Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38032004

RESUMO

During development, cells are subject to stochastic fluctuations in their positions (i.e. cell-level noise) that can potentially lead to morphological noise (i.e. stochastic differences between morphologies that are expected to be equal, e.g. the right and left sides of bilateral organisms). In this study, we explore new and existing hypotheses on buffering mechanisms against cell-level noise. Many of these hypotheses focus on how the boundaries between territories of gene expression remain regular and well defined, despite cell-level noise and division. We study these hypotheses and how irregular territory boundaries lead to morphological noise. To determine the consistency of the different hypotheses, we use a general computational model of development: EmbryoMaker. EmbryoMaker can implement arbitrary gene networks regulating basic cell behaviors (contraction, adhesion, etc.), signaling and tissue biomechanics. We found that buffering mechanisms based on the orientation of cell divisions cannot lead to regular boundaries but that other buffering mechanisms can (homotypic adhesion, planar contraction, non-dividing boundaries, constant signaling and majority rule hypotheses). We also explore the effects of the shape and size of the territories on morphological noise.


Assuntos
Redes Reguladoras de Genes , Transdução de Sinais , Divisão Celular , Ruído , Fenômenos Biomecânicos , Processos Estocásticos
2.
Proc Natl Acad Sci U S A ; 120(19): e2211210120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126721

RESUMO

The degree to which developmental biases affect trait evolution is subject to much debate. Here, we first quantify fluctuating asymmetry as a measure of developmental variability, i.e., the propensity of developmental systems to create some phenotypic variants more often than others, and show that it predicts phenotypic and standing genetic variation as well as deep macroevolutionary divergence in wing shape in sepsid flies. Comparing our data to the findings of a previous study demonstrates that developmental variability in the sepsid fly Sepsis punctum strongly aligns with mutational, standing genetic, and macroevolutionary variation in the Drosophilidae--a group that diverged from the sepsid lineage ca. 64 My ago. We also find that developmental bias in S. punctum wing shape aligns with the effects of allometry, but less so with putatively adaptive thermal plasticity and population differentiation along latitude. Our findings demonstrate that developmental bias in fly wings predicts evolvability and macroevolutionary trajectories on a much greater scale than previously appreciated but also suggest that causal explanations for such alignments may go beyond simple constraint hypotheses.


Assuntos
Evolução Biológica , Drosophilidae , Animais , Mutação , Fenótipo , Asas de Animais
3.
Proc Natl Acad Sci U S A ; 119(13): e2116136119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312357

RESUMO

SignificanceTheoretically, symmetry in bilateral animals is subject to sexual selection, since it can serve as a proxy for genetic quality of competing mates during mate choice. Here, we report female preference for symmetric males in Drosophila, using a mate-choice paradigm where males with environmentally or genetically induced wing asymmetry were competed. Analysis of courtship songs revealed that males with asymmetric wings produced songs with asymmetric features that served as acoustic cues, facilitating this female preference. Females experimentally evolved in the absence of mate choice lost this preference for symmetry, suggesting that it is maintained by sexual selection.


Assuntos
Drosophila , Preferência de Acasalamento Animal , Acústica , Animais , Corte , Drosophila/genética , Feminino , Masculino , Comportamento Sexual Animal , Vocalização Animal
4.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757991

RESUMO

In the face, symmetry is established when bilateral streams of neural crest cells leave the neural tube at the same time, follow identical migration routes and then give rise to the facial prominences. However, developmental instability exists, particularly surrounding the steps of lip fusion. The causes of instability are unknown but inability to cope with developmental fluctuations are a likely cause of congenital malformations, such as non-syndromic orofacial clefts. Here, we tracked cell movements over time in the frontonasal mass, which forms the facial midline and participates in lip fusion, using live-cell imaging of chick embryos. Our mathematical examination of cell velocity vectors uncovered temporal fluctuations in several parameters, including order/disorder, symmetry/asymmetry and divergence/convergence. We found that treatment with a Rho GTPase inhibitor completely disrupted the temporal fluctuations in all measures and blocked morphogenesis. Thus, we discovered that genetic control of symmetry extends to mesenchymal cell movements and that these movements are of the type that could be perturbed in asymmetrical malformations, such as non-syndromic cleft lip. This article has an associated 'The people behind the papers' interview.


Assuntos
Movimento Celular , Face/fisiologia , Mesoderma/crescimento & desenvolvimento , Crista Neural/fisiologia , Actomiosina , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Divisão Celular , Proliferação de Células , Embrião de Galinha , Galinhas , Fenda Labial/genética , Fissura Palatina/genética , Olho/anatomia & histologia , Olho/crescimento & desenvolvimento , Face/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/anatomia & histologia , Morfogênese/genética , Crista Neural/anatomia & histologia
5.
J Anat ; 244(5): 815-830, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38183319

RESUMO

Structural asymmetries of brain regions associated with lateralised functions have been extensively studied. However, there are fewer morphometric analyses of asymmetries of the gyri and sulci of the entire cortex. The current study assessed cortical asymmetries in a sample of healthy adults (N = 175) from an admixed population from South America. Grey matter volume and surface area of 66 gyri and sulci were quantified on T1 magnetic resonance images. The departure from zero of the differences between left and right hemispheres (L-R), a measure of directional asymmetry (DA), the variance of L-R, and an index of fluctuating asymmetry (FA) were evaluated for each region. Significant departures from perfect symmetry were found for most cortical gyri and sulci. Regions showed leftward asymmetry at the population level in the frontal lobe and superior lateral parts of the parietal lobe. Rightward asymmetry was found in the inferior parietal, occipital, frontopolar, and orbital regions, and the cingulate (anterior, middle, and posterior-ventral). Despite this general pattern, several sulci showed the opposite DA compared to the neighbouring gyri, which remarks the need to consider the neurobiological differences in gyral and sulcal development in the study of structural asymmetries. The results also confirm the absence of DA in most parts of the inferior frontal gyrus and the precentral region. This study contributes with data on populations underrepresented in the databases used in neurosciences. Among its findings, there is agreement with previous results obtained in populations of different ancestry and some discrepancies in the middle frontal and medial parietal regions. A significant DA not reported previously was found for the volume of long and short insular gyri and the central sulcus of the insula, frontomarginal, transverse frontopolar, paracentral, and middle and posterior parts of the cingulate gyrus and sulcus, gyrus rectus, occipital pole, and olfactory sulcus, as well as for the volume and area of the transverse collateral sulcus and suborbital sulcus. Also, several parcels displayed significant variability in the left-right differences, which can be partially attributable to developmental instability, a source of FA. Moreover, a few gyri and sulci displayed ideal FA with non-significant departures from perfect symmetry, such as subcentral and posterior cingulate gyri and sulci, inferior frontal and fusiform gyri, and the calcarine, transverse collateral, precentral, and orbital sulci. Overall, these results show that asymmetries are ubiquitous in the cerebral cortex.


Assuntos
Córtex Cerebral , Substância Cinzenta , Adulto , Humanos , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Lobo Frontal , Giro do Cíngulo , Imageamento por Ressonância Magnética/métodos , América do Sul
6.
J Anat ; 244(5): 722-738, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38214368

RESUMO

The semicircular canals of the inner ear are involved in balance and velocity control. Being crucial to ensure efficient mobility, their morphology exhibits an evolutionary conservatism attributed to stabilizing selection. Release of selection in slow-moving animals has been argued to lead to morphological divergence and increased inter-individual variation. In its natural habitat, the house mouse Mus musculus moves in a tridimensional space where efficient balance is required. In contrast, laboratory mice in standard cages are severely restricted in their ability to move, which possibly reduces selection on the inner ear morphology. This effect was tested by comparing four groups of mice: several populations of wild mice trapped in commensal habitats in France; their second-generation laboratory offspring, to assess plastic effects related to breeding conditions; a standard laboratory strain (Swiss) that evolved for many generations in a regime of mobility reduction; and hybrids between wild offspring and Swiss mice. The morphology of the semicircular canals was quantified using a set of 3D landmarks and semi-landmarks analyzed using geometric morphometric protocols. Levels of inter-population, inter-individual (disparity) and intra-individual (asymmetry) variation were compared. All wild mice shared a similar inner ear morphology, in contrast to the important divergence of the Swiss strain. The release of selection in the laboratory strain obviously allowed for an important and rapid drift in the otherwise conserved structure. Shared traits between the inner ear of the lab strain and domestic pigs suggested a common response to mobility reduction in captivity. The lab-bred offspring of wild mice also differed from their wild relatives, suggesting plastic response related to maternal locomotory behavior, since inner ear morphology matures before birth in mammals. The signature observed in lab-bred wild mice and the lab strain was however not congruent, suggesting that plasticity did not participate to the divergence of the laboratory strain. However, contrary to the expectation, wild mice displayed slightly higher levels of inter-individual variation than laboratory mice, possibly due to the higher levels of genetic variance within and among wild populations compared to the lab strain. Differences in fluctuating asymmetry levels were detected, with the laboratory strain occasionally displaying higher asymmetry scores than its wild relatives. This suggests that there may indeed be a release of selection and/or a decrease in developmental stability in the laboratory strain.


Assuntos
Evolução Biológica , Canais Semicirculares , Animais , Camundongos , Canais Semicirculares/anatomia & histologia , Mamíferos , França
7.
Biol Lett ; 20(9): 20240103, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39319669

RESUMO

The Eurasian otter is a wide-ranging semi-aquatic mammal that underwent a significant population decline in the last century, leading to local extinctions, reduction and fragmentation of populations. The individuals of populations exposed to both external and internal stress may present the inability to produce a specific developmental outcome, generating developmental 'noise' (developmental instability (DI)). Factors contributing to DI include inbreeding depression, population bottlenecks, habitat loss and exposure to pollution. We analysed fluctuating asymmetry (FA) as a proxy of DI in two European otter populations that experienced a major decline in the 1990s. Using three-dimensional geometric morphometrics methods on skull samples of otters from the UK and Sweden, we compared the degree of FA both between populations before, during and after the decline. We found a higher FA in the UK populations compared with Sweden. The level of asymmetry differed significantly over time only in the UK population, where it was higher during the decline phase. FA in the UK populations can be attributed to the specific impact of polychlorinated biphenyls pollution that caused a bottleneck. More generally, our study suggests that habitat loss, pollution and limited gene flow may contribute to DI in declining otter populations, highlighting the need for continued investigation to identify and quantify the specific stressors behind this trend in local populations.


Assuntos
Lontras , Animais , Lontras/fisiologia , Suécia , Reino Unido , Dinâmica Populacional , Masculino , Crânio/anatomia & histologia , Feminino , Ecossistema
8.
J Toxicol Environ Health A ; 87(17): 675-686, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38828979

RESUMO

The aviation sector is believed to be responsible for considerable environmental damage attributed to emission of a large number and amount of pollutants. Airports are often surrounded by forest fragments and humid areas that attract birds of prey and hence may potentially serve as useful bioindicators. The aim of the present study was to examine genotoxic potential in raptors exposed to airport pollution using the micronucleus (MN) test and morphological changes as evidenced by bilateral symmetry. This investigation was conducted at Salgado Filho International Airport of Porto Alegre - RS as well as in private and zoological breeding grounds. The presence of metals was measured in the blood cells of the collected birds. Seventeen birds (Caracara (Polyborus) plancus) were used in this study 11 from exposed and 6 from non-exposed group. The nuclear alterations clearly indicate that organisms exposed to airport pollution exhibited a significantly higher frequency of genetic damage compared to non-exposed birds. Further, manganese and chromium were detected exclusively in the blood of the exposed group. In contrast, the analysis of bilateral symmetry did not detect any significant morphologic differences between the two groups. Therefore, data indicate that blood genotoxic stress occurs in birds of prey living in civil aviation areas as evidenced by MN frequency increase and presence of manganese and chromium.


Assuntos
Aeroportos , Testes para Micronúcleos , Animais , Brasil , Monitoramento Ambiental , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Dano ao DNA , Núcleo Celular/efeitos dos fármacos , Aves Predatórias , Masculino
9.
Evol Dev ; 25(2): 153-169, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36373204

RESUMO

Developing organisms are often exposed to fluctuating environments that destabilize tissue-scale processes and induce abnormal phenotypes. This might be common in species that lay eggs in the external environment and with little parental care, such as many reptiles. In turtles, morphological development has provided striking examples of abnormal phenotypic patterns, though the influence of the environment remains unclear. To this end, we compared fluctuating asymmetry, as a proxy for developmental instability, in turtle hatchlings incubated in controlled laboratory and unstable natural conditions. Wild and laboratory hatchlings featured similar proportions of supernumerary scales (scutes) on the dorsal shell (carapace). Such abnormal scutes likely elevated shape asymmetry, which was highest in natural nests. Moreover, we tested the hypothesis that hot and dry environments cause abnormal scute formation by subjecting eggs to a range of hydric and thermal laboratory incubation regimes. Shape asymmetry was similar in hatchlings incubated at five constant temperatures (26-30°C). A hot (30°C) and severely Dry substrate yielded smaller hatchlings but scutes were not overtly affected. Our study suggests that changing nest environments contribute to fluctuating asymmetry in egg-laying reptiles, while clarifying the conditions at which turtle shell development remains buffered from the external environment.


Assuntos
Tartarugas , Animais , Embrião não Mamífero , Exoesqueleto , Temperatura
10.
J Anim Ecol ; 92(2): 297-309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35978494

RESUMO

Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.


Assuntos
Mudança Climática , Museus , Animais , Abelhas
11.
Naturwissenschaften ; 110(4): 28, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289369

RESUMO

Habitat fragmentation and ecosystem changes have the potential to affect animal populations in different ways. To effectively monitor these changes, biomonitoring tools have been developed and applied to detect changes in population structure and/or individual traits that reflect such changes. Fluctuating asymmetry (FA) represents random deviations from perfect symmetry in bilateral traits from perfect symmetry in response to genetic and/or environmental stresses. In this study, we evaluated the use of FA as a tool to monitor stress caused by forest fragmentation and edge formation, using the tropical butterfly M. helenor (Nymphalidae) as a model species. We collected adult butterflies from three fragments of Atlantic Forest in Brazil encompassing both edge and interior habitats. Four wing traits (wing length, wing width, ocelli area, and ocelli diameter) were evaluated. Butterflies captured at edge sites exhibited higher FA values for wing length and wing width compared to those captured at interior sites, whereas traits related to ocelli did not show differences between the two habitat types. Our results suggest that the differences in abiotic and biotic conditions between forest interior and edges can act as a source of stress, impacting the symmetry of flight-related traits. On the other hand, as ocelli are crucial for butterfly camouflage and counter-predator strategies, our results indicate that this trait may be more conserved. By employing FA, we identified trait-specific responses to habitat fragmentation, thus suggesting its potential as a biomarker for environmental stress that can be used in butterflies to monitor habitat quality and change.


Assuntos
Borboletas , Ecossistema , Animais , Borboletas/genética , Florestas , Asas de Animais , Fenótipo
12.
Eur Spine J ; 32(4): 1132-1139, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764946

RESUMO

PURPOSE: There is strong evidence supporting the presence of fluctuating asymmetry (FA) in Adolescents with Idiopathic Scoliosis (AIS). Additionally, recent research investigating the relationship between vitamin D and AIS found a relation between them. We hypothesize a negative correlation between FA and vitamin D. METHODS: We performed a surface scan of the torso of 53 AIS patients, a blood test to measure vitamin D and the radiographic Cobb angle. A correlation analysis between vitamin D and FA was carried out to test our hypothesis, and a regression of vitamin D on 3D shape was performed to observe shape differences between the vitamin D deficiency and insufficiency groups. RESULTS: There was no correlation between vitamin D and FA. We found a strong negative correlation between vitamin D and the Cobb angle only in the premenarche group (n = 7; r = - 0.92). Differences in shape were observed between the deficiency and insufficiency groups, and that differences were related to the width of the torso, but not the rotation or lateral flexion. CONCLUSIONS: Our results do not support the massive screening of vitamin D in AIS. Shape analysis revealed differences between the shape of the deficiency and insufficiency groups related to robustness. However, this finding had no relation with the scoliosis characteristics, it just reflected different body composition, and its importance should be explored in future.


Assuntos
Cifose , Escoliose , Humanos , Adolescente , Escoliose/diagnóstico por imagem , Vitamina D , Estudos Prospectivos , Estudos Transversais , Tronco
13.
Dev Psychobiol ; 65(8): e22432, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010306

RESUMO

Dermatoglyphic patterns are permanently established and matured before the 24th week of gestation. Their frequencies and localization might be a good indicator of developmental instability in individuals with an altered neurodevelopment and show potential as biomarkers of autism spectrum disorder (ASD). In this study, fingerprint pattern counts and fluctuating asymmetry in the distribution of patterns are compared between 67 boys diagnosed with ASD (aged 5.11 ± 2.51 years) and 83 control boys (aged 8.58 ± 3.14 years). Boys with ASD had a higher rate of discordance in their fingerprint patterns (p = .0026), showing more often bilateral differences in the occurrence of certain patterns. A chi-square test revealed that the difference in pattern frequencies between boys with ASD and the control group is the most significant in frequencies of whorls, tented arches, and ulnar loops. Boys with ASD have significantly fewer ulnar loops, significantly more whorls, and tented arches in the right hand. The achieved results are in favor of the suggestion that prenatal influences, which play a role in the development of bilateral differences in fingerprint patterns up to the 24th week of gestation, may be a potential cause of an altered neurodevelopment in ASD individuals.


Assuntos
Transtorno do Espectro Autista , Masculino , Feminino , Gravidez , Humanos , Aprendizagem
14.
Trop Anim Health Prod ; 55(3): 206, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198460

RESUMO

This study investigated the effect of various pasture species on the welfare and behavior of slow-growing broiler chickens in the free-range production system. After 21 days completely indoors, the birds were permitted access to outdoor pens cultivated with one of the following pasture treatments: Medicago sativa (A), Trifolium repens (WC), Lolium perenne (PR), and a mixture (Mix, A + WC + PR). The range availability was restricted between 08:30 and 16:30 daily. It was found that pasture type had a significant effect on the fluctuating asymmetry of the face and radius length (P < 0.01). Duration of tonic immobility and blood parameters did not differ among the pasture species and between sexes at 11 weeks of broiler age (P > 0.05). Pasture treatment had no significant effect on broiler behaviors (P > 0.05). However, the age of broilers had a significant effect on pecking, dustbathing, and scratching (P < 0.01). Pecking behavior was affected by the time of the day; morning and afternoon (P < 0.01). Location had a significant effect on pecking and stretching behaviors (P < 0.01). In the study, dustbathing behavior was significantly affected by the interaction between location and age (P < 0.01), age and time of the day (P < 0.01), and location, age, and time of the day (P < 0.05). Scratching behavior was significantly affected by the interaction between location and time of the day (P < 0.05) and location, age and time of the day (P < 0.01). Stretching behavior was significantly affected by the interaction between location and age (P < 0.05) and location, age and time of the day (P < 0.05). It was concluded that access to the studied pasture species does not affect the evaluated welfare traits and observed behaviors. Therefore, it is suggested that other pasture species should be investigated to identify their effect on slow-growing strains in the free-range production system.


Assuntos
Galinhas , Lolium , Animais , Medicago sativa , Bem-Estar do Animal
15.
Evol Dev ; 24(3-4): 92-108, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708164

RESUMO

Directional asymmetry is a systematic difference between the left and right sides for structures with bilateral symmetry or a systematic differentiation among repeated parts for complex symmetry. This study explores factors that produce directional asymmetry in the flower of Iris pumila, a structure with complex symmetry that makes it possible to investigate multiple such factors simultaneously. The shapes and sizes of three types of floral organs, the falls, standards, and style branches, were quantified using the methods of geometric morphometrics. For each flower, this study recorded the compass orientations of floral organs as well as their anatomical orientations relative to the two spathes subtending each flower. To characterize directional asymmetry at the whole-flower level, differences in the average sizes and shapes according to compass orientation and relative orientation were computed, and the left-right asymmetry was also evaluated for each individual organ. No size or shape differences within flowers were found in relation to anatomical position; this may relate to the terminal position of flowers in Iris pumila, suggesting that there may be no adaxial-abaxial polarity, which is very prominent in many other taxa. There was clear directional asymmetry of shape in relation to compass orientation, presumably driven by a consistent environmental gradient such as solar irradiance. There was also clear directional asymmetry between left and right halves of every floral organ, most likely related to the arrangement of organs in the bud. These findings indicate that different factors are acting to produce directional asymmetry at different levels. In conventional analyses not recording flower orientations, these effects would be impossible to disentangle from each other and would probably be included as part of fluctuating asymmetry.


Assuntos
Flores , Animais
16.
Evol Dev ; 24(1-2): 3-15, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35072984

RESUMO

Understanding how environmental variation influences even cryptic traits is important to clarify the roles of selection and developmental constraints in past evolutionary divergence and to predict future adaptation under environmental change. Female yellow dung flies (Scathophaga stercoraria) typically have three sperm storage compartments (3S), but occasionally four (4S). More spermathecae are thought to be a female adaptation facilitating sperm sorting after mating, but the phenotype is very rare in nature. We manipulated the flies' developmental environment by food restriction, pesticides, and hot temperatures to investigate the nature and extent of developmental plasticity of this trait, and whether spermatheca expression correlates with measures of performance and developmental stability, as would be expected if 4S expression is a developmental aberration. The spermathecal polymorphism of yellow dung fly females is heritable, but also highly developmentally plastic, varying strongly with rearing conditions. 4S expression is tightly linked to growth rate, and weakly positively correlated with fluctuating asymmetry of wings and legs, suggesting that the production of a fourth spermatheca could be a nonadaptive developmental aberration. However, spermathecal plasticity is opposite in the closely related and ecologically similar Scathophaga suilla, demonstrating that overexpression of spermathecae under developmental stress is not universal. At the same time, we found overall mortality costs as well as benefits of 4S pheno- and genotypes (also affecting male siblings), suggesting that a life history trade-off may potentially moderate 4S expression. We conclude that the release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits (here reproductive morphology) to natural selection (here under climate warming or food augmentation). Once exposed, hidden traits can potentially undergo rapid genetic assimilation, even in cases when trait changes are first triggered by random errors that destabilize developmental processes.


Assuntos
Dípteros , Animais , Evolução Biológica , Feminino , Masculino , Reprodução/genética , Seleção Genética , Asas de Animais
17.
Proc Biol Sci ; 289(1983): 20221441, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36168764

RESUMO

The degree to which developmental systems bias the phenotypic effects of environmental and genetic variation, and how these biases affect evolution, is subject to much debate. Here, we assess whether developmental variability in beetle horn shape aligns with the phenotypic effects of plasticity and evolutionary divergence, yielding three salient results. First, we find that most pathways previously shown to regulate horn length also affect shape. Second, we find that the phenotypic effects of manipulating divergent developmental pathways are correlated with each other as well as multivariate fluctuating asymmetry-a measure of developmental variability. Third, these effects further aligned with thermal plasticity, population differences and macroevolutionary divergence between sister taxa and more distantly related species. Collectively, our results support the hypothesis that changes in horn shape-whether brought about by environmentally plastic responses, functional manipulations or evolutionary divergences-converge along 'developmental lines of least resistance', i.e. are biased by the developmental system underpinning horn shape.


Assuntos
Besouros , Animais , Viés , Evolução Biológica , Besouros/genética , Fenótipo
18.
J Exp Zool B Mol Dev Evol ; 338(8): 484-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34813170

RESUMO

Measures of fluctuating asymmetry (FA) have been adopted widely as an estimate of developmental instability. Arising from various sources of stress, developmental instability is associated with an organism's capacity to maintain fitness. The process of domestication has been framed as an environmental stress with human-specified parameters, suggesting that FA may manifest to a larger degree among domesticates compared to their wild relatives. This study used three-dimensional geometric morphometric landmark data to (a) quantify the amount of FA in the cranium of six domestic mammal species and their wild relatives and, (b) provide novel assessment of the commonalities and differences across domestic/wild pairs concerning the extent to which random variation arising from the developmental system assimilates into within-population variation. The majority of domestic mammals showed greater disparity for asymmetric shape, however, only two forms (Pig, Dog) showed significantly higher disparity as well as a higher degree of asymmetry compared to their wild counterparts (Wild Boar, Wolf). Contra to predictions, most domestic and wild forms did not show a statistically significant correspondence between symmetric shape variation and FA, however, a moderate correlation value was recorded for most pairs (r-partial least squares >0.5). Within pairs, domestic and wild forms showed similar correlation magnitudes for the relationship between the asymmetric and symmetric components. In domesticates, new variation may therefore retain a general, conserved pattern in the gross structuring of the cranium, whilst also being a source for response to selection on specific features.


Assuntos
Mamíferos , Crânio , Animais , Cães , Suínos , Humanos
19.
Proc Natl Acad Sci U S A ; 116(41): 20539-20544, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548372

RESUMO

Caspase is best known as an enzyme involved in programmed cell death, which is conserved among multicellular organisms. In addition to its role in cell death, caspase is emerging as an indispensable enzyme in a wide range of cellular functions, which have recently been termed caspase-dependent nonlethal cellular processes (CDPs). In this study, we examined the involvement of cell death signaling in tissue-size determination using Drosophila wing as a model. We found that the Drosophila executioner caspases Dcp-1 and Decay, but not Drice, promoted wing growth independently of apoptosis. Most of the reports on CDPs argue the importance of the spatiotemporal regulation of the initiator caspase, Dronc; however, this sublethal caspase function was independent of Dronc, suggesting a more diverse array of CDP regulatory mechanisms. Tagging of TurboID, an improved promiscuous biotin ligase that biotinylates neighboring proteins, to the C terminus of caspases revealed the differences among the neighbors of executioner caspases. Furthermore, we found that the cleavage of Acinus, a substrate of the executioner caspase, was important in promoting wing growth. These results demonstrate the importance of executioner caspase-mediated basal proteolytic cleavage of substrates in sustaining tissue growth. Given the existence of caspase-like DEVDase activity in a unicellular alga, our results likely highlight the original function of caspase-not cell death, but basal proteolytic cleavages for cell vigor.


Assuntos
Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Apoptose , Caspases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Discos Imaginais/metabolismo , Asas de Animais/metabolismo
20.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293324

RESUMO

Developmental instability (DI) is thought to be inversely related to a capacity of an organism to buffer its development against random genetic and environmental perturbations. DI is represented by a trait's inter- and intra-individual variabilities. The inter-individual variability (inversely referred to as canalization) indicates the capability of organisms to reproduce a trait from individual to individual. The intra-individual variability reflects an organism's capability to stabilize a trait internally under the same conditions, and, for symmetric traits, it is expressed as fluctuating asymmetry (FA). When representing a trait as a random variable conditioned on environmental fluctuations, it is clear that, in statistical terms, the DI partitions into "extrinsic" (canalization) and "intrinsic" (FA) components of a trait's variance/noise. We established a simple statistical framework to dissect both parts of a symmetric trait variance/noise using a PCA (principal component analysis) projection of the left/right measurements on eigenvectors followed by GAMLSS (generalized additive models for location scale and shape) modeling of eigenvalues. The first eigenvalue represents "extrinsic" and the second-"intrinsic" DI components. We applied this framework to investigate the impact of mother-fetus major histocompatibility complex (MHC)-mediated immune cross-talk on gene expression noise and developmental stability. We showed that "intrinsic" gene noise for the entire transcriptional landscape could be estimated from a small subset of randomly selected genes. Using a diagnostic set of genes, we found that allogeneic MHC combinations tended to decrease "extrinsic" and "intrinsic" gene noise in C57BL/6J embryos developing in the surrogate NOD-SCID and BALB/c mothers. The "intrinsic" gene noise was negatively correlated with growth (embryonic mass) and the levels of placental growth factor (PLGF), but not vascular endothelial growth factor (VEGF). However, it was positively associated with phenotypic growth instability and noise in PLGF. In mammals, the mother-fetus MHC interaction plays a significant role in development, contributing to the fitness of the offspring. Our results demonstrate that a positive impact of distant MHC combinations on embryonic growth could be mediated by the reduction of "intrinsic" gene noise followed by the developmental stabilization of growth.


Assuntos
Fatores de Crescimento Endotelial , Mães , Camundongos , Animais , Feminino , Humanos , Fator de Crescimento Placentário , Fator A de Crescimento do Endotélio Vascular , Fenótipo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Feto , Expressão Gênica , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA