Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2221742120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252964

RESUMO

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.


Assuntos
Fibrilina-1 , Síndrome de Marfan , Animais , Camundongos , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Am J Physiol Cell Physiol ; 326(3): C756-C767, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284126

RESUMO

The extracellular matrix (ECM) determines functional properties of connective tissues through structural components, such as collagens, elastic fibers, or proteoglycans. The ECM also instructs cell behavior through regulatory proteins, including proteases, growth factors, and matricellular proteins, which can be soluble or tethered to ECM scaffolds. The secreted a disintegrin and metalloproteinase with thrombospondin type 1 repeats/motifs-like (ADAMTSL) proteins constitute a family of regulatory ECM proteins that are related to ADAMTS proteases but lack their protease domains. In mammals, the ADAMTSL protein family comprises seven members, ADAMTSL1-6 and papilin. ADAMTSL orthologs are also present in the worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster. Like other matricellular proteins, ADAMTSL expression is characterized by tight spatiotemporal regulation during embryonic development and early postnatal growth and by cell type- and tissue-specific functional pleiotropy. Although largely quiescent during adult tissue homeostasis, reexpression of ADAMTSL proteins is frequently observed in the context of physiological and pathological tissue remodeling and during regeneration and repair after injury. The diverse functions of ADAMTSL proteins are further evident from disorders caused by mutations in individual ADAMTSL proteins, which can affect multiple organ systems. In addition, genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) in ADAMTSL genes to complex traits, such as lung function, asthma, height, body mass, fibrosis, or schizophrenia. In this review, we summarize the current knowledge about individual members of the ADAMTSL protein family and highlight recent mechanistic studies that began to elucidate their diverse functions.


Assuntos
Drosophila melanogaster , Estudo de Associação Genômica Ampla , Feminino , Animais , Matriz Extracelular/genética , Proteínas ADAMTS/genética , Caenorhabditis elegans , Tecido Conjuntivo , Mamíferos
3.
Biol Reprod ; 111(1): 135-147, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38401166

RESUMO

OBJECTIVE: This study aimed to explore the specific pathways by which HOX transcript antisense intergenic RNA contributes to the pathogenesis of unexplained recurrent spontaneous abortion. METHODS: Real-time quantitative PCR was employed to assess the differential expression levels of HOX transcript antisense intergenic RNA in chorionic villi tissues from unexplained recurrent spontaneous abortion patients and women with voluntarily terminated pregnancies. HTR-8/SVneo served as a cellular model. Knockdown and overexpression of HOX transcript antisense intergenic RNA in the cells were achieved through siRNA transfection and pcDNA3.1 transfection, respectively. Cell viability, migration, and invasion were evaluated using cell counting kit-8, scratch, and Transwell assays, respectively. The interaction among the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 axis was predicted through bioinformatics analysis and confirmed through in vitro experiments. Furthermore, the regulatory effects of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis on cellular behaviors were validated in HTR-8/SVneo cells. RESULTS: We found that HOX transcript antisense intergenic RNA was downregulated in chorionic villi tissues from unexplained recurrent spontaneous abortion patients. Overexpression of HOX transcript antisense intergenic RNA significantly enhanced the viability, migration, and invasion of HTR-8/SVneo cells, while knockdown of HOX transcript antisense intergenic RNA had the opposite effects. We further confirmed the regulatory effect of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis in unexplained recurrent spontaneous abortion. Specifically, HOX transcript antisense intergenic RNA and fibrillin 2 were found to reduce the risk of unexplained recurrent spontaneous abortion by enhancing cell viability, migration, and invasion, whereas miR-1277-5p exerted the opposite effects. CONCLUSION: HOX transcript antisense intergenic RNA promotes unexplained recurrent spontaneous abortion development by targeting inhibition of miR-1277-5p/fibrillin 2 axis.


Assuntos
Aborto Habitual , Movimento Celular , MicroRNAs , RNA Longo não Codificante , Transdução de Sinais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Gravidez , Fibrilina-2/genética , Fibrilina-2/metabolismo , Adulto , Proliferação de Células , Linhagem Celular , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Vilosidades Coriônicas/metabolismo
4.
Exp Eye Res ; 239: 109724, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981180

RESUMO

Diabetic macular edema (DME) is the most common cause of blindness in patients with diabetic retinopathy. To investigate the proteomic profiles of the aqueous humor (AH) of individuals with diabetic macular edema (DME), AH samples were collected from patients with non-diabetes mellitus (NDM), DM, nonproliferative diabetic retinopathy (NPDR), and DME. We performed comparative proteomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analyses. We identified 425 proteins in these AH samples, of which 113 showed changes in expression in DME compared with NDM, 95 showed changes in expression in DME vs. DM, and 84 showed changes in expression in DME compared with NPDR. The bioinformatics analysis suggested that DME is closely associated with platelet degranulation, oxidative stress-related pathway, and vascular-related pathways. Upregulation of haptoglobin (HP) and downregulation of fibrillin 1 (FBN1) were validated by ELISA. Receiver operating characteristic (ROC) analysis showed that HP and FBN1 could distinguish DME from NPDR with areas under the curve of 0.987 (p = 0.00608) and 0.791 (p = 0.00629), respectively. The findings provide potential clues for further analysis of the molecular mechanisms and the development of new treatments for DME. HP and FBN1 may be potential key proteins and therapeutic targets in human DME. The proteomics dataset generated has been deposited to the ProteomeXchange/iProX Consortium with Identifier: PXD033404/IPX0004353001.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Retinopatia Diabética/metabolismo , Edema Macular/metabolismo , Humor Aquoso/metabolismo , Proteômica/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diabetes Mellitus/metabolismo
5.
Am J Med Genet A ; 194(2): 368-373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840436

RESUMO

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder due to pathogenic variants in Fibrillin-1 (FBN1) affecting nearly one in every 10,000 individuals. We report a 16-month-old female with early-onset MFS heterozygous for an 11.2 kb de novo duplication within the FBN1 gene. Tandem location of the duplication was further confirmed by optical genome mapping in addition to genetic sequencing and chromosomal microarray. This is the third reported case of a large multi-exon duplication in FBN1, and the only one confirmed to be in tandem. As the vast majority of pathogenic variants associated with MFS are point mutations, this expands the landscape of known FBN1 pathogenic variants and supports consistent use of genetic testing strategies that can detect large, indel-type variants.


Assuntos
Síndrome de Marfan , Humanos , Feminino , Lactente , Fibrilina-1/genética , Mutação , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Testes Genéticos , Mutação Puntual , Fibrilinas/genética , Adipocinas/genética
6.
Am J Med Genet A ; 194(11): e63795, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39394948

RESUMO

Marfan syndrome (MFS) is a complex connective tissue disorder characterized by considerable clinical variability. The diagnosis of MFS is based on the Ghent criteria, which require the presence of both clinical and genetic features. MFS is primarily caused by pathogenic alterations in FBN1, which encodes the fibrillin-1 protein. Fibrillin-1 comprises multiple domains rich in cysteine residues, with disulfide bonds formed between these residues. It has long been recognized that variants that alter or introduce cysteine residues damage protein function, leading to the development of MFS. In this study, we report a cysteine-introducing variant: FBN1 variant, c.6724C>T (p.[Arg2242Cys]). We have observed this variant in several individuals without MFS, challenging our previous understanding of the underlying mechanism of MFS. This finding emphasizes the importance of revisiting and reevaluating our current knowledge in light of new and unexpected observations. Moreover, our study highlights the significance of incorporating local and national data on allele frequencies, as well as employing multidisciplinary phenotyping approaches, in the classification of genetic variants. By considering a wide range of information, we can enhance the accuracy and reliability of variant classification, ultimately improving the diagnosis and management of individuals with genetic disorders like MFS.


Assuntos
Fibrilina-1 , Síndrome de Marfan , Humanos , Fibrilina-1/genética , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Síndrome de Marfan/diagnóstico , Masculino , Feminino , Adulto , Fenótipo , Frequência do Gene , Predisposição Genética para Doença , Linhagem , Variação Genética , Mutação/genética , Alelos , Adipocinas
7.
Arterioscler Thromb Vasc Biol ; 43(9): e358-e372, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470181

RESUMO

BACKGROUND: Transmural failure of the aorta is responsible for substantial morbidity and mortality; it occurs when mechanical stress exceeds strength. The aortic root and ascending aorta are susceptible to dissection and rupture in Marfan syndrome, a connective tissue disorder characterized by a progressive reduction in elastic fiber integrity. Whereas competent elastic fibers endow the aorta with compliance and resilience, cross-linked collagen fibers confer stiffness and strength. We hypothesized that postnatal reductions in matrix cross-linking increase aortopathy when turnover rates are high. METHODS: We combined ex vivo biaxial mechanical testing with multimodality histological examinations to quantify expected age- and sex-dependent structural vulnerability of the ascending aorta in Fbn1C1041G/+ Marfan versus wild-type mice without and with 4-week exposures to ß-aminopropionitrile, an inhibitor of lysyl oxidase-mediated cross-linking of newly synthesized elastic and collagen fibers. RESULTS: We found a strong ß-aminopropionitrile-associated sexual dimorphism in aortic dilatation in Marfan mice and aortic rupture in wild-type mice, with dilatation correlating with compromised elastic fiber integrity and rupture correlating with compromised collagen fibril organization. A lower incidence of rupture of ß-aminopropionitrile-exposed Marfan aortas associated with increased lysyl oxidase, suggesting a compensatory remodeling of collagen that slows disease progression in the otherwise compromised Fbn1C1041G/+ aorta. CONCLUSIONS: Collagen fiber structure and function in the Marfan aorta are augmented, in part, by increased lysyl oxidase in female and especially male mice, which improves structural integrity, particularly via fibrils in the adventitia. Preserving or promoting collagen cross-linking may represent a therapeutic target for an otherwise vulnerable aorta.


Assuntos
Síndrome de Marfan , Animais , Feminino , Masculino , Camundongos , Aminopropionitrilo/toxicidade , Colágeno , Dilatação , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibrilina-1/genética , Síndrome de Marfan/complicações , Síndrome de Marfan/patologia , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-39466436

RESUMO

PURPOSE: To investigate the expression patterns of Fibrillin-1 in idiopathic epiretinal membranes (iERM) and identify Fibrillin-1-secreting cells. METHODS: iERM samples were collected via standard 27-gauge vitrectomy and subsequently subjected to flat-mount immunohistochemistry with double staining for the following markers: Fibrillin-1, glial acidic fibrillary protein (GFAP), cellular retinaldehyde-binding protein (CRALBP), retinoid isomerohydrolase RPE65 (RPE65), and α-smooth muscle actin (α-SMA). RESULTS: Fibrillin-1 was detected throughout the iERM. The colocalization of Fibrillin-1 with α-SMA, CRALBP, and RPE65 suggested that myofibroblasts and retinal pigment epithelial (RPE) cells secreted Fibrillin-1. The lack of colocalization between GFAP and Fibrillin-1 indicated that GFAP-positive glial cells did not secrete Fibrillin-1. The colocalization of CRALBP and RPE65 with α-SMA indicated the transformation of RPE cells into myofibroblasts. This suggested that RPE cells transformed into myofibroblasts and secreted Fibrillin-1. The lack of colocalization between GFAP and α-SMA implied that GFAP-positive glial cells did not express α-SMA. CONCLUSIONS: Fibrillin-1 is widely distributed in iERMs, and myofibroblasts were the primary sources of Fibrillin-1 secretion. Additionally, during their transformation into myofibroblasts, RPE cells secreted Fibrillin-1. GFAP-positive glial cells did not express α-SMA nor secrete Fibrillin-1. KEY MESSAGES: What is known Idiopathic epiretinal membranes are a common cause of visual acuity and quality impairment. The protein and cell components of idiopathic epiretinal membrane exhibit diversity. What is new Fibrillin-1 is present throughout the idiopathic epiretinal membrane. Myofibroblasts are the most important source of Fibrillin-1 secretion. Retinal pigment epithelial cells also secrete Fibrillin-1 when transforming into myofibroblast. Glial cells do not transform to myofibroblast and do not secrete Fibrillin-1.

9.
Eur Spine J ; 33(7): 2561-2568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615299

RESUMO

PURPOSE: Dural ectasia (DE) may significantly impact Marfan syndrome (MFS) patients' quality of life due to chronic lower back pain, postural headache and urinary disorders. We aimed to evaluate the association of quantitative measurements of DE, and their evolution over time, with demographic, clinical and genetic characteristics in a cohort of MFS patients. METHODS: We retrospectively included 88 consecutive patients (39% females, mean age 37.1 ± 14.2 years) with genetically confirmed MFS who underwent at least one MRI or CT examination of the lumbosacral spine. Vertebral scalloping (VS) and dural sac ratio (DSR) were calculated from L3 to S3. Likely pathogenic or pathogenic FBN1 variants were categorized as either protein-truncating or in-frame. The latter were further classified according to their impact on the cysteine content of fibrillin-1. RESULTS: Higher values of the systemic score (revised Ghent criteria) were associated with greater DSR at lumbar (p < 0.001) and sacral (p = 0.021) levels. Patients with protein-truncating variants exhibited a greater annual increase in lumbar (p = 0.039) and sacral (p = 0.048) DSR. Mutations affecting fibrillin-1 cysteine content were linked to higher VS (p = 0.009) and DSR (p = 0.038) at S1, along with a faster increase in VS (p = 0.032) and DSR (p = 0.001) in the lumbar region. CONCLUSION: Our study shed further light on the relationship between genotype, dural pathology, and the overall clinical spectrum of MFS. The identification of protein-truncating variants and those impacting cysteine content may therefore suggest closer patient monitoring, in order to address potential complications associated with DE.


Assuntos
Dura-Máter , Fibrilina-1 , Síndrome de Marfan , Humanos , Síndrome de Marfan/genética , Síndrome de Marfan/diagnóstico por imagem , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Dura-Máter/diagnóstico por imagem , Dura-Máter/patologia , Dilatação Patológica/genética , Dilatação Patológica/diagnóstico por imagem , Fibrilina-1/genética , Adulto Jovem , Adipocinas
10.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542120

RESUMO

China leads the world in freshwater pearl production, an industry in which the triangle sail mussel (Sinohyriopsis cumingii) plays a pivotal role. In this paper, we report a high-quality chromosome-level genome assembly of S. cumingii with a size of 2.90 Gb-the largest yet reported among bivalves-and 89.92% anchorage onto 19 linkage groups. The assembled genome has 37,696 protein-coding genes and 50.86% repeat elements. A comparative genomic analysis revealed expansions of 752 gene families, mostly associated with biomineralization, and 237 genes under strong positive selection. Notably, the fibrillin gene family exhibited gene family expansion and positive selection simultaneously, and it also exhibited multiple high expressions after mantle implantation by transcriptome analysis. Furthermore, RNA silencing and an in vitro calcium carbonate crystallization assay highlighted the pivotal role played by one fibrillin gene in calcium carbonate deposition and aragonite transformation. This study provides a valuable genomic resource and offers new insights into the mechanism of pearl biomineralization.


Assuntos
Bivalves , Unionidae , Animais , Biomineralização/genética , Bivalves/genética , Bivalves/química , Unionidae/genética , Unionidae/metabolismo , Carbonato de Cálcio , Água Doce , Fibrilinas/metabolismo
11.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273357

RESUMO

Genetic factors play a significant role in the pathogenesis of mitral valve diseases, including mitral valve prolapse (MVP) and mitral valve regurgitation. Genes like Fibrillin-1 (FBN1), Filamin A (FLNA), matrix metalloproteinase 2 (MMP2), and SRY-box transcription factor 9 (SOX9) are known to influence mitral valve pathology but knowledge of the exact mechanism is far from clear. Data regarding serum parameters, transesophageal echocardiography, and genetic and histopathologic parameters were investigated in 54 patients who underwent cardiovascular surgery for mitral valve regurgitation. The possible association between Fibrillin-1, Filamin A, MMP2, and SOX9 gene expressions was checked in relationship with the parameters of systemic inflammatory response. The mRNA expression levels (RQ-relative quantification) were categorized into three distinct groups: low (RQ < 1), medium/normal (RQ = 1-2), and high (RQ > 2). Severe fibrosis of the mitral valve was reflected by high expression of FBN1 and low expression of MMP2 (p < 0.05). The myxoid degeneration level was associated with the mRNA expression level for FBN1 and a low lymphocyte-monocyte ratio was associated with an increased mRNA expression of FBN1 (p < 0.05). A high number of monocytes was associated with high values of FBN1 whereas the increase in the number of lymphocytes was associated with high levels of MMP2. In addition, we observed that the risk of severe hyalinization was enhanced by a low mRNA expression of FLNA and/or SOX9. In conclusion, a lower FLNA mRNA expression can reflect the aging process that is highlighted in mitral valve pathology as a higher risk for hyalinization, especially in males, that might be prevented by upregulation of the SOX9 gene. FBN1 and MMP2 influence the inflammation-related fibrotic degeneration of the mitral valve. Understanding the genetic base of mitral valve pathology can provide insights into disease mechanisms, risk stratification, and potential therapeutic targets.


Assuntos
Fibrilina-1 , Filaminas , Metaloproteinase 2 da Matriz , Valva Mitral , Fatores de Transcrição SOX9 , Humanos , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Filaminas/metabolismo , Filaminas/genética , Masculino , Feminino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Pessoa de Meia-Idade , Valva Mitral/patologia , Valva Mitral/metabolismo , Idoso , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/metabolismo , Prolapso da Valva Mitral/patologia , Insuficiência da Valva Mitral/genética , Insuficiência da Valva Mitral/metabolismo , Insuficiência da Valva Mitral/patologia , Adipocinas
12.
Dev Dyn ; 252(6): 761-769, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36825302

RESUMO

BACKGROUND: The Bone morphogenetic protein 4 (BMP4) precursor protein is cleaved at two sites to generate an active ligand and inactive prodomain. The ligand and prodomain form a noncovalent complex following the first cleavage, but dissociate after the second cleavage. Transient formation of this complex is essential to generate a stable ligand. Fibrillins (FBNs) bind to the prodomains of BMPs, and can regulate the activity of some ligands. Whether FBNs regulate BMP4 activity is unknown. RESULTS: Mice heterozygous for a null allele of Bmp4 showed incompletely penetrant kidney defects and females showed increased mortality between postnatal day 6 and 8. Removal of one copy of Fbn1 did not rescue or enhance kidney defects or lethality. The lungs of Fbn1+/- females had enlarged airspaces that were unchanged in Bmp4+/- ;Fbn1+/- mice. Additionally, removal of one or both alleles of Fbn1 had no effect on steady state levels of BMP4 ligand or on BMP activity in postnatal lungs. CONCLUSIONS: These findings do not support the hypothesis that FBN1 plays a role in promoting BMP4 ligand stability or signaling, nor do they support the alternative hypothesis that FBN1 sequesters BMP4 in a latent form, as is the case for other BMP family members.


Assuntos
Proteínas Morfogenéticas Ósseas , Rim , Feminino , Camundongos , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Ligantes , Proteínas Morfogenéticas Ósseas/metabolismo , Alelos , Rim/metabolismo , Proteína Morfogenética Óssea 7 , Proteína Morfogenética Óssea 2
13.
J Biol Chem ; 298(8): 102129, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700824

RESUMO

Epidermal growth factor-like domains (EGFDs) have important functions in cell-cell signaling. Both secreted and cell surface human EGFDs are subject to extensive modifications, including aspartate and asparagine residue C3-hydroxylations catalyzed by the 2-oxoglutarate oxygenase aspartate/asparagine-ß-hydroxylase (AspH). Although genetic studies show AspH is important in human biology, studies on its physiological roles have been limited by incomplete knowledge of its substrates. Here, we redefine the consensus sequence requirements for AspH-catalyzed EGFD hydroxylation based on combined analysis of proteomic mass spectrometric data and mass spectrometry-based assays with isolated AspH and peptide substrates. We provide cellular and biochemical evidence that the preferred site of EGFD hydroxylation is embedded within a disulfide-bridged macrocycle formed of 10 amino acid residues. This definition enabled the identification of previously unassigned hydroxylation sites in three EGFDs of human fibulins as AspH substrates. A non-EGFD containing protein, lymphocyte antigen-6/plasminogen activator urokinase receptor domain containing protein 6B (LYPD6B) was shown to be a substrate for isolated AspH, but we did not observe evidence for LYPD6B hydroxylation in cells. AspH-catalyzed hydroxylation of fibulins is of particular interest given their important roles in extracellular matrix dynamics. In conclusion, these results lead to a revision of the consensus substrate requirements for AspH and expand the range of observed and potential AspH-catalyzed hydroxylation in cells, which will enable future study of the biological roles of AspH.


Assuntos
Sequência Consenso , Fator de Crescimento Epidérmico , Proteômica , Antígenos Ly/metabolismo , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Humanos , Hidroxilação
14.
Mol Genet Metab ; 138(1): 106979, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630758

RESUMO

Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFß family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.


Assuntos
Síndrome Metabólica , Humanos , Fibrilina-1/genética , Fibrilina-2 , Fibrilinas , Glucose , Síndrome Metabólica/genética , Proteínas dos Microfilamentos/genética , Obesidade/genética , RNA Mensageiro , Adipocinas/genética
15.
New Phytol ; 239(5): 1771-1789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366020

RESUMO

Plastoglobules (PGs) contiguous with the outer leaflets of thylakoid membranes regulate lipid metabolism, plastid developmental transitions, and responses to environmental stimuli. However, the function of OsFBN7, a PG-core fibrillin gene in rice, has not been elucidated. Using molecular genetics and physiobiochemical approaches, we observed that OsFBN7 overexpression promoted PG clustering in rice chloroplasts. OsFBN7 interacted with two KAS I enzymes, namely OsKAS Ia and OsKAS Ib, in rice chloroplasts. Lipidomic analysis of chloroplast subcompartments, including PGs in the OsFBN7 overexpression lines, confirmed that levels of diacylglycerol (DAG), a chloroplast lipid precursor and monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the main chloroplast membrane lipids, were increased in PGs and chloroplasts. Furthermore, OsFBN7 enhanced the abundances of OsKAS Ia/Ib in planta and their stability under oxidative and heat stresses. In addition, RNA sequencing and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses showed that the expression of the DAG synthetase gene PAP1 and MGDG synthase gene MDG2 was upregulated by OsFBN7. In conclusion, this study proposes a new model in which OsFBN7 binds to OsKAS Ia/Ib in chloroplast and enhances their abundance and stability, thereby regulating the chloroplast and PG membrane lipids involved in the formation of PG clusters.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Cloroplastos/metabolismo , Galactolipídeos/metabolismo , Tilacoides/metabolismo , Lipídeos de Membrana/metabolismo , Resposta ao Choque Térmico
16.
New Phytol ; 240(1): 285-301, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37194444

RESUMO

Biosynthesis, stabilization, and storage of carotenoids are vital processes in plants that collectively contribute to the vibrant colors observed in flowers and fruits. Despite its importance, the carotenoid storage pathway remains poorly understood and lacks thorough characterization. We identified two homologous genes, BjA02.PC1 and BjB04.PC2, belonging to the esterase/lipase/thioesterase (ELT) family of acyltransferases. We showed that BjPCs in association with fibrillin gene BjFBN1b control the stable storage of carotenoids in yellow flowers of Brassica juncea. Through genetic, high-resolution mass spectrometry and transmission electron microscopy analyses, we demonstrated that both BjA02.PC1 and BjB04.PC2 can promote the accumulation of esterified xanthophylls, facilitating the formation of carotenoid-enriched plastoglobules (PGs) and ultimately producing yellow pigments in flowers. The elimination of BjPCs led to the redirection of metabolic flux from xanthophyll ester biosynthesis to lipid biosynthesis, resulting in white flowers for B. juncea. Moreover, we genetically verified the function of two fibrillin genes, BjA01.FBN1b and BjB05.FBN1b, in mediating PG formation and demonstrated that xanthophyll esters must be deposited in PGs for stable storage. These findings identified a previously unknown carotenoid storage pathway that is regulated by BjPCs and BjFBN1b, while offering unique opportunities for improving the stability, deposition, and bioavailability of carotenoids.


Assuntos
Brassica napus , Brassica rapa , Carotenoides/metabolismo , Mostardeira/metabolismo , Brassica napus/metabolismo , Esterases/análise , Esterases/genética , Esterases/metabolismo , Fibrilinas/genética , Xantofilas/metabolismo , Luteína/análise , Luteína/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas
17.
Histopathology ; 82(4): 622-632, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36416374

RESUMO

AIMS: The progression of primary myelofibrosis is characterised by ongoing extracellular matrix deposition graded based on 'reticulin' and 'collagen' fibrosis, as revealed by Gomori's silver impregnation. Here we studied the expression of the major extracellular matrix proteins of fibrosis in relation to diagnostic silver grading supported by image analysis. METHODS AND RESULTS: By using automated immunohistochemistry, in this study we demonstrate that the expression of both types I and III collagens and fibrillin 1 by bone marrow stromal cells can reveal the extracellular matrix scaffolding in line with myelofibrosis progression as classified by silver grading. 'Reticulin' fibrosis indicated by type III collagen expression and 'collagen' fibrosis featured by type I collagen expression were parallel, rather than sequential, events. This is line with the proposed role of type III collagen in regulating type I collagen fibrillogenesis. The uniformly strong fibrillin 1 immune signals offered the best inter-rater agreements and the highest statistical correlations with silver grading of the three markers, which was robustly confirmed by automated whole slide digital image analysis using a machine learning-based algorithm. The progressive up-regulation of fibrillin 1 during myelofibrosis may result from a negative feedback loop as fibrillin microfibrils sequester TGF-ß, the major promoter of fibrosis. This can also reduce TGF-ß-induced RANKL levels, which would stimulate osteoclastogenesis and thus can support osteosclerosis in advanced myelofibrosis. CONCLUSIONS: Through the in-situ detection of these extracellular matrix proteins, our results verify the molecular pathobiology of fibrosis during myelofibrosis progression. In particular, fibrillin 1 immunohistochemistry, with or without image analysis, can complement diagnostic silver grading at decent cell morphology.


Assuntos
Mielofibrose Primária , Humanos , Mielofibrose Primária/diagnóstico , Colágeno Tipo III , Fibrilina-1 , Colágeno Tipo I , Prata , Colágeno , Proteínas da Matriz Extracelular , Fibrose , Fator de Crescimento Transformador beta
18.
Cell Mol Life Sci ; 79(6): 314, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606547

RESUMO

Thoracic aortic aneurysms (TAA) in Marfan syndrome, caused by fibrillin-1 mutations, are characterized by elevated cytokines and fragmentated elastic laminae in the aortic wall. This study explored whether and how specific fibrillin-1-regulated miRNAs mediate inflammatory cytokine expression and elastic laminae degradation in TAA. miRNA expression profiling at early and late TAA stages using a severe Marfan mouse model (Fbn1mgR/mgR) revealed a spectrum of differentially regulated miRNAs. Bioinformatic analyses predicted the involvement of these miRNAs in inflammatory and extracellular matrix-related pathways. We demonstrate that upregulation of pro-inflammatory cytokines and matrix metalloproteinases is a common characteristic of mouse and human TAA tissues. miR-122, the most downregulated miRNA in the aortae of 10-week-old Fbn1mgR/mgR mice, post-transcriptionally upregulated CCL2, IL-1ß and MMP12. Similar data were obtained at 70 weeks of age using Fbn1C1041G/+ mice. Deficient fibrillin-1-smooth muscle cell interaction suppressed miR-122 levels. The marker for tissue hypoxia HIF-1α was upregulated in the aortic wall of Fbn1mgR/mgR mice, and miR-122 was reduced under hypoxic conditions in cell and organ cultures. Reduced miR-122 was partially rescued by HIF-1α inhibitors, digoxin and 2-methoxyestradiol in aortic smooth muscle cells. Digoxin-treated Fbn1mgR/mgR mice demonstrated elevated miR-122 and suppressed CCL2 and MMP12 levels in the ascending aortae, with reduced elastin fragmentation and aortic dilation. In summary, this study demonstrates that miR-122 in the aortic wall inhibits inflammatory responses and matrix remodeling, which is suppressed by deficient fibrillin-1-cell interaction and hypoxia in TAA.


Assuntos
Aneurisma da Aorta Torácica , Síndrome de Marfan , MicroRNAs , Animais , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Citocinas , Digoxina , Modelos Animais de Doenças , Fibrilina-1/genética , Fibrilina-1/metabolismo , Humanos , Hipóxia/genética , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Metaloproteinase 12 da Matriz , MicroRNAs/genética
19.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108724

RESUMO

Fibrillin-1 microfibrils are essential elements of the extracellular matrix serving as a scaffold for the deposition of elastin and endowing connective tissues with tensile strength and elasticity. Mutations in the fibrillin-1 gene (FBN1) are linked to Marfan syndrome (MFS), a systemic connective tissue disorder that, besides other heterogeneous symptoms, usually manifests in life-threatening aortic complications. The aortic involvement may be explained by a dysregulation of microfibrillar function and, conceivably, alterations in the microfibrils' supramolecular structure. Here, we present a nanoscale structural characterization of fibrillin-1 microfibrils isolated from two human aortic samples with different FBN1 gene mutations by using atomic force microscopy, and their comparison with microfibrillar assemblies purified from four non-MFS human aortic samples. Fibrillin-1 microfibrils displayed a characteristic "beads-on-a-string" appearance. The microfibrillar assemblies were investigated for bead geometry (height, length, and width), interbead region height, and periodicity. MFS fibrillin-1 microfibrils had a slightly higher mean bead height, but the bead length and width, as well as the interbead height, were significantly smaller in the MFS group. The mean periodicity varied around 50-52 nm among samples. The data suggest an overall thinner and presumably more frail structure for the MFS fibrillin-1 microfibrils, which may play a role in the development of MFS-related aortic symptomatology.


Assuntos
Síndrome de Marfan , Microfibrilas , Humanos , Fibrilina-1/genética , Fibrilinas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/química , Síndrome de Marfan/genética , Aorta , Fibrilina-2
20.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958946

RESUMO

Human skin aging is associated with functional deterioration on multiple levels of physiology, necessitating the development of effective skin senotherapeutics. The well-tolerated neurohormone melatonin unfolds anti-aging properties in vitro and in vivo, but it remains unclear whether these effects translate to aged human skin ex vivo. We tested this in organ-cultured, full-thickness human eyelid skin (5-6 donors; 49-77 years) by adding melatonin to the culture medium, followed by the assessment of core aging biomarkers via quantitative immunohistochemistry. Over 6 days, 200 µM melatonin significantly downregulated the intraepidermal activity of the aging-promoting mTORC1 pathway (as visualized by reduced S6 phosphorylation) and MMP-1 protein expression in the epidermis compared to vehicle-treated control skin. Conversely, the transmembrane collagen 17A1, a key stem cell niche matrix molecule that declines with aging, and mitochondrial markers (e.g., TFAM, MTCO-1, and VDAC/porin) were significantly upregulated. Interestingly, 100 µM melatonin also significantly increased the epidermal expression of VEGF-A protein, which is required and sufficient for inducing human skin rejuvenation. In aged human dermis, melatonin significantly increased fibrillin-1 protein expression and improved fibrillin structural organization, indicating an improved collagen and elastic fiber network. In contrast, other key aging biomarkers (SIRT-1, lamin-B1, p16INK4, collagen I) remained unchanged. This ex vivo study provides proof of principle that melatonin indeed exerts long-suspected but never conclusively demonstrated and surprisingly differential anti-aging effects in aged human epidermis and dermis.


Assuntos
Melatonina , Envelhecimento da Pele , Humanos , Idoso , Melatonina/farmacologia , Melatonina/metabolismo , Pele/metabolismo , Epiderme/metabolismo , Envelhecimento , Colágeno/metabolismo , Biomarcadores/metabolismo , Pálpebras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA