Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12804, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834607

RESUMO

As the size of wind turbine blades increases, the flexibility of the blades increases. In actual operation, airflow flow can cause aerodynamic elastic instability of the blade structure. Long blades may experience coupled mode flutter due to the bending torsion coupling effect, leading to blade failure. Based on Euler Bernoulli beam theory combined with Theodorsen non directional aerodynamic loads, a blade flutter characteristic equation is established through finite element method. Taking NREL 5 MW wind turbine blades as an example, analyze the influence of parameter changes in different regions of the blades on flutter characteristics. Research has found that paramter changes in the tip region of blade have the greatest impact on flutter characteristics. The vibration frequency shows an overall upward trend with the increase of waving stiffness and torsional stiffness. The flutter velocity of the three regions tends to stabilize as the bending stiffness decreases. The blade flutter speed increases with the increase of torsional stiffness. The radius of gyration is inversely proportional to the flutter frequency and flutter velocity. The impact of centroid offset on blade structure flutter frequency is minimal, but the centroid offset in the tip region has a greater impact on flutter velocity. Increasing the torsional frequency can prevent coupled mode flutter and provide a theoretical basis for blade flutter prevention design.

2.
Micromachines (Basel) ; 11(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066434

RESUMO

In the last few decades, piezoelectric (PZT) materials have played a vital role in the aerospace industry because of their energy harvesting capability. PZT energy harvesters (PEH) absorb the energy from an operational environment and can transform it into useful energy to drive nano/micro-electronic components. In this research work, a PEH based on the flag-flutter mechanism is presented. This mechanism is based on fluid-structure interaction (FSI). The flag is subjected to the axial airflow in the subsonic wind tunnel. The performance evaluation of the harvester and aeroelastic analysis is investigated numerically and experimentally. A novel solution is presented to extract energy from Limit Cycle Oscillations (LCOs) phenomenon by means of PZT transduction. The PZT patch absorbs the flow-induced structural vibrations and transforms it into electrical energy. Furthermore, the optimal resistance and length of the flag is predicted to maximize the energy harvesting. Different configurations of flag i.e., with Aluminium (Al) patch and PZT patch for flutter mode vibration mode are studied numerically and experimentally. The bifurcation diagram is constructed for the experimental campaign for the flutter instability of a cantilevered flag in subsonic wind-tunnel. Moreover, the flutter boundary conditions are analysed for reduced critical velocity and frequency. The designed PZT energy harvester via flag-flutter mechanism is suitable for energy harvesting in aerospace engineering applications to drive wireless sensors. The maximum output power that can be generated from the designed harvester is 6.72 mW and the optimal resistance is predicted to be 0.33 MΩ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA