacarídeos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos/metabolismoRESUMO
Tumor-necrosis-factor-associated apoptosis-inducing ligand (TRAIL) is one of the most promising therapeutic cytokines that selectively induce apoptosis in tumor cells. It is known that membrane vesicles (MVs) can carry the surface markers of parental cells. Therefore, MVs are of interest as a tool for cell-free cancer therapy. In this study, membrane vesicles were isolated from TRAIL-overexpressing mesenchymal stem cells using cytochalasin B treatment (CIMVs). To evaluate the antitumor effect of CIMVs-TRAIL in vivo, a breast cancer mouse model was produced. The animals were intratumorally injected with 50 µg of native CIMVs or CIMVs-TRAIL for 12 days with an interval of two days. Then, tumor growth rate, tumor necrotic area, the expression of the apoptosis-related genes CASP8, BCL-2, and BAX and the level of CASP8 protein were analyzed. A 1.8-fold increase in the CAS8 gene mRNA and a 1.7-fold increase in the CASP8 protein level were observed in the tumors injected with CIMVs-TRAIL. The expression of the anti-apoptotic BCL-2 gene in the CIMV-TRAIL group remained unchanged, while the mRNA level of the pro-apoptotic BAX gene was increased by 1.4 times, which indicated apoptosis activation in the tumor tissue. Thus, CIMVs-TRAIL were able to activate the extrinsic apoptosis pathway and induce tumor cell death in the breast cancer mouse model.
RESUMO
Seminoma is the most common type of testicular germ cell tumour and is highly sensitive to cisplatin therapy, which has not been fully elucidated. In this study, we comprehensively monitored dynamic changes of TCam-2 cells after cisplatin treatment. At an early stage, we found that both low and high concentrations of cisplatin induced the S-phase arrest in TCam-2 cells. By contrast, the G0G1 arrest was caused by cisplatin in teratoma NTERA-2 cells. Afterwards, high concentrations of cisplatin promoted the extrinsic apoptosis and high expressions of related genes (Fas/FasL-caspase-8/-3) in TCam-2 cells. However, when decreasing the cisplatin, the apoptotic cells were significantly reduced, and accompanied by cells showing senescence-like morphology, positive SA-ß-gal staining and up-regulation of senescence-related genes (p53, p21 and p16). Furthermore, the cell cycle analysis revealed that most of the senescent TCam-2 cells were irreversibly arrested in the G2M phase. G2M arrest was also observed in NTERA-2 cells treated with a low concentration of cisplatin, while no senescence-related phenotype was discovered. In addition, we detected the γ-H2AX, a DNA damage marker protein, and reactive oxygen species (ROS) and found both of which were elevated with the increase of cisplatin in TCam-2 cells. In conclusion, the extrinsic apoptosis and senescence are involved in the growth kinetics of TCam-2 cells to cisplatin, which provide some implications for studies on cisplatin and seminoma.
Assuntos
Seminoma , Neoplasias Testiculares , Humanos , Masculino , Cisplatino/farmacologia , Seminoma/tratamento farmacológico , Seminoma/genética , Seminoma/metabolismo , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Transdução de Sinais , Apoptose , Linhagem Celular Tumoral , Senescência CelularRESUMO
PURPOSE OF REVIEW: Apoptosis is a major mechanism of cancer cell death. Thus, evasion of apoptosis results in therapy resistance. Here, we review apoptosis modulators in cancer and their recent developments, including MDM2 inhibitors and kinase inhibitors that can induce effective apoptosis. RECENT FINDINGS: Both extrinsic pathways (external stimuli through cell surface death receptor) and intrinsic pathways (mitochondrial-mediated regulation upon genotoxic stress) regulate the complex process of apoptosis through orchestration of various proteins such as members of the BCL-2 family. Dysregulation within these complex steps can result in evasion of apoptosis. However, via the combined evolution of medicinal chemistry and molecular biology, omics assays have led to innovative inducers of apoptosis and inhibitors of anti-apoptotic regulators. Many of these agents are now being tested in cancer patients in early-phase trials. We believe that despite a sluggish speed of development, apoptosis targeting holds promise as a relevant strategy in cancer therapeutics.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2RESUMO
Erectile dysfunction (ED) is a common and debilitating condition with high impact on quality of life. An underlying cause of ED is apoptosis of penile smooth muscle, which occurs with cavernous nerve injury, in prostatectomy, diabetic and aging patients. We are developing peptide amphiphile (PA) nanofiber hydrogels as an in vivo delivery vehicle for Sonic hedgehog protein to the penis and cavernous nerve to prevent the apoptotic response. We examine two important aspects required for clinical application of the biomaterials: if SHH PA suppresses intrinsic (caspase 9) and extrinsic (caspase 8) apoptotic mechanisms, and if suppressing one apoptotic mechanism forces apoptosis to occur via a different mechanism. We show that SHH PA suppresses both caspase 9 and 8 apoptotic mechanisms, and suppressing caspase 9 did not shift signaling to caspase 8. SHH PA has significant clinical potential as a preventative ED therapy, by management of intrinsic and extrinsic apoptotic mechanisms.
Assuntos
Caspase 8/genética , Caspase 9/genética , Disfunção Erétil/tratamento farmacológico , Proteínas Hedgehog/genética , Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Seio Cavernoso/efeitos dos fármacos , Seio Cavernoso/patologia , Modelos Animais de Doenças , Disfunção Erétil/genética , Disfunção Erétil/patologia , Proteínas Hedgehog/química , Proteínas Hedgehog/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Nanofibras/química , Pênis/efeitos dos fármacos , Pênis/patologia , Peptídeos/química , Prostatectomia/efeitos adversos , Ratos , Ratos Sprague-DawleyRESUMO
Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide staining. Iridin also increased the expression of extrinsic apoptotic pathway proteins like Fas, FasL, and cleaved Caspase-8 in AGS cells. On the contrary, iridin-treated AGS cells did not show variations in proteins related to an intrinsic apoptotic pathway such as Bax and Bcl-xL. Besides, Iridin showed inhibition of PI3K/AKT signaling pathways by downregulation of (p-PI3K, p-AKT) proteins in AGS cells. In conclusion, these data suggest that iridin has anticancer potential by inhibiting PI3K/AKT pathway. It could be a basis for further drug design in gastric cancer treatment.
Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Cervical cancer is reported as one of the most lethal types of cancer among female. However, extensive studies of the molecular mechanisms that regulate the progression of cervical cancer are still required. B-cell associated protein (BAP)-31 is a 28-kDa integral membrane protein in the endoplasmic reticulum (ER), playing essential role in modulating various physiological processes. The present study indicated that BAP31 was a novel gene associated with cervical cancer development. Here, we demonstrated that BAP31 was significantly increased in human cervical cancer specimens, which was positively correlated to histological grade of the cancer. BAP31 knockdown suppressed cell proliferation, clonogenic ability and metastasis-associated traits in vitro, as well as carcinogenesis and pulmonary metastasis in vivo. Further studies indicated that the expression levels of transforming growth factor (TGF)-ß1, matrix metalloproteinase (MMP)-2, MMP-9, Rho-associated protein kinase 1 (ROCK1), α-smooth muscle actin (α-SMA), Vimentin and N-cadherin were markedly reduced by BAP31 knockdown in cervical cancer cells. In addition, intrinsic and extrinsic apoptosis was significantly induced in BAP31 knockdown cells, as evidenced by the increased expression of cleaved Caspase-8/-9/-3 and poly (ADP-ribose) polymerases (PARP). Notably, suppressing the activities of Caspase-8/-9 and -3 obviously diminished BAP31 silence-triggered apoptosis. Together, these findings highlighted an essential role for BAP31 in the modulation of tumorigenesis and metastatic potential of cervical cancer, and demonstrated a promising application of BAP31 in cancer prevention.
Assuntos
Apoptose , Progressão da Doença , Proteínas de Membrana/antagonistas & inibidores , Metástase Neoplásica/prevenção & controle , Neoplasias do Colo do Útero/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/prevenção & controleRESUMO
The purpose of this study is to determine the activation of the extrinsic and intrinsic apoptotic pathways in the cerebellum of rats exposed to amygdaloid electrical kindling. Western blot analyses were carried out for caspase-8 and caspase-9, Bid, Bax, and Bcl-2 in the cerebellum and immunohistochemistry of Bid, Bax, cytochrome C, and VDAC (voltage-dependent anion channels) in the cerebellar cortex of Wistar male rats with 0, 15, and 45 kindling stimulations. In the experimental group of 45 stimuli, we observed an increase in protein activation of caspase-9 and truncated Bid and Bax, in addition to a decrease in expression of pro-caspase-8 and the anti-apoptotic protein Bcl-2, determined by Western blot. Moreover, we observed a cytosolic immunopositivity for cytochrome C and a mitochondrial immunolocalization for truncated Bid and Bax in the group of 45 stimuli. In this work, we found an increase of caspase-8, a cysteine-protease that can activate caspase-3 triggering extrinsic apoptosis by signaling of death receptors. However, it also can activate the intrinsic pathway releasing Bid, which performs mitochondrial translocation of Bax, inactivating Bcl-2 and allowing the release of cytochrome C through the opening of the mitochondrial permeability transition pore, promoting the activation of caspase-9 which activates caspase-3, the main executor caspase of apoptosis. Therefore, it is concluded that there is an activation of the intrinsic and extrinsic apoptotic pathways in the cerebellum of rats exposed to the kindling model. Apoptosis signaling pathways can be analyzed as an important developing object of research about the epileptic activity. Graphical Abstract.
Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/fisiologia , Cerebelo/fisiologia , Excitação Neurológica , Tonsila do Cerebelo/fisiologia , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Córtex Cerebelar/fisiologia , Eletrodos Implantados , Imuno-Histoquímica , Masculino , Ratos , Ratos WistarRESUMO
Hepatocellular carcinoma (HCC) was accompanied by high incidence of morbidity and mortality worldwide. Apoptosis is a vital biological process playing a critical role in cancer. Besides, toll like receptors were reported to regulator the innate immune response against cancer development. Exopolysaccharides (EPSs) derived from marine bacteria were reported to have a potential biological importance. This work aimed to elucidate the antitumor effects of newly isolated EPSs against HepG2 cells. Moreover, their effects on some apoptotic markers and TLRs were followed. Isolated EPSs were tested for their cytotoxic effects in a previous study and the most promising; MSA1, E4, MGA2, SGA3, and NRC7 EPSs were subjected to molecular analysis to investigate their pro-apoptotic effects, in addition to their effects on TLR2 and TLR-9 using quantitative real time RT-PCR. And the most cytotoxic and pro-apoptotic EPS; MSA1 were subjected to antibody array analysis to investigate a panel of 43 apoptotic proteins. All isolated EPSs produced a positive role in regulating the apoptotic gene and increasing the TLRs expression in different manners. However, the most promising EPS was MSA1. It showed pro-apoptotic effects on gene and protein levels, besides its up-regulation of TLRs.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bactérias/química , Polissacarídeos Bacterianos/farmacologia , Receptores Toll-Like/agonistas , Antineoplásicos/química , Apoptose/genética , Biomarcadores , Sinergismo Farmacológico , Expressão Gênica , Células Hep G2 , Humanos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Estresse FisiológicoRESUMO
PURPOSE: Idiopathic recurrent pregnancy loss (RPL) is a multifactorial reproductive disorder where an impaired control of apoptosis is likely involved. Triggering the cell death mechanism occurs in a spatiotemporal manner and is strongly related to a healthy pregnancy. Single nucleotide polymorphisms (SNPs) at the regulatory regions of genes are known to influence the expression patterns of apoptosis-related molecules. METHODS: A total of 296 unrelated female Brazilian patients were evaluated for clinical-demographic variables and genetic factors: 140 women who had experienced an unexplained RPL (with at least two consecutive abortions) and 156 healthy multiparous women. In all patients, six SNPs were evaluated in genes of apoptosis-related pathways: FAS (rs2234767, rs1800682), FAS-L (rs763110, rs5030772), BAX (rs4645878), and BCL-2 (rs2279115) by PCR followed by a restriction fragment length polymorphism (RFLP)-based analysis. RESULTS: The BAX-248GA genotype is independently associated with idiopathic RPL [adjusted OR = 0.30, 95% CI 0.13-0.70, P = 0.005] susceptibility. In the same multivariate model, the variables ethnicity, smoking, and alcohol consumption were statistically associated with RPL susceptibility (P < 0.05). No association with RPL susceptibility was reported for the remaining SNPs. CONCLUSION: Our study is the first to evaluate the role of the main SNPs from both the extrinsic and intrinsic apoptosis pathways in RPL susceptibility. The association of BAX-248G/A with RPL susceptibility suggests that maternal predisposition for RPL has an essential contribution from genes involved in the delicate balance of endometrium cell turnover (cell death/proliferation). Therefore, apoptotic genes may represent promising targets for future studies on healthy pregnancies and the spectrum of pregnancy disorders.
Assuntos
Aborto Habitual/genética , Proteína Ligante Fas/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Receptor fas/genética , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Gravidez , Prognóstico , Adulto JovemRESUMO
Interleukin 24 (IL-24) is a tumor-suppressing protein, which inhibits angiogenesis and induces cancer cell-specific apoptosis. We have shown that IL-24 regulates apoptosis through phosphorylated eukaryotic initiation factor 2 alpha (eIF2α) during endoplasmic reticulum (ER) stress in cancer. Although multiple stresses converge on eIF2α phosphorylation, the cellular outcome is not always the same. In particular, ER stress-induced apoptosis is primarily regulated through the extent of eIF2α phosphorylation and activating transcription factor 4 (ATF4) action. Our studies show for the first time that cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation is required for IL-24-induced cell death in a variety of breast cancer cell lines and this event increases ATF4 activity. We demonstrate an undocumented role for PKA in regulating IL-24-induced cell death, whereby PKA stimulates phosphorylation of p38 mitogen-activated protein kinase and upregulates extrinsic apoptotic factors of the Fas/FasL signaling pathway and death receptor 4 expression. We also demonstrate that phosphorylation and nuclear import of tumor suppressor TP53 occurs downstream of IL-24-mediated PKA activation. These discoveries provide the first mechanistic insights into the function of PKA as a key regulator of the extrinsic pathway, ER stress, and TP53 activation triggered by IL-24.
Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Interleucinas/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Thymoquinone (TQ) is the active ingredient of Nigella sativa which has a therapeutic potential in cancer therapy and prevention. In this study, TQ has been shown to induce specific cytotoxicity and apoptosis and to inhibit wound healing in triple-negative breast cancer cell line. TQ also inhibited cancer growth in a mouse tumor model. Moreover, TQ and paclitaxel (Pac) combination inhibited cancer growth in cell culture and in mice. Genes involved in TQ and TQ-Pac-mediated cytotoxicity were studied using focused real-time PCR arrays. After bioinformatic analysis, genes in apoptosis, cytokine, and p53 signaling categories were found to be modulated with a high significance in TQ-treated cells (p < 10(-28), p < 10(-8), and p < 10(-6), respectively). Important to note, TQ has been found to regulate the genes involved in the induction of apoptosis through death receptors (p = 5.5 × 10(-5)). Additionally, tumor suppressor genes such as p21, Brca1, and Hic1 were highly upregulated by TQ and TQ-Pac combination. Interestingly, when cells were treated with high dose TQ, several growth factors such as Vegf and Egf were upregulated and several pro-apoptotic factors such as caspases were downregulated possibly pointing out key pathways manipulated by cancer cells to resist against TQ. In cells treated with the combination of TQ and Pac, genes in apoptosis cascade (p < 10(-12)), p53 signaling (p = 10(-5)), and JAK-STAT signaling (p < 10(-3)) were differentially expressed. TQ has also been shown to induce protein levels of cleaved Caspase-3, Caspase-7, and Caspase-12 and PARP and to reduce phosphorylated p65 and Akt1. The in vivo therapeutic potential of TQ-Pac combination and the genetic network involved in this synergy have been shown for the first time to the best of our knowledge.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Ehrlich/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Benzoquinonas/administração & dosagem , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Paclitaxel/administração & dosagem , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Carga Tumoral/efeitos dos fármacosRESUMO
BACKGROUND: Due to the aggressive clinical behavior, poor outcome, and lack of effective specific targeted therapies, triple-negative breast cancer (TNBC) has currently been recognized as one of the most malignant types of tumors. In the present study, we investigated the cytotoxic effect of ziyuglycoside I, one of the major components extracted from Chinese anti-tumor herbal Radix Sanguisorbae, on the TNBC cell line MDA-MB-231. METHODS: The underlying molecular mechanism of the cytotoxic effect ziyuglycoside I on MDA-MB-231 cells was investigated with cell viability assay, flow cytometric analysis and Western blot. RESULTS: Compared to normal mammary gland Hs 578Bst cells, treatment of ziyuglycoside I resulted in a significant growth inhibitory effect on MDA-MB-231 cells. Ziyuglycoside I induced the G2/M phase arrest and apoptosis of MDA-MB-231 cells in a dose-dependent manner. These effects were found to be partially mediated through the up-regulation of p53 and p21WAF1, elevated Bax/Bcl-2 ratio, and the activation of both intrinsic (mitochondrial-initiated) and extrinsic (Fas/FasL-initiated) apoptotic pathways. Furthermore, the p53 specific siRNA attenuated these effects. CONCLUSION: Our study suggested that ziyuglycoside I-triggered MDA-MB-231 cell cycle arrest and apoptosis were probably mediated by p53. This suggests that ziyuglycoside I might be a potential drug candidate for treating TNBC.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Saponinas/farmacologia , Proteína Supressora de Tumor p53/agonistas , Idoso , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina B1/genética , Ciclina B1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo , Receptor fas/genética , Receptor fas/metabolismoRESUMO
Eight Novel chalcones were synthesized and their structures were confirmed by different spectral tools. All the prepared compounds were subjected to SRB cytotoxic screening against several cancer cell lines. Compound 5c exerted the most promising effect against MCF7 and HEP2 cells with IC50 values of 9.5 and 12 µg/mL, respectively. Real-time PCR demonstrated the inhibitory effect of compound 5c on the expression level of Antigen kiel 67 (KI-67), Survivin, Interleukin-1beta (IL-1B), Interleukin-6 (IL-6), Cyclooxygenase-2 (COX-2) and Protein kinase B (AKT1) genes. Flow-cytometric analysis of the cell cycle indicated that compound 5c stopped the cell cycle at the G0/G1 and G2/M phases in MCF7 and HEP2 treated cells, respectively. ELISA assay showed that Caspase 8, Caspase 9, P53, BAX, and Glutathione (GSH) were extremely activated and Matrix metalloproteinase 2 (MMP2), Matrix metalloproteinase 9 (MMP9), BCL2, Malondialdehyde (MDA), and IL-6 were deactivated in 5c treated MCF7 and HEP2 cells. Wound healing revealed that chalcone 5c reduced the ability to close the scrape wound and decreased the number of migrating MCF7 and HEP2 cells compared to the untreated cells after 48 h. Theoretical molecular modeling against P53 cancer mutant Y220C and Bcl2 showed binding energies of -22.8 and -24.2 Kcal/mole, respectively, which confirmed our ELISA results.
RESUMO
Background: Neurological dysfunction and glial activation are common in severe infections such as sepsis. There is a sexual dimorphism in the response to systemic inflammation in both patients and animal models, but there are few comparative studies. Here, we investigate the effect of systemic inflammation induced by intraperitoneal administration of lipopolysaccharide (LPS) on the retina of male and female mice and determine whether antagonism of the NLRP3 inflammasome and the extrinsic pathway of apoptosis have protective effects on the retina. Methods: A single intraperitoneal injection of LPS (5 mg/kg) was administered to two months old C57BL/6J male and female mice. Retinas were examined longitudinally in vivo using electroretinography and spectral domain optical coherence tomography. Retinal ganglion cell (RGC) survival and microglial activation were analysed in flat-mounts. Retinal extracts were used for flow cytometric analysis of CD45 and CD11b positive cells. Matched plasma and retinal levels of proinflammatory cytokines were measured by ELISA. Retinal function and RGC survival were assessed in animals treated with P2X7R and TNFR1 antagonists alone or in combination. Results: In LPS-treated animals of both sexes, there was transient retinal dysfunction, loss of vision-forming but not non-vision forming RGCs, retinal swelling, microglial activation, cell infiltration, and increases in TNF and IL-1ß. Compared to females, males showed higher vision-forming RGC death, slower functional recovery, and overexpression of lymphotoxin alpha in their retinas. P2X7R and TNFR1 antagonism, alone or in combination, rescued vision-forming RGCs. P2X7R antagonism also rescued retinal function. Response to treatment was better in females than in males. Conclusions: Systemic LPS has neuronal and sex-specific adverse effects in the mouse retina, which are counteracted by targeting the NLRP3 inflammasome and the extrinsic pathway of apoptosis. Our results highlight the need to analyse males and females in preclinical studies of inflammatory diseases affecting the central nervous system.
Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Retina , Células Ganglionares da Retina/metabolismo , Inflamação/metabolismoRESUMO
Head and neck squamous cell carcinoma (HNSCC) has been characterized by a low therapeutic response and poor prognosis. Currently, there are no reliable predictive models for HNSCC progression and therapeutic efficacy. This study explores the role of diverse patterns of cell death in tumor development, positing them as predictive factors of HNSCC prognosis. We utilized bulk transcriptome and single-cell transcriptome, align with clinical information from TCGA and GEO database, to analyze genes associated with 15 types of cell death and construct a cell death index (CDI) signature. The associations of CDI with tumor-infiltrating immune cells and immunotherapy-related biomarkers were also evaluated using various algorithms. The CDI signature emerged as a robust prognosis biomarker that could identify patients who can benefit potentially from immunotherapy, thus improving diagnostic accuracy and optimizing clinical decisions in HNSCC management. Notably, we discovered that CAAP1 deficiency not only induced apoptosis but also enhanced anti-tumor immunity, suggesting its potential as a target for clinical drug development.
RESUMO
BACKGROUND: Histone deacetylase (HDAC) inhibitors are successful for treatment of advanced cutaneous T-cell lymphoma but only show modest effect in solid tumors. Approaches for HDAC inhibitors to improve activity against solid tumors are necessary. METHODS: Sulforhodamine B assay and flow cytometric analysis detected cell proliferation and cell-cycle progression, respectively. Protein expression was determined by Western blotting. Comet assay and DNA end-binding activity of Ku proteins detected DNA damage and DNA repair activity, respectively. siRNA technique was used for knockdown of specific cellular target. RESULTS: WJ25591 displayed inhibitory activity against HDAC1 and cell proliferation in human hormone-refractory prostate cancers PC-3 and DU-145. WJ25591 caused an arrest of cell-cycle at both G1- and G2-phase and increased protein expressions of p21 and cyclin E, followed by cell apoptosis. WJ25591-induced Bcl-2 down-regulation and activation of caspase-9, -8, and -3, suggesting apoptotic execution through both intrinsic and extrinsic apoptotic pathways. WJ25591 also significantly inhibited DNA repair activity but not directly induced DNA damage. Moreover, the proteasome inhibitor MG-132 dramatically sensitized WJ25591-induced cell apoptosis. The siRNA technique demonstrated that endoplasmic reticulum (ER) stress, in particular CHOP/GADD153 up-regulation, contributed to the synergistic effect. CONCLUSIONS: The data suggest that WJ25591 inhibited HDAC activity, leading to cell-cycle arrest and inhibition of DNA repair. Caspase cascades are subsequently triggered to execute cell apoptosis. MG-132 dramatically sensitizes WJ25591-mediated apoptosis, at least partly, through ER stress response. The data also reveal that combination of HDAC inhibitors and proteasome inhibitors may be a potential strategy against hormone-refractory prostate cancers.
Assuntos
Antineoplásicos/administração & dosagem , Estresse do Retículo Endoplasmático/fisiologia , Histona Desacetilases/fisiologia , Leupeptinas/administração & dosagem , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/fisiopatologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteassoma/administração & dosagemRESUMO
Glycogen synthase kinase-3ß (GSK-3ß) has been identified as one of the important pathogenic mechanisms in motor neuronal death. GSK-3ß inhibitor has been investigated as a modulator of apoptosis and has been shown to confer significant protective effects on cell death in neurodegenerative diseases. However, GSK-3ß is known to have paradoxical effects on apoptosis subtypes, i.e., pro-apoptotic in mitochondrial-associated intrinsic apoptosis, but anti-apoptotic in death receptor-related extrinsic apoptosis. In this study, we evaluated the effect of a new GSK-3ß inhibitor (JGK-263) on motor neuron cell survival and apoptosis, by using low to high doses of JGK-263 after 48 h of serum withdrawal, and monitoring changes in extrinsic apoptosis pathway components, including Fas, FasL, cleaved caspase-8, p38α, and the Fas-Daxx interaction. Cell survival peaked after treatment of serum-deprived cells with 50 µM JGK-263. The present study showed that treatment with JGK-263 reduced serum-deprivation-induced motor neuronal apoptosis by inactivating not only the intrinsic, but also the extrinsic apoptosis pathway. These results suggest that JGK-263 has a neuroprotective effect through effective modulation of the extrinsic apoptosis pathway in motor neuron degeneration.
Assuntos
Apoptose/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Neurônios Motores/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Identifying the target linking inflammation and oxidative stress to aggravate the disease progression will help to prevent colitis associated carcinogenesis. Since AKR1B1 overexpression is observed in inflammatory diseases and various cancers, we have investigated the role of AKR1B1 in colitis-associated colon carcinogenesis with the aid of epalrestat and its potent analogue NARI-29 (investigational molecule) as pharmacological probes. A TNF-α inducible NF-κB reporter cell line (GloResponse™ NF-κB-RE-luc2P HEK293) and dextran sodium sulfate (DSS) and 1,2 dimethyl hydrazine (DMH))-induced mouse model was used to investigate our hypothesis in vitro and in vivo. Clinically, an increased expression of AKR1B1 was observed in patients with ulcerative colitis. Our in vitro and in vivo findings suggest that the AKR1B1 modulated inflammation and ROS generation for the progression of colitis to colon cancer. AKR1B1 overexpression was observed in DSS + DMH-treated mice colons. Moreover, we could observe histopathological changes like immune cell infiltration, aberrant crypt foci, and tumour formation in DC groups. Mechanistically, we have witnessed modulation of the IKK/IκB/NF-κB and Akt/FOXO-3a/DR axis, increased inflammatory cytokines, increased expression of proliferative markers, Ki-67 and PCNA, and accumulation of ß-catenin in the colon epithelium. However, pharmacological inhibition of AKR1B1 using NARI-29 or EPS has reversed the clinical, histopathological, and molecular alterations induced by DSS + DMH, confirming the obvious role of AKR1B1 in the promotion of colitis-associated carcinogenesis. In conclusion, our findings suggest that AKR1B1 targeted therapy could be a promising strategy for preventing CA-CRC and NARI-29 could be developed as a potent AKR1B1 inhibitor.