Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biol Lett ; 17(9): 20210381, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582734

RESUMO

Filial imprinting is a dedicated learning process that lacks explicit reinforcement. The phenomenon itself is narrowly heritably canalized, but its content, the representation of the parental object, reflects the circumstances of the newborn. Imprinting has recently been shown to be even more subtle and complex than previously envisaged, since ducklings and chicks are now known to select and represent for later generalization abstract conceptual properties of the objects they perceive as neonates, including movement pattern, heterogeneity and inter-component relationships of same or different. Here, we investigate day-old Mallard (Anas platyrhynchos) ducklings' bias towards imprinting on acoustic stimuli made from mallards' vocalizations as opposed to white noise, whether they imprint on the temporal structure of brief acoustic stimuli of either kind, and whether they generalize timing information across the two sounds. Our data are consistent with a strong innate preference for natural sounds, but do not reliably establish sensitivity to temporal relations. This fits with the view that imprinting includes the establishment of representations of both primary percepts and selective abstract properties of their early perceptual input, meshing together genetically transmitted prior pre-dispositions with active selection and processing of the perceptual input.


Assuntos
Patos , Fixação Psicológica Instintiva , Estimulação Acústica , Acústica , Animais , Humanos , Recém-Nascido , Aprendizagem
2.
Learn Behav ; 49(1): 54-66, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33025570

RESUMO

When facing two sets of imprinting objects of different numerousness, domestic chicks prefer to approach the larger one. Given that choice for familiar and novel stimuli in imprinting situations is known to be affected by the sex of the animals, we investigated how male and female domestic chicks divide the time spent in the proximity of a familiar versus an unfamiliar number of objects, and how animals interact (by pecking) with these objects. We confirmed that chicks discriminate among the different numerousnesses, but we also showed that females and males behave differently, depending on the degree of familiarity of the objects. When objects in the testing sets were all familiar, females equally explored both sets and pecked at all objects individually. Males instead selectively approached the familiar numerousness and pecked more at it. When both testing sets comprised familiar as well as novel objects, both males and females approached the larger numerousness of familiar objects. However, chicks directed all their pecks toward the novel object within the set. Differences in the behavior of males and females can be accounted for in terms of sex difference in the motivation to reinstate social contact with the familiar objects and to explore novel ones, likely associated with the ecology and the social structure of the species before domestication.


Assuntos
Galinhas , Reconhecimento Psicológico , Animais , Feminino , Masculino
3.
Eur J Neurosci ; 50(10): 3674-3687, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336003

RESUMO

Nonapeptides from the vasopressin/oxytocin family have been implicated in a wide variety of social behaviours across vertebrates. Experimental manipulations that alter nonapeptide levels or receptor function in the brain have provided evidence for understanding how nonapeptides influence responses to social stimuli in adults. While behaviours in adults have been extensively studied, much less in known about roles of nonapeptides in early life and the development of affiliative social behaviours. We examined an experience-independent preference (social predisposition) that is present at hatching and is characterized by the tendency of visually naïve chicks (Gallus gallus) to prefer to approach a stuffed hen stimulus over a control stimulus in a choice test. Among chicks that show the social predisposition preference, bilateral intracranial mesotocin injections resulted in higher mean hen preference scores compared with saline-injected controls. Equimolar doses of mesotocin and vasotocin injections had different effects on locomotor activity: vasotocin, but not mesotocin, resulted in hypoactivity. We also tested whether intraperitoneal substance P had an effect on hen preference scores because previous research has proposed that vasotocin effects on social approach are mediated by peripheral release of substance P, but found no significant effect. All together, our data suggest that mesotocin signalling may be important for social predispositions and can potentially enhance the perceived salience of social stimuli soon after hatching. Specifically, mesotocin release and signalling in the brain may regulate the ability to recognize naturalistic stimuli and/or to act on the motivation to approach naturalistic stimuli.


Assuntos
Locomoção , Neurotransmissores/farmacologia , Ocitócicos/farmacologia , Ocitocina/análogos & derivados , Comportamento Social , Substância P/farmacologia , Vasotocina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Galinhas , Feminino , Masculino , Ocitocina/farmacologia , Percepção Visual
4.
Anim Cogn ; 22(5): 769-775, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31183592

RESUMO

Avian filial imprinting is a rapid form of learning occurring just after hatching in precocial bird species. The acquired imprint on either or both parents goes on to affect the young bird's survival and social behaviour later in life (Bateson in Biol Rev 41:177-217, 1966). The imprinting mechanism is specialized but flexible, and causes the hatchling to develop high-fidelity recognition and attraction to any moving stimulus of suitable size seen during a predefined sensitive period. It has been observed (Martinho and Kacelnik in Science 353:286-288, 2016; Versace et al. in Anim Cogn 20:521-529, 2017) that in addition to visual and acoustic sensory inputs, imprinting may incorporate informational rules or abstract concepts. Here we report a study of mallard ducklings (Anas platyrhynchos domesticus) undergoing imprinting on the chromatic heterogeneity of stimuli, with a focus on how this may be transferred to novel objects. Ducklings were exposed to a series of chromatically heterogeneous or homogeneous stimuli and tested for preference between two novel stimuli, one heterogeneous and the other homogeneous. Exposure to heterogeneity significantly enhanced preference for novel heterogeneous stimuli, relative to ducklings exposed to homogeneous stimuli or unexposed controls. These findings support the view that imprinting does not rely solely on exemplars, or snapshot-like representations of visual input, but that instead young precocial animals form complex multidimensional representations of the target object, involving abstract properties, either at the time of learning, or later, through generalization from the learnt exemplars.


Assuntos
Patos , Fixação Psicológica Instintiva , Animais , Aprendizagem , Comportamento Social
5.
Horm Behav ; 102: 120-128, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29778460

RESUMO

Filial imprinting is the behavior observed in chicks during the sensitive or critical period of the first 2-3 days after hatching; however, after this period they cannot be imprinted when raised in darkness. Our previous study showed that temporal augmentation of the endogenous thyroid hormone 3,5,3'-triiodothyronine (T3) in the telencephalon, by imprinting training, starts the sensitive period just after hatching. Intravenous injection of T3 enables imprinting of chicks on days 4 or 6 post-hatching, even when the sensitive period has ended. However, the molecular mechanism of how T3 acts as a determinant of the sensitive period is unknown. Here, we show that Wnt-2b mRNA level is increased in the T3-injected telencephalon of 4-day old chicks. Pharmacological inhibition of Wnt signaling in the intermediate hyperpallium apicale (IMHA), which is the caudal area of the telencephalon, blocked the recovery of the sensitive period following T3 injection. In addition, injection of recombinant Wnt-2b protein into the IMHA helped chicks recover the sensitive period without the injection of T3. Lastly, we showed Wnt signaling to be involved in imprinting via the IMHA region on day 1 during the sensitive period. These results indicate that Wnt signaling plays a critical role in the opening of the sensitive period downstream of T3.


Assuntos
Animais Recém-Nascidos/psicologia , Galinhas , Fixação Psicológica Instintiva/efeitos dos fármacos , Telencéfalo/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Proteína Wnt2/genética , Administração Intravenosa , Animais , Animais Recém-Nascidos/genética , Animais Recém-Nascidos/metabolismo , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Escuridão , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fixação Psicológica Instintiva/fisiologia , Comportamento de Nidação/efeitos dos fármacos , Fotoperíodo , Telencéfalo/metabolismo , Fatores de Tempo , Tri-Iodotironina/administração & dosagem , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína Wnt2/metabolismo
6.
Anim Cogn ; 20(3): 521-529, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28260155

RESUMO

From the early stages of life, learning the regularities associated with specific objects is crucial for making sense of experiences. Through filial imprinting, young precocial birds quickly learn the features of their social partners by mere exposure. It is not clear though to what extent chicks can extract abstract patterns of the visual and acoustic stimuli present in the imprinting object, and how they combine them. To investigate this issue, we exposed chicks (Gallus gallus) to three days of visual and acoustic imprinting, using either patterns with two identical items or patterns with two different items, presented visually, acoustically or in both modalities. Next, chicks were given a choice between the familiar and the unfamiliar pattern, present in either the multimodal, visual or acoustic modality. The responses to the novel stimuli were affected by their imprinting experience, and the effect was stronger for chicks imprinted with multimodal patterns than for the other groups. Interestingly, males and females adopted a different strategy, with males more attracted by unfamiliar patterns and females more attracted by familiar patterns. Our data show that chicks can generalize abstract patterns by mere exposure through filial imprinting and that multimodal stimulation is more effective than unimodal stimulation for pattern learning.


Assuntos
Galinhas/fisiologia , Fixação Psicológica Instintiva/fisiologia , Estimulação Acústica , Animais , Animais Recém-Nascidos , Feminino , Aprendizagem , Masculino , Estimulação Luminosa , Fatores Sexuais
7.
Front Physiol ; 14: 1084816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875018

RESUMO

Thyroid hormones play a critical role in the initiation of the sensitive period of filial imprinting. The amount of thyroid hormones in the brains of chicks increases intrinsically during the late embryonic stages and peaks immediately before hatching. After hatching, a rapid imprinting-dependent inflow of circulating thyroid hormones into the brain occurs via vascular endothelial cells during imprinting training. In our previous study, inhibition of hormonal inflow impeded imprinting, indicating that the learning-dependent inflow of thyroid hormones after hatching is critical for the acquisition of imprinting. However, it remained unclear whether the intrinsic thyroid hormone level just before hatching affects imprinting. Here, we examined the effect of temporal thyroid hormone decrease on embryonic day 20 on approach behavior during imprinting training and preference for the imprinting object. To this end, methimazole (MMI; a thyroid hormone biosynthesis inhibitor) was administered to the embryos once a day on days 18-20. Serum thyroxine (T4) was measured to evaluate the effect of MMI. In the MMI-administered embryos, the T4 concentration was transiently reduced on embryonic day 20 but recovered to the control level on post-hatch day 0. At the beginning of imprinting training on post-hatch day 1, control chicks approached the imprinting object only when the object was moving. In the late phase of training, control chicks subsequently approached towards the static imprinting object. On the other hand, in the MMI-administered chicks, the approach behavior decreased during the repeated trials in the training, and the behavioral responses to the imprinting object were significantly lower than those of control chicks. This indicates that their persistent responses to the imprinting object were impeded by a temporal thyroid hormone decrease just before hatching. Consequently, the preference scores of MMI-administered chicks were significantly lower than those of control chicks. Furthermore, the preference score on the test was significantly correlated with the behavioral responses to the static imprinting object in the training. These results indicate that the intrinsic thyroid hormone level immediately before hatching is crucial for the learning process of imprinting.

8.
Behav Brain Res ; 420: 113708, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-34902480

RESUMO

Muscarinic acetylcholine receptors (mAChRs) in the central nervous system play an important role in regulating complex functions such as learning, memory, and selective attention. Five subtypes of the mAChRs (M1-M5) have been identified in mammals, and are classified into two subfamilies: excitatory (M1, M3, and M5) and inhibitory (M2 and M4) subfamilies. Filial imprinting of domestic chicks is a useful model in the laboratory to investigate the mechanisms of memory formation in early learning. We recently found that mAChRs in the intermediate medial mesopallium (IMM) are involved in the memory formation of imprinting. However, expression profiles of each mAChR subtype in the brain regions including the IMM remain unexplored. Here we show the unique gene expression of each mAChR subtype in the pallial regions involved in imprinting. In terms of the excitatory mAChRs, M5 was expressed in the IMM region and other parts of the pallium, whereas M3 was less expressed in the IMM but highly expressed in the hyperpallium and nidopallium. Regarding the inhibitory mAChRs, M2 was sparsely distributed but clearly in some cells throughout the pallial regions. M4 was highly expressed in the IMM region and other parts of the pallium. These expression profiles can be used as a basis for understanding cholinergic modulation in the memory formation of imprinting and other learning processes in birds, and compared to those of mammals.


Assuntos
Encéfalo , Galinhas/genética , Aprendizagem/fisiologia , Receptores Muscarínicos/metabolismo , Transcriptoma/genética , Animais
9.
Front Physiol ; 13: 822638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370801

RESUMO

In filial imprinting, newly hatched chicks repeatedly approach a conspicuous object nearby and memorize it, even though it is an artificial object instead of their mother hen. Imprinting on an artificial object in a laboratory setting has a clear sensitive period from post hatch days 1-3 in the case of domestic chicks. However, the establishment of imprintability are difficult to investigate because of the limitations of the behavioral apparatus. In this study, we developed a novel behavioral apparatus, based on a running disc, to investigate the learning processes of imprinting in newly hatched domestic chicks. In the apparatus, the chick repeatedly approaches the imprinting object on the disc. The apparatus sends a transistor-transistor-logic signal every 1/10 turn of the disc to a personal computer through a data acquisition system following the chick's approach to the imprinting object on the monitor. The imprinting training and tests were designed to define the three learning processes in imprinting. The first process is the one in which chicks spontaneously approach the moving object. The second is an acquired process in which chicks approach an object even when it is static. In the third process, chicks discriminate between the differently colored imprinting object and the control object in the preference test. Using the apparatus, the difference in the chicks' behavior during or after the sensitive period was examined. During the sensitive period, the chicks at post hatch hour 12 and 18 developed the first imprinting training process. The chicks at post hatch hour 24 maintained learning until the second process. The chicks at post hatch hour 30 reached the discrimination process in the test. After the sensitive period, the chicks reared in darkness until post hatch day 4 exhibited poor first learning process in the training. Thus, this apparatus will be useful for the detection of behavioral changes during neuronal development and learning processes.

10.
Behav Brain Res ; 424: 113789, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35151794

RESUMO

Muscarinic acetylcholine receptors (mAChRs) play an important role in many brain functions. Our previous study revealed that the injection of mAChRs antagonist scopolamine into the intermediate medial mesopallium (IMM) region, which is critical for filial imprinting, impairs memory formation. In avian brains, four mAChR subtypes have been identified (M2, M3, M4 and M5). M3 and M5 receptors increase the excitability of neurons, whereas M2 and M4 receptors reduce the excitability. Because the scopolamine blocks all subtypes, the previous study did not identify which subtype contributes to the memory formation. By injecting several types of mAChR antagonists into the IMM, in this study we determined which mAChR subtype plays a critical role in imprinting. First, the effects of antagonists on the excitatory receptor subtypes M3 and M5 were examined. Injection of the M3 antagonist (DAU5884) at 20 mM or the M5 antagonist (ML381) at 2 mM impaired imprinting. Considering the pKi value of DAU5884, the impairment seems to be caused by DAU5884 binding to M3 and/or M4 receptors. Second, the effect of antagonists on the inhibitory receptor subtype M2 was examined. The results showed that the M2 antagonist (AQ-RA741) impaired imprinting at a concentration of 20 mM. Considering the pKi value of AQ-RA741, the impairment seems to be caused by AQ-RA741 binding to M2 and/or M4. The findings of this study suggests that the excitatory receptor subtypes M3 and M5 and the inhibitory receptor subtype M2 and/or M4 cooperate to achieve the appropriate balance of acetylcholine signaling to execute imprinting.


Assuntos
Receptores Muscarínicos , Escopolamina , Animais , Encéfalo/metabolismo , Galinhas/metabolismo , Antagonistas Muscarínicos/farmacologia , Neurônios/metabolismo , Receptores Muscarínicos/metabolismo , Escopolamina/farmacologia
11.
Behav Brain Res ; 379: 112291, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689441

RESUMO

Filial imprinting in precocial birds is a useful model for studying memory formation in early learning. The intermediate medial mesopallium (IMM) in the dorsal telencephalon is one of the critical brain regions where the releases of several neurotransmitters increase after the start of imprinting training. Among the increased neurotransmitters, the role of acetylcholine in imprinting has remained unclear. Acetylcholine in the mammalian brain plays an important role in encoding new memories. The muscarinic acetylcholine receptor subtype 1 (M1 receptor) and subtype 3 (M3 receptor) in the hippocampus and cortex of mammalian brain have been shown to be necessary for memory encoding. In this study, we examined whether the imprinting acquisition in chick can be impaired by injecting muscarinic acetylcholine receptor (mAChR) antagonist scopolamine into the bilateral IMM. We show that the injection of scopolamine decreased the preference for the imprinting object in the test, but did not affect the number of approaches to the imprinting object during training. Immunoblotting and immunohistochemistry revealed that M3 receptors were expressed in the IMM. Our data suggest that acetylcholine is involved in the memory formation of imprinting through M3 receptors in the IMM. The scopolamine-injected chicks may be useful as an animal model for dementia such as Alzheimer's disease.


Assuntos
Comportamento Animal/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Antagonistas Muscarínicos/farmacologia , Receptor Muscarínico M3/metabolismo , Escopolamina/farmacologia , Telencéfalo/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Animais , Galinhas , Modelos Animais de Doenças , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Antagonistas Muscarínicos/administração & dosagem , Escopolamina/administração & dosagem , Telencéfalo/metabolismo , Telencéfalo/fisiopatologia
12.
Acta Ethol ; 23(3): 127-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122872

RESUMO

Attachment is a concept that was developed and researched in developmental psychology in uptake of findings on filial imprinting from ethology. In the present period, however, attachment concepts are increasingly applied to and investigated in animal research, thereby translating back criteria that were established for human infants. It herein appears that findings on filial imprinting are becoming more and more forgotten, whilst basic findings in human infants are not reflected in investigations on attachment in animals. To re-integrate both domains, the present article undertakes the effort in briefly reviewing and recapitulating basic findings in human attachment and recent research on filial imprinting. In specific, replicated were critical roles of the conversion of thyroid prohormone by 2 iodothyronine deiodinase (Dio2) into triiodothyronine (T3) in the regulation of the timing of imprinting learning. Because of the interactions of T3 with oxytocinergic and dopaminergic neurones of the hypothalamic paraventricular nucleus, these findings provide new neuroendocrinological insight for possible relations with both attachment and metabolic sequelae of early life stress. Necessary is a mutual integration of all recent advances in the yet separated fields.

13.
Physiol Behav ; 201: 175-183, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659872

RESUMO

Regular visual presence of humans is known to reduce chickens' human-generated stress responses. Here we questioned whether, more than mere visual presence, human behaviour affects laying hen behaviour and subsequently their offspring's behaviour. We hypothesized that human behaviour triggers maternal effects via variations in yolk hormone levels. For five consecutive weeks, two groups of hens were exposed to the same durations of human presence (30 min twice a day, five days a week) but the behaviour of the human differed between groups. The first group (H+) was exposed to predictable arrival of the experimenter, slow movements combined with static presence, stroking during handling and human voice. Whereas the second group of hens (H-) was exposed to unpredictable arrival of the experimenter which remained silent, in motion, and did not provide stroking during handling. At the end of the treatment, we evaluated egg quality and offspring behaviour. We found that avoidance of the experimenter by H+ hens but not by H- hens decreased significantly. Fertility rates and concentrations of yolk progesterone and estradiol in H+ hens' eggs were higher than in H- hens' eggs. Fear of humans, neophobia or the capacity to solve a detour task did not differ significantly between H+ and H- chicks. Social discrimination tests showed that H+ chicks but not H- chicks typically preferred a familiar conspecific to a stranger. These results show that, with the same duration in the presence of the birds, humans through their behaviour engender variations in fertility rates, yolk hormone levels and transgenerational effects on social skills. Rarely explored, our data suggest that maternal effects influence filial imprinting. These data have broad implications for laboratory, commercial systems and conservatory programs where the inevitable presence of humans could trigger maternal effects on offspring phenotype.


Assuntos
Comportamento Animal/fisiologia , Galinhas , Animais , Animais Recém-Nascidos , Gema de Ovo/química , Estradiol/análise , Medo/fisiologia , Feminino , Fertilidade , Humanos , Fixação Psicológica Instintiva , Masculino , Progesterona/análise , Comportamento Social
14.
Front Physiol ; 9: 1837, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618842

RESUMO

Filial imprinting of domestic chicks has a well-defined sensitive (critical) period lasting in the laboratory from hatching to day 3. It is a typical model to investigate the molecular mechanisms underlying memory formation in early learning. We recently found that thyroid hormone 3,5,3'-triiodothyronine (T3) is a determinant of the sensitive period. Rapid increases in cerebral T3 levels are induced by imprinting training, rendering chicks imprintable. Furthermore, the administration of exogenous T3 makes chicks imprintable on days 4 or 6 even after the sensitive period has ended. However, how T3 affects neural transmission to enable imprinting remains mostly unknown. In this study, we demonstrate opposing roles for gamma-aminobutyric acid (GABA)-A and GABA-B receptors in imprinting downstream of T3. Quantitative reverse transcription polymerase chain reaction and immunoblotting showed that the GABA-A receptor expression increases gradually from days 1 to 5, whereas the GABA-B receptor expression gradually decreases. We examined whether neurons in the intermediate medial mesopallium (IMM), the brain region responsible for imprinting, express both types of GABA receptors. Immunostaining showed that morphologically identified putative projection neurons express both GABA-A and GABA-B receptors, suggesting that those GABA receptors interact with each other in these cells to modulate the IMM outputs. The roles of GABA-A and GABA-B receptors were investigated using various agonists and antagonists. Our results show that GABA-B receptor antagonists suppressed imprinting on day 1, while its agonists made day 4 chicks imprintable without administration of exogenous T3. By contrast, GABA-A receptor agonists suppressed imprinting on day 1, while its antagonists induced imprintability on day 4 without exogenous T3. Furthermore, both GABA-A receptor agonists and GABA-B receptor antagonists suppressed T3-induced imprintability on day 4 after the sensitive period has ended. Our data from these pharmacological experiments indicate that GABA-B receptors facilitate imprinting downstream of T3 by initiating the sensitive period, while the GABA-A receptor contributes to the termination of the sensitive period. In conclusion, we propose that opposing roles of GABA-A and GABA-B receptors in the brain during development determine the induction and termination of the sensitive period.

15.
Neurosci Lett ; 612: 32-37, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26673886

RESUMO

Filial imprinting is a behavior characterized by the sensitive or critical period restricted to the first few days after hatching. Once the sensitive period is closed, it is widely believed that chicks can never be imprinted under natural conditions. Previously, we showed that the exogenous injection of T3 reopened the sensitive period which was already closed. That study suggested that T3 functioned by way of a rapid non-genomic action; however, the molecular mechanism of how T3 reopens the sensitive period remains unknown. Here, we show that the phosphorylation level of nucleotide diphosphate kinase 2 (NDPK2) was upregulated following T3 injection. Pharmacological deprivation of the kinase activity of NDPK hampered the molecular process prerequisite for the reopening of the sensitive period of filial imprinting. Moreover, it is shown that the kinase activity of NDPK2 participates in the priming process by T3 signaling which endows the potential for learning. Our data indicate that NDPK2 plays a crucial role downstream of T3 action and that its phosphorylation is involved in the non-genomic signaling during imprinting.


Assuntos
Galinhas/fisiologia , Fixação Psicológica Instintiva , Núcleosídeo-Difosfato Quinase/metabolismo , Animais , Encéfalo/metabolismo , Galinhas/crescimento & desenvolvimento , Núcleosídeo-Difosfato Quinase/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosforilação , Proteoma/metabolismo , Tri-Iodotironina/farmacologia , Regulação para Cima
16.
Neurosci Biobehav Rev ; 50: 143-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24661985

RESUMO

The view that filial imprinting might serve as a useful model system for studying the neurobiological basis of memory was inspired, at least in part, by a simple idea: acquired filial preferences reflect the formation of a memory or representation of the imprinting object itself, as opposed to the change in the efficacy of stimulus-response pathways, for example. We provide a synthesis of the evidence that supports this idea; and show that the processes of memory formation observed in filial imprinting find surprisingly close counterparts in other species, including our own.


Assuntos
Fixação Psicológica Instintiva , Apego ao Objeto , Percepção , Animais , Aprendizagem por Associação , Galinhas , Humanos , Modelos Psicológicos
17.
Neurosci Biobehav Rev ; 50: 41-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25459663

RESUMO

In his pioneering research on the neural mechanisms of filial imprinting, Gabriel Horn has gone a long way to fulfilling Karl Lashley's dream of finding the 'engram' or memory trace in the brain. Here we review recent research into the engram(s) of song learning in songbirds, particularly zebra finches. When juvenile songbirds learn their songs from a tutor, they form and alter a central representation of the tutor song, known as the 'template'. Secondary auditory regions in the caudal medial pallium are likely to contain the neural substrate for the representation of tutor song, but the roles of the different regions remain to be elucidated. Female zebra finches do not sing, but nevertheless form an auditory memory of their father's song, for which the neural substrate is located in the caudomedial pallium. In males that are learning their songs, there is continual interaction between the secondary auditory regions and sensorimotor regions, similar to the interaction between Broca's and Wernicke's areas in human infants acquiring speech and language.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Fala/fisiologia , Vocalização Animal/fisiologia , Animais , Feminino , Tentilhões , Humanos , Lactente , Aprendizagem/fisiologia , Masculino , Sono , Aves Canoras
18.
Neuroscience ; 308: 115-24, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26362886

RESUMO

Filial imprinting in precocial birds is a useful model for studying early learning and cognitive development, as it is characterized by a well-defined sensitive or critical period. We recently showed that the thyroid hormone 3,5,3'-triiodothyronine (T3) determines the onset of the sensitive period. Moreover, exogenous injection of T3 into the intermediate medial mesopallium (IMM) region (analogous to the associative cortex in mammals) enables imprinting even on post-hatch day 4 or 6 when the sensitive period has been terminated. However, the neural mechanisms downstream from T3 action in the IMM region remain elusive. Here, we analyzed the functional involvement of the intermediate hyperpallium apicale (IMHA) in T3 action. Bilateral excitotoxic ablation of the IMHA prevented imprinting in newly hatched chicks, and also suppressed the recovery of the sensitive period by systemic intra-venous or localized intra-IMM injection of T3 in day-4 chicks. In contrast to the effect in the IMM, direct injection of T3 into the IMHA did not enable imprinting in day-4 chicks. Moreover, bilateral ablation of IMHA after imprinting training impaired recall. These results suggest that the IMHA is critical for memory acquisition downstream following T3 action in the IMM and further, that it receives and retains information stored in the IMM for recall. Furthermore, both an avian adeno-associated viral construct containing an anterograde tracer (wheat-germ agglutinin) and a retrograde tracer (cholera toxin subunit B) revealed neural connections from the IMM to the IMHA. Taken together, our findings suggest that hierarchical processes from the primary area (IMM) to the secondary area (IMHA) are required for imprinting.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Fixação Psicológica Instintiva/fisiologia , Animais , Encéfalo/fisiopatologia , Galinhas , Período Crítico Psicológico , Ácido Ibotênico , Immunoblotting , Rememoração Mental/fisiologia , Modelos Animais , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Técnicas de Rastreamento Neuroanatômico
19.
Neurosci Biobehav Rev ; 50: 169-79, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25454353

RESUMO

Johnson and Morton (1991. Biology and Cognitive Development: The Case of Face Recognition. Blackwell, Oxford) used Gabriel Horn's work on the filial imprinting model to inspire a two-process theory of the development of face processing in humans. In this paper we review evidence accrued over the past two decades from infants and adults, and from other primates, that informs this two-process model. While work with newborns and infants has been broadly consistent with predictions from the model, further refinements and questions have been raised. With regard to adults, we discuss more recent evidence on the extension of the model to eye contact detection, and to subcortical face processing, reviewing functional imaging and patient studies. We conclude with discussion of outstanding caveats and future directions of research in this field.


Assuntos
Encéfalo/fisiologia , Reconhecimento Facial/fisiologia , Fixação Psicológica Instintiva/fisiologia , Modelos Neurológicos , Adulto , Animais , Atenção/fisiologia , Expressão Facial , Humanos , Comportamento Imitativo , Lactente , Recém-Nascido
20.
Behav Brain Res ; 261: 134-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24368142

RESUMO

UNLABELLED: The effects of glucocorticoid receptor dysfunction during embryogenesis on the imprinting abilities and social behaviors of hatchlings were examined using "fertile hen's egg-embryo-chick" system. METHODS AND RESULTS: Of embryos treated with mifepristone (0.4µmol/egg) on day 14, over 75% hatched a day later than the controls (day 22) without external anomalies. The mifepristone-treated hatchlings were assayed for imprinting ability on post-hatching day 2 and for social behaviors on day 3. The findings were as follows: imprinting ability (expressed as preference score) was significantly lower in mifepristone-treated hatchlings than in controls (0.65±0.06 vs. 0.92±0.02, P<0.005). Aggregation tests to evaluate the speed (seconds) required for four chicks, individually isolated with cardboard dividers in a box, to form a group after removal of the barriers showed that aggregation was significantly slower in mifepristone-treated hatchlings than in controls (8.7±1.1 vs. 2.6±0.3, P<0.001). In belongingness tests to evaluate the speed (seconds) for a chick isolated at a corner to join a group of three chicks placed at the opposite corner, mifepristone-treated hatchlings took significantly longer than controls (4.5±0.4/40 cm vs. 2.4±0.08/40 cm, P<0.001). In vocalization tests, using a decibel meter to measure average decibel level/30s (chick vocalization), mifepristone-treated hatchlings had significantly weaker vocalizations than controls (14.2±1.9/30s vs. 26.4±1.3/30s P<0.001). In conclusion, glucocorticoid receptor dysfunction during the last week embryogenesis altered the programming of brain development, resulting in impaired behavioral activities in late life.


Assuntos
Fixação Psicológica Instintiva/efeitos dos fármacos , Deficiências da Aprendizagem/etiologia , Mifepristona/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Receptores de Glucocorticoides/antagonistas & inibidores , Transtornos do Comportamento Social/etiologia , Agressão/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/patologia , Embrião de Galinha , Feminino , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA