Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(2): 100705, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135118

RESUMO

The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas RGS , Arabidopsis/metabolismo , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteoma/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Flagelina/farmacologia , Flagelina/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
2.
BMC Plant Biol ; 24(1): 864, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39278927

RESUMO

BACKGROUND: High GABA levels and its conversion to succinate via the GABA shunt are known to be associated with abiotic and biotic stress tolerance in plants. The exact mode of action is still under debate and it is not yet clear whether GABA is a common component of the plant stress defense process or not. We hypothesized that if it is a common route for stress tolerance, activation of GABA-shunt by a biotic stressor might also function in increased abiotic stress tolerance. To test this, Brassica napus plants treated with Flagellin-22 (Flg-22) were exposed to drought stress and the differences in GABA levels along with GABA-shunt components (biosynthetic and catabolic enzyme activities) in the leaf and root samples were compared. In order to provide a better outlook, MYC2, MPK6 and ZAT12, expression profiles were also analyzed since these genes were recently proposed to function in abiotic and biotic stress tolerance. RESULTS: Briefly, we found that Flg treatment increased drought stress tolerance in B. napus via GABA-shunt and the MAPK cascade was involved while the onset was different between leaves and roots. Flg treatment promoted GABA biosynthesis with increased GABA content and GAD activity in the leaves. Better performance of the Flg treated plants under drought stress might be dependent on the activation of GABA-shunt which provides succinate to TCA since GABA-T and SSADH activities were highly induced in the leaves and roots. In the transcript analysis, Flg + drought stressed groups had higher MYC2 transcript abundances correlated well with the GABA content and GABA-shunt while, MPK6 expression was induced only in the roots of the Flg + drought stressed groups. ZAT12 was also induced both in leaves and roots as a result of Flg-22 treatment. However, correlation with GABA and GABA-shunt could be proposed only in Flg + drought stressed group. CONCLUSION: We provided solid data on how GABA-shunt and Fgl-22 are interacting against abiotic stress in leaf and root tissues. Fgl-22 induced ETI activated GABA-shunt with a plausible cross talk between MYC2 and ZAT12 transcription factors for drought stress tolerance in B. napus.


Assuntos
Brassica napus , Secas , Flagelina , Ácido gama-Aminobutírico , Brassica napus/genética , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Ácido gama-Aminobutírico/metabolismo , Flagelina/farmacologia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Plant Cell Rep ; 43(8): 190, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976088

RESUMO

KEY MESSAGE: New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.


Assuntos
Regulação da Expressão Gênica de Plantas , Peptídeos , Doenças das Plantas , Prunus dulcis , Xylella , Xylella/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Prunus dulcis/microbiologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência à Doença , Folhas de Planta/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/genética
4.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879573

RESUMO

Plants have an innate immune system to fight off potential invaders that is based on the perception of nonself or modified-self molecules. Microbe-associated molecular patterns (MAMPs) are evolutionarily conserved microbial molecules whose extracellular detection by specific cell surface receptors initiates an array of biochemical responses collectively known as MAMP-triggered immunity (MTI). Well-characterized MAMPs include chitin, peptidoglycan, and flg22, a 22-amino acid epitope found in the major building block of the bacterial flagellum, FliC. The importance of MAMP detection by the plant immune system is underscored by the large diversity of strategies used by pathogens to interfere with MTI and that failure to do so is often associated with loss of virulence. Yet, whether or how MTI functions beyond pathogenic interactions is not well understood. Here we demonstrate that a community of root commensal bacteria modulates a specific and evolutionarily conserved sector of the Arabidopsis immune system. We identify a set of robust, taxonomically diverse MTI suppressor strains that are efficient root colonizers and, notably, can enhance the colonization capacity of other tested commensal bacteria. We highlight the importance of extracellular strategies for MTI suppression by showing that the type 2, not the type 3, secretion system is required for the immunomodulatory activity of one robust MTI suppressor. Our findings reveal that root colonization by commensals is controlled by MTI, which, in turn, can be selectively modulated by specific members of a representative bacterial root microbiota.


Assuntos
Microbiota/fisiologia , Imunidade Vegetal/imunologia , Raízes de Plantas/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Imunidade , Microbiota/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Plantas/microbiologia , Microbiologia do Solo , Simbiose/imunologia , Virulência
5.
New Phytol ; 240(3): 1202-1218, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37559429

RESUMO

A prophage tail-like protein (Bg_9562) of Burkholderia gladioli strain NGJ1 possesses broad-spectrum antifungal activity, and it is required for the bacterial ability to forage over fungi. Here, we analyzed whether heterologous overexpression of Bg_9562 or exogenous treatment with purified protein can impart disease tolerance in tomato. The physiological relevance of Bg_9562 during endophytic growth of NGJ1 was also investigated. Bg_9562 overexpressing lines demonstrate fungal and bacterial disease tolerance. They exhibit enhanced expression of defense genes and activation of mitogen-activated protein kinases. Treatment with Bg_9562 protein induces defense responses and imparts immunity in wild-type tomato. The defense-inducing ability lies within 18-51 aa region of Bg_9562 and is due to sequence homology with the bacterial flagellin epitope. Interaction studies suggest that Bg_9562 is perceived by FLAGELLIN-SENSING 2 homologs in tomato. The silencing of SlSERK3s (BAK1 homologs) prevents Bg_9562-triggered immunity. Moreover, type III secretion system-dependent translocation of Bg_9562 into host apoplast is important for elicitation of immune responses during colonization of NGJ1. Our study emphasizes that Bg_9562 is important for the endophytic growth of B. gladioli, while the plant perceives it as an indirect indicator of the presence of bacteria to mount immune responses. The findings have practical implications for controlling plant diseases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Burkholderia gladioli , Solanum lycopersicum , Flagelina , Burkholderia gladioli/metabolismo , Prófagos/metabolismo , Arabidopsis/genética , Imunidade Vegetal/genética , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/microbiologia
6.
Phytopathology ; 113(2): 277-285, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36044638

RESUMO

The mechanisms underlying the ability of plants to differentiate between pathogens and commensals in their environment are currently unresolved. It has been suggested that spatiotemporal regulation of pattern-recognition receptor (PRR) content could be one of the components providing plants with the ability to distinguish between pathogens and nonpathogenic microbes. The LeEIX PRRs recognize xylanases derived from beneficial or commensal plant colonizers of Trichoderma species, including the xylanase known as EIX. Here, we investigated possible general roles of PRRs from the LeEIX locus in immunity and pathogen resistance in tomato. Mutating the inhibitory PRR LeEIX1, or overexpressing the activating PRR LeEIX2, resulted in resistance to a wide range of pathogens and increased basal and elicited immunity. LeEIX1 knockout caused increases in the expression level of several tested PRRs, including FLS2, as well as bacterial pathogen resistance coupled with an increase in flg22-mediated immunity. The wild tomato relative Solanum pennellii contains inactive LeEIX PRR variants. S. pennellii does not respond to elicitation with the LeEIX PRR ligand EIX. Given that EIX is derived from a mostly nonpathogenic microbe, the connection of its PRRs to disease resistance has not previously been investigated directly. Here, we observed that compared with S. lycopersicum cultivar M82, S. pennellii was more sensitive to several fungal and bacterial pathogens. Our results suggest that the LeEIX locus might determine resistance to fungal necrotrophs, whereas the resistance to biotrophs is effected in combination with a gene/quantitative trait locus not within the LeEIX locus.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Receptores de Reconhecimento de Padrão/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(31): 18849-18857, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690691

RESUMO

One of the major events of early plant immune responses is a rapid influx of Ca2+ into the cytosol following pathogen recognition. Indeed, changes in cytosolic Ca2+ are recognized as ubiquitous elements of cellular signaling networks and are thought to encode stimulus-specific information in their duration, amplitude, and frequency. Despite the wealth of observations showing that the bacterial elicitor peptide flg22 triggers Ca2+ transients, there remain limited data defining the molecular identities of Ca2+ transporters involved in shaping the cellular Ca2+ dynamics during the triggering of the defense response network. However, the autoinhibited Ca2+-ATPase (ACA) pumps that act to expel Ca2+ from the cytosol have been linked to these events, with knockouts in the vacuolar members of this family showing hypersensitive lesion-mimic phenotypes. We have therefore explored how the two tonoplast-localized pumps, ACA4 and ACA11, impact flg22-dependent Ca2+ signaling and related defense responses. The double-knockout aca4/11 exhibited increased basal Ca2+ levels and Ca2+ signals of higher amplitude than wild-type plants. Both the aberrant Ca2+ dynamics and associated defense-related phenotypes could be suppressed by growing the aca4/11 seedlings at elevated temperatures. Relocalization of ACA8 from its normal cellular locale of the plasma membrane to the tonoplast also suppressed the aca4/11 phenotypes but not when a catalytically inactive mutant was used. These observations indicate that regulation of vacuolar Ca2+ sequestration is an integral component of plant immune signaling, but also that the action of tonoplast-localized Ca2+ pumps does not require specific regulatory elements not found in plasma membrane-localized pumps.


Assuntos
Proteínas de Arabidopsis , Sinalização do Cálcio/fisiologia , ATPases Transportadoras de Cálcio , Cálcio/metabolismo , Imunidade Vegetal/fisiologia , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/metabolismo , Vacúolos/metabolismo
8.
Plant Mol Biol ; 108(3): 225-239, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35038066

RESUMO

KEY MESSAGE: This study focused on the role of CLE1-7 peptides as defense mediators, and showed that root-expressed CLE3 functions as a systemic signal to regulate defense-related gene expression in shoots. In the natural environment, plants employ diverse signaling molecules including peptides to defend themselves against various pathogen attacks. In this study, we investigated whether CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) genes (CLE1-7) respond to biotic stimuli. CLE3 showed significant up-regulation upon treatment with flg22, Pep2, and salicylic acid (SA). Quantitative real-time PCR (qRT-PCR) analysis revealed that CLE3 expression is regulated by the NON-EXPRESSOR OF PR GENES1 (NPR1)-dependent SA signaling and flg22-FLAGELLIN-SENSITIVE 2 (FLS2) signaling pathways. We demonstrated that SA-induced up-regulation of CLE3 in roots was required for activation of WRKY33, a gene involved in the regulation of systemic acquired resistance (SAR), in shoots, suggesting that CLE3 functions as a root-derived signal that regulates the expression of defense-related genes in shoots. Microarray analysis of transgenic Arabidopsis lines overexpressing CLE3 under the control of a ß-estradiol-inducible promoter revealed that root-confined CLE3 overexpression affected gene expression in both roots and shoots. Comparison of CLE2- and CLE3-induced genes indicated that CLE2 and CLE3 peptides target a few common but largely distinct downstream genes. These results suggest that root-derived CLE3 is involved in the regulation of systemic rather than local immune responses. Our study also sheds light on the potential role of CLE peptides in long-distance regulation of plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação para Baixo , Estradiol/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Raízes de Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/farmacologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
9.
Plant Cell Environ ; 45(6): 1843-1861, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35199374

RESUMO

Stomatal movement participates in plant immunity by directly affecting the invasion of bacteria, but the genes that regulate stomatal immunity have not been well identified. Here, we characterised the function of the bZIP59 transcription factor from Arabidopsis thaliana, which is constitutively expressed in guard cells. The bzip59 mutant is partially impaired in stomatal closure induced by Pseudomonas syringae pv. tomato strain (Pst) DC3000 and is more susceptible to Pst DC3000 infection. By contrast, the line overexpressing bZIP59 enhances resistance to Pst DC3000 infection. Furthermore, the bzip59 mutant is also partially impaired in stomatal closure induced by flagellin flg22 derived from Pst DC3000, and epistasis analysis revealed that bZIP59 acts upstream of reactive oxygen species (ROS) and nitric oxide (NO) and downstream of salicylic acid signalling in flg22-induced stomatal closure. In addition, the bzip59 mutant showed resistance and sensitivity to Sclerotinia sclerotiorum and Tobacco mosaic virus that do not invade through stomata, respectively. Collectively, our results demonstrate that bZIP59 plays an important role in the stomatal immunity and reveal that the same transcription factor can positively and negatively regulate disease resistance against different pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Solanum lycopersicum/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Pseudomonas syringae/fisiologia , Fatores de Transcrição/genética
10.
Biosci Biotechnol Biochem ; 86(4): 490-501, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35040954

RESUMO

The first layer of active plant immunity relies upon the recognition of pathogen-associated molecular patterns (PAMPs), and the induction of PTI. Flagellin is the major protein component of the bacterial flagellum. Flagellin-derived peptide fragments such as CD2-1, flg22, and flgII-28 function as PAMPs in most higher plants. To determine the distribution of CD2-1, flg22, and flgII-28 recognition systems within plant species, the inducibility of PTI by CD2-1, flg22, and flgII-28 in 8 plant species, including monocotyledonous and dicotyledonous plants, was investigated. CD2-1 caused PTI responses in Oryza sativa, Brachypodium distachyon, and Asparagus persicus; flg22 caused PTI responses in Phyllostachys nigra, A. persicus, Arabidopsis thaliana, Nicotiana tabacum, Solanum lycopersicum, and Lotus japonicus; and flgII-28 caused PTI responses only in S. lycopersicum. Furthermore, quantitative analysis of FLS2 receptor revealed that the responsiveness of flg22 in plants was dependent on the expression level of the receptor.


Assuntos
Flagelina , Imunidade Vegetal , Plantas/imunologia , Flagelina/genética , Flagelina/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia
11.
Traffic ; 20(2): 168-180, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447039

RESUMO

Expansion of gene families facilitates robustness and evolvability of biological processes but impedes functional genetic dissection of signalling pathways. To address this, quantitative analysis of single cell responses can help characterize the redundancy within gene families. We developed high-throughput quantitative imaging of stomatal closure, a response of plant guard cells, and performed a reverse genetic screen in a group of Arabidopsis mutants to five stimuli. Focussing on the intersection between guard cell signalling and the endomembrane system, we identified eight clusters based on the mutant stomatal responses. Mutants generally affected in stomatal closure were mostly in genes encoding SNARE and SCAMP membrane regulators. By contrast, mutants in RAB5 GTPase genes played specific roles in stomatal closure to microbial but not drought stress. Together with timed quantitative imaging of endosomes revealing sequential patterns in FLS2 trafficking, our imaging pipeline can resolve non-redundant functions of the RAB5 GTPase gene family. Finally, we provide a valuable image-based tool to dissect guard cell responses and outline a genetic framework of stomatal closure.


Assuntos
Membrana Celular/metabolismo , Estômatos de Plantas/metabolismo , Proteínas SNARE/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Pressão Osmótica , Estômatos de Plantas/citologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Proteínas SNARE/genética , Análise de Célula Única , Proteínas rab de Ligação ao GTP/genética
12.
Mol Plant Microbe Interact ; 34(5): 504-510, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33560865

RESUMO

Bacterial flagellin protein is a potent microbe-associated molecular pattern. Immune responses are triggered by a 22-amino-acid epitope derived from flagellin, known as flg22, upon detection by the pattern recognition receptor FLAGELLIN-SENSING2 (FLS2) in multiple plant species. However, increasing evidence suggests that flg22 epitopes of several bacterial species are not universally immunogenic to plants. We investigated whether flg22 immunogenicity systematically differs between classes of the phylum Proteobacteria, using a dataset of 2,470 flg22 sequences. To predict which species encode highly immunogenic flg22 epitopes, we queried a custom motif (11[ST]xx[DN][DN]xAGxxI21) in the flg22 sequences, followed by sequence conservation analysis and protein structural modeling. These data led us to hypothesize that most flg22 epitopes of the γ- and ß-Proteobacteria are highly immunogenic, whereas most flg22 epitopes of the α-, δ-, and ε-Proteobacteria are weakly to moderately immunogenic. To test this hypothesis, we generated synthetic peptides representative of the flg22 epitopes of each proteobacterial class, and we monitored their ability to elicit an immune response in Arabidopsis thaliana. The flg22 peptides of γ- and ß-Proteobacteria triggered strong oxidative bursts, whereas peptides from the ε-, δ-, and α-Proteobacteria triggered moderate, weak, or no response, respectively. These data suggest flg22 immunogenicity is not highly conserved across the phylum Proteobacteria. We postulate that sequence divergence of each taxonomic class was present prior to the evolution of FLS2, and that the ligand specificity of A. thaliana FLS2 was driven by the flg22 epitopes of the γ- and ß-Proteobacteria, a monophyletic group containing many common phytopathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Epitopos , Flagelina , Imunidade , Proteínas Quinases , Proteobactérias/genética
13.
New Phytol ; 230(6): 2292-2310, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33455006

RESUMO

Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.


Assuntos
Cálcio , Nicotiana/fisiologia , Estômatos de Plantas/fisiologia , Transdução de Sinais , Ácido Abscísico , Citosol/metabolismo , Concentração de Íons de Hidrogênio
14.
EMBO Rep ; 20(11): e47965, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31475431

RESUMO

To perceive pathogens, plants employ pattern recognition receptor (PRR) complexes, which then transmit these signals via the receptor-like cytoplasmic kinase BIK1 to induce defense responses. How BIK1 activity and stability are controlled is still not completely understood. Here, we show that the Hippo/STE20 homolog MAP4K4 regulates BIK1-mediated immune responses. MAP4K4 associates and phosphorylates BIK1 at Ser233, Ser236, and Thr242 to ensure BIK1 stability and activity. Furthermore, MAP4K4 phosphorylates PP2C38 at Ser77 to enable flg22-induced BIK1 activation. Our results uncover that a Hippo/STE20 homolog, MAP4K4, maintains the homeostasis of the central immune component BIK1.


Assuntos
Imunidade Vegetal , Plantas/imunologia , Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Membrana Celular/metabolismo , Sequência Conservada , Citocinas/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Modelos Biológicos , Mutação , Fosforilação , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/genética , Plantas/microbiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteólise , Espécies Reativas de Oxigênio/metabolismo
15.
Mol Plant Microbe Interact ; 33(2): 247-255, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31644369

RESUMO

The first layer of plant immunity is deployed by recognition of pathogen-associated molecule patterns (PAMPs) and induction of early stress responses. Flagellin is the major protein component of the flagellum. Flagellin-derived peptide fragments such as Flg22, a short active peptide derived from the highly conserved part of the N-terminal region, are recognized as PAMPs by a specific perception system present in most higher plants. Some bacteria evade the plant recognition system by altering the Flg22 region in the flagellin. Instead, a small subset of plants (i.e., solanaceous plants) can sense these bacteria by recognizing a second region, termed FlgII-28. The function of FlgII-28 has been well-documented in tomato but not in potato plants. Here, we investigated the effect of FlgII-28 on several defense responses in potato. Cytosolic calcium (Ca2+) elevation is an early defense response upon pathogenic infection. We generated transgenic potato plants expressing aequorin, a nontoxic Ca2+-activated photoprotein. The results showed that FlgII-28 induced strong cytosolic Ca2+ elevation in a dose-dependent manner, whereas the response was attenuated when a Ca2+ channel blocker was added. In addition, the FlgII-28-triggered cytosolic Ca2+ elevation was shown to subsequently promote extracellular alkalinization, reactive oxygen species production, mitogen-activated protein kinase phosphorylation, and transcriptional reprogramming of defense-related genes in potato. Interestingly, all tested defense responses caused by FlgII-28 were significantly stronger than those caused by Flg22, suggesting that FlgII-28 acts as a primary flagellar PAMP to elicit multiple defense responses in potato.


Assuntos
Flagelina , Imunidade Vegetal , Solanum tuberosum , Cálcio/metabolismo , Citosol/química , Citosol/imunologia , Flagelina/genética , Flagelina/imunologia , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/genética , Solanum tuberosum/genética , Solanum tuberosum/imunologia
16.
Int J Mol Sci ; 21(5)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121556

RESUMO

Nitric oxide (NO) plays an important role in stomata closure induced by environmental stimuli including pathogens. During pathogen challenge, nitric oxide (NO) acts as a second messenger in guard cell signaling networks to activate downstream responses leading to stomata closure. One means by which NO's action is achieved is through the posttranslational modification of cysteine residue(s) of target proteins. Although the roles of NO have been well studied in plant tissues and seedlings, far less is known about NO signaling and, more specifically, protein S-nitrosylation (SNO) in stomatal guard cells. In this study, using iodoTMTRAQ quantitative proteomics technology, we analyzed changes in protein SNO modification in guard cells of reference plant Arabidopsis thaliana in response to flg22, an elicitor-active peptide derived from bacterial flagellin. A total of 41 SNO-modified peptides corresponding to 35 proteins were identified. The proteins cover a wide range of functions, including energy metabolism, transport, stress response, photosynthesis, and cell-cell communication. This study creates the first inventory of previously unknown NO responsive proteins in guard cell immune responses and establishes a foundation for future research toward understanding the molecular mechanisms and regulatory roles of SNO in stomata immunity against bacterial pathogens.


Assuntos
Arabidopsis/citologia , Flagelina/farmacologia , Estômatos de Plantas/citologia , Estômatos de Plantas/metabolismo , Proteoma/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Ontologia Genética , Células do Mesofilo/citologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Óxido Nítrico/metabolismo , Nitrosação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
17.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142885

RESUMO

Plants encrypt the perception of different pathogenic stimuli into specific intracellular calcium (Ca2+) signatures and subsequently decrypt the signatures into appropriate downstream responses through various Ca2+ sensors. Two microbe-associated molecular patterns (MAMPs), bacterial flg22 and fungal chitin, and one damage-associated molecular pattern (DAMP), AtPep1, were used to study the differential Ca2+ signatures in Arabidopsis leaves. The results revealed that flg22, chitin, and AtPep1 induced distinct changes in Ca2+ dynamics in both the cytosol and nucleus. In addition, Flg22 and chitin upregulated the expression of salicylic acid-related genes, ICS1 and EDS1, whereas AtPep1 upregulated the expression of jasmonic acid-related genes, JAZ1 and PDF1.2, in addition to ICS1 and EDS1. These data demonstrated that distinct Ca2+ signatures caused by different molecular patterns in leaf cells lead to specific downstream events. Furthermore, these changes in the expression of defense-related genes were disrupted in a knockout mutant of the AtSR1/CAMTA3 gene, encoding a calmodulin-binding transcription factor, in which a calmodulin-binding domain on AtSR1 was required for deciphering the Ca2+ signatures into downstream transcription events. These observations extend our knowledge regarding unique and intrinsic roles for Ca2+ signaling in launching and fine-tuning plant immune response, which are mediated by the AtSR1/CAMTA3 transcription factor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sinalização do Cálcio , Regulação da Expressão Gênica de Plantas , Moléculas com Motivos Associados a Patógenos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Doenças das Plantas/imunologia , Fatores de Transcrição/genética
18.
J Proteome Res ; 18(3): 826-840, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632760

RESUMO

Arabidopsis MAP kinase 4 (MPK4) has been proposed to be a negative player in plant immunity, and it is also activated by pathogen-associated molecular patterns (PAMPs), such as flg22. The molecular mechanisms by which MPK4 is activated and regulates plant defense remain elusive. In this study, we investigated Arabidopsis defense against a bacterial pathogen Pseudomonas syringae pv tomato ( Pst) DC3000 when Brassica napus MPK4 ( BnMPK4) is overexpressed. We showed an increase in pathogen resistance and suppression of jasmonic acid (JA) signaling in the BnMPK4 overexpressing (OE) plants. We also showed that the OE plants have increased sensitivity to flg22-triggered reactive oxygen species (ROS) burst in guard cells, which resulted in enhanced stomatal closure compared to wild-type (WT). During flg22 activation, dynamic phosphorylation events within and outside of the conserved TEY activation loop were observed. To elucidate how BnMPK4 functions during the defense response, we used immunoprecipitation coupled with mass spectrometry (IP-MS) to identify BnMPK4 interacting proteins in the absence and presence of flg22. Quantitative proteomic analysis revealed a shift in the MPK4-associated protein network, providing insight into the molecular functions of MPK4 at the systems level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Mapas de Interação de Proteínas/imunologia , Proteínas de Bactérias/farmacologia , Ciclopentanos/metabolismo , Resistência à Doença , Flagelina/imunologia , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/imunologia , Oxilipinas/metabolismo , Fosforilação/imunologia , Doenças das Plantas/imunologia , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo
19.
Biochem Biophys Res Commun ; 520(2): 311-319, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31604523

RESUMO

Indole glucosinolates are known to play essential and diverse roles in Arabidopsis immunity to pathogens. However, a complete understanding of the function of these compounds in plant immunity remains unclear. In this study, we investigated the transcriptome profile in loss-of-function mutant of MYB51, the key transcription factor that controls the biosynthesis of indole glucosinolates. Upon treatment with flg22 (a 22-amino acid peptide derived from bacterial flagellin), the genes that responded in a MYB51-dependent manner were analyzed. The results suggested that MYB51 was possibly implicated in most resistance processes, including pathogen recognition, signal transduction and PR protein activation. Of note, several genes in the ethylene pathway and the WRKY family, including WRKY33, were induced by flg22 in a MYB51-dependent manner. WRKY33 and ethylene were demonstrated to be crucial regulators in plant immunity defense and are functionally upstream of MYB51 during MAMP triggered immunity (MTI). This result suggested a "positive feedback loop" between MYB51 and its upstream regulators.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Glucosinolatos/metabolismo , Fatores de Transcrição/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Retroalimentação Fisiológica , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Indóis/metabolismo , Imunidade Vegetal , Fatores de Transcrição/metabolismo , Transcriptoma
20.
Biochem Biophys Res Commun ; 516(3): 1039-1045, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-28698136

RESUMO

Heterotrimeric G proteins composed of Gα, Gß and Gγ subunits are evolutionarily conserved signaling modules involved in diverse biological processes in plants and animals. The role and action of Gα remain largely enigmatic in plant innate immunity. We have recently demonstrated that Arabidopsis Gα (GPA1) is a key component of a new immune signaling pathway activated by bacteria-secreted proteases. Here we show that GPA1 is also involved in the signaling network of Arabidopsis in response to the bacterial flagellin epitope flg22. Specifically, GPA1 plays a pivotal role in an immune pathway involving the flg22 receptor FLS2, co-receptor BAK1, Regulator of G Signaling 1 (RGS1), and Arabidopsis Gß (AGB1), in which flg22 elicits GPA1/AGB1 dissociation from the FLS2/BAK1/RGS1 receptor complex. Consequently, we observed flg22-induced degradation of FLS2, BAK1 and RGS1 but not GPA1 or AGB1. We also found that GPA1 constitutively interacts with the NADPH oxidase RbohD to potentiate flg22-induced ROS burst independently of the central cytoplasmic kinase BIK1. Taken together, our work sheds multiple novel insights into the functions and regulatory mechanisms of GPA1 in Arabidopsis innate immunity.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Flagelina/imunologia , Subunidades alfa de Proteínas de Ligação ao GTP/imunologia , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epitopos/imunologia , Flagelina/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/imunologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Imunidade Inata/genética , NADPH Oxidases/genética , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/imunologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas RGS/genética , Proteínas RGS/imunologia , Proteínas RGS/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA