Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.549
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400784, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837286

RESUMO

Marine biofouling is a complex and dynamic process that significantly increases the carbon emissions from the maritime industry by increasing drag losses. However, there are no existing non-toxic marine paints that can achieve both effective fouling reduction and efficient fouling release. Inspired by antifouling strategies in nature, herein, a superoleophobic zwitterionic nanowire coating with a nanostructured hydration layer is introduced, which exhibits simultaneous fouling reduction and release performance. The zwitterionic nanowires demonstrate >25% improvement in fouling reduction compared to state-of-the-art antifouling nanostructures, and four times higher fouling-release compared to conventional zwitterionic coatings. Fouling release is successfully achieved under a wall shear force that is four orders of magnitude lower than regular water jet cleaning. The mechanism of this simultaneous fouling reduction and release behavior is explored, and it is found that a combination of 1) a mechanical biocidal effect from the nanowire geometry, and 2) low interfacial adhesion resulting from the nanostructured hydration layer, are the major contributing factors. These findings provide insights into the design of nanostructured coatings with simultaneous fouling reduction and release. The newly established synthesis procedure for the zwitterionic nanowires opens new pathways for implementation as antifouling coatings in the maritime industry and biomedical devices.

2.
Small ; : e2402431, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934549

RESUMO

In drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis. Addressing this challenge, the precision drug testing organ chip (PreD chip) is introduced, an innovative platform engineered to minimize small molecule absorption while facilitating cell culture. This chip features a PDMS microchannel wall coated with a perfluoropolyether-based lubricant, providing slipperiness and antifouling properties. It also incorporates an ECM-coated semi-porous membrane that supports robust multicellular cultures. The PreD chip demonstrates its outstanding antifouling properties and resistance to various biological fluids, small molecule drugs, and plasma proteins. In simulating the human gut barrier, the PreD chip demonstrates highly enhanced sensitivity in tests for dexamethasone toxicity and is highly effective in assessing drug transport across the human blood-brain barrier. These findings emphasize the potential of the PreD chip in advancing organ chip-based drug testing methodologies.

3.
Small ; : e2404347, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958084

RESUMO

Solar-driven interfacial evaporation is an efficient method for purifying contaminated or saline water. Nonetheless, the suboptimal design of the structure and composition still necessitates a compromise between evaporation rate and service life. Therefore, achieving efficient production of clean water remains a key challenge. Here, a biomimetic dictyophora hydrogel based on loofah/carbonized sucrose@ZIF-8/polyvinyl alcohol is demonstrated, which can serve as an independent solar evaporator for clean water recovery. This special structural design achieves effective thermal positioning and minimal heat loss, while reducing the actual enthalpy of water evaporation. The evaporator achieves a pure water evaporation rate of 3.88 kg m-2 h-1 and a solar-vapor conversion efficiency of 97.16% under 1 sun irradiation. In comparison, the wastewater evaporation rate of the evaporator with ZIF-8 remains at 3.85 kg m-2 h-1 for 30 days, which is 16.3% higher than the light irradiation without ZIF-8. Equally important, the evaporator also showcases the capability to cleanse water from diverse sources of contaminants, including those with small molecules, oil, heavy metal ions, and bacteria, greatly improving the lifespan of the evaporator.

4.
Small ; : e2402690, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39165055

RESUMO

Nucleation and growth of calcium carbonate on surfaces is of broad importance in nature and technology, being essential to the calcification of organisms, while negatively impacting energy conversion through crystallization fouling, also called scale formation. Previous work studied how confinements, surface energies, and functionalizations affect nucleation and polymorph formation, with surface-water interactions and ion mobility playing important roles. However, the influence of surface nanostructures with nanocurvature-through pit and bump morphologies-on scale formation is unknown, limiting the development of scalephobic surfaces. Here, it is shown that nanoengineered surfaces enhance the nucleation rate by orders of magnitude, despite expected inhibition through effects like induced lattice strain through surface nanocurvature. Interfacial and holographic microscopy is used to quantify crystallite growth and find that nanoengineered interfaces experience slower individual growth rates while collectively the surface has 18% more deposited mass. Reconstructions through nanoscale cross-section imaging of surfaces coupled with classical nucleation theory-utilizing local nanocurvature effects-show the collective enhancement of nano-pits.

5.
Crit Rev Microbiol ; 50(2): 168-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651058

RESUMO

Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through in vitro and in vivo testing.


Assuntos
Infecções Relacionadas a Cateter , Infecções Urinárias , Humanos , Infecções Relacionadas a Cateter/etiologia , Infecções Relacionadas a Cateter/microbiologia , Infecções Urinárias/prevenção & controle , Cateteres Urinários/efeitos adversos , Cateteres Urinários/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Bactérias
6.
Biotechnol Bioeng ; 121(2): 710-718, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994529

RESUMO

Virus filtration is a crucial step in ensuring the high levels of viral clearance required in the production of biotherapeutics produced in mammalian cells or derived from human plasma. Previous studies have reported that virus retention is often reduced in the presence of therapeutic proteins due to membrane fouling; however, the underlying mechanisms controlling this behavior are still not well understood. Experimental studies were performed with a single layer of the commercially available dual-layer PegasusTM SV4 virus removal filter to more easily interpret the experimental results. Bacteriophage ФX174 was used as a model parvovirus, and human immunoglobulin (hIgG) and Bovine Serum Albumin (BSA) were used as model proteins. Data obtained with 5 g/L solutions of hIgG showed more than a 100-fold reduction in virus retention compared to that in the protein-free solution. Similar effects were seen with membranes that were pre-fouled with hIgG and then challenged with ФX174. The experimental data were well-described using an internal polarization model that accounts for virus capture and accumulation within the virus filter, with the hIgG nearly eliminating the irreversible virus capture while also facilitating the release of previously captured virus. These results provide important insights into the performance and validation of virus removal filters in bioprocessing.


Assuntos
Bacteriófagos , Parvovirus , Vírus , Humanos , Filtração/métodos , Membranas Artificiais
7.
Biotechnol Bioeng ; 121(9): 2924-2935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837221

RESUMO

Advances in upstream production of biologics-particularly intensified fed-batch processes beyond 10% cell solids-have severely strained harvest operations, especially depth filtration. Bioreactors containing high amounts of cell debris (more than 40% particles <10 µm in diameter) are increasingly common and drive the need for more robust depth filtration processes, while accelerated timelines emphasize the need for predictive tools to accelerate development. Both needs are constrained by the current limited mechanistic understanding of the harvest filter-feedstream system. Historically, process development relied on screening scale-down depth filter devices and conditions to define throughput before fouling, indicated by increasing differential pressure and/or particle breakthrough (measured via turbidity). This approach is straightforward, but resource-intensive, and its results are inherently limited by the variability of the feedstream. Semi-empirical models have been developed from first principles to describe various mechanisms of filter fouling, that is, pore constriction, pore blocking, and/or surface deposit. Fitting these models to experimental data can assist in identifying the dominant fouling mechanism. Still, this approach sees limited application to guide process development, as it is descriptive, not predictive. To address this gap, we developed a hybrid modeling approach. Leveraging historical bench scale filtration process data, we built a partial least squares regression model to predict particle breakthrough from filter and feedstream attributes, and leveraged the model to demonstrate prediction of filter performance a priori. The fouling models are used to interpret and provide physical meaning to these computational models. This hybrid approach-combining the mechanistic insights of fouling models and the predictive capability of computational models-was used to establish a robust platform strategy for depth filtration of Chinese hamster ovary cell cultures. As new data continues to teach the computational models, in silico tools will become an essential part of harvest process development by enabling prospective experimental design, reducing total experimental load, and accelerating development under strict timelines.


Assuntos
Produtos Biológicos , Reatores Biológicos , Cricetulus , Filtração , Filtração/métodos , Animais , Células CHO , Modelos Biológicos
8.
Biotechnol Bioeng ; 121(6): 1889-1901, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38500437

RESUMO

Microfiltration (MF) is an essential step during biopharmaceutical manufacturing. However, unexpected flux decay can occur. Although the flux decay profile and initial flux are important factors determining MF filterability, predicting them accurately is challenging, as the root cause of unexpected flux decay remains elusive. In this study, the methodology for developing a prediction model of flux decay profiles was established. First, the filtration profiles of different monodisperse polystyrene latex and silica beads of various sizes were evaluated. These results revealed that the size and surface electrostatic properties of the beads affect the flux decay profile. Taking the size and surface electrostatic properties of protein aggregates into account, we constructed a predictive model using model bead filtration profiles. We showed that this methodology was applicable to two different MF filters to predict the flux decay profile of therapeutic proteins. Because our proposed prediction model is based on normalized flux, the initial flux is required to predict the overall filtration profile. Then, we applied the Hagen-Poiseuille equation using sample viscosity values to estimate the initial flux. The developed prediction models can be used for effective MF scale-up assessment during the early stages of process development.


Assuntos
Proteínas , Proteínas/química , Proteínas/metabolismo , Filtração/métodos , Tamanho da Partícula
9.
Biotechnol Bioeng ; 121(9): 2678-2690, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702962

RESUMO

The growing demand for biological therapeutics has increased interest in large-volume perfusion bioreactors, but the operation and scalability of perfusion membranes remain a challenge. This study evaluates perfusion cell culture performance and monoclonal antibody (mAb) productivity at various membrane fluxes (1.5-5 LMH), utilizing polyvinylidene difluoride (PVDF), polyethersulfone (PES), or polysulfone (PS) membranes in tangential flow filtration mode. At low flux, culture with PVDF membrane maintained higher cell culture growth, permeate titer (1.06-1.34 g/L) and sieving coefficients (≥83%) but showed lower permeate volumetric throughput and higher transmembrane pressure (TMP) (>1.50 psi) in the later part of the run compared to cultures with PES and PS membrane. However, as permeate flux increased, the total mass of product decreased by around 30% for cultures with PVDF membrane, while it remained consistent with PES and PS membrane, and at the highest flux studied, PES membrane generated 12% more product than PVDF membrane. This highlights that membrane selection for large-volume perfusion bioreactors depends on the productivity and permeate flux required. Since operating large-volume perfusion bioreactors at low flux would require several cell retention devices and a complex setup, PVDF membranes are suitable for low-volume operations at low fluxes whereas PES membranes can be a desirable alternative for large-volume higher demand products at higher fluxes.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Cricetulus , Membranas Artificiais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/biossíntese , Células CHO , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Polímeros/química , Sulfonas/química , Perfusão/métodos , Perfusão/instrumentação , Polivinil/química , Cricetinae , Polímeros de Fluorcarboneto
10.
Biotechnol Bioeng ; 121(5): 1674-1687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372655

RESUMO

Hollow fiber filter fouling is a common issue plaguing perfusion production process for biologics therapeutics, but the nature of filter foulant has been elusive. Here we studied cell culture materials especially Chinese hamster ovary (CHO) cell-derived extracellular vesicles in perfusion process to determine their role in filter fouling. We found that the decrease of CHO-derived small extracellular vesicles (sEVs) with 50-200 nm in diameter in perfusion permeates always preceded the increase in transmembrane pressure (TMP) and subsequent decrease in product sieving, suggesting that sEVs might have been retained inside filters and contributed to filter fouling. Using scanning electron microscopy and helium ion microscopy, we found sEV-like structures in pores and on foulant patches of hollow fiber tangential flow filtration filter (HF-TFF) membranes. We also observed that the Day 28 TMP of perfusion culture correlated positively with the percentage of foulant patch areas. In addition, energy dispersive X-ray spectroscopy-based elemental mapping microscopy and spectroscopy analysis suggests that foulant patches had enriched cellular materials but not antifoam. Fluorescent staining results further indicate that these cellular materials could be DNA, proteins, and even adherent CHO cells. Lastly, in a small-scale HF-TFF model, addition of CHO-specific sEVs in CHO culture simulated filter fouling behaviors in a concentration-dependent manner. Based on these results, we proposed a mechanism of HF-TFF fouling, in which filter pore constriction by CHO sEVs is followed by cake formation of cellular materials on filter membrane.


Assuntos
Anticorpos Monoclonais , Filtração , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão , Filtração/métodos , Reatores Biológicos , Membranas Artificiais
11.
Environ Sci Technol ; 58(32): 14271-14281, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39078411

RESUMO

Sudden jump of transmembrane pressure (TMP) in membrane bioreactors (MBRs), associated with abrupt aggravation of membrane fouling, limits practical applications of MBRs and calls for effective mitigation strategies. While the TMP jump is generally related to the bacterial activity of biocakes, the mechanisms underlying the TMP jump remain unclear. Herein, we conducted various backwash protocols with different nutrient (e.g., nitrate and sodium acetate) loadings on fouled membranes in MBRs to reveal the critical role of bacterial activity of biocakes for the TMP jump. The filtration tests showed a lower TMP jump rate for the membrane backwashed with a nutrient solution (a mixture of 180 mg/L NaNO3 and 200 mg/L NaAc, averaged at 1.40 kPa/d) than that backwashed with tap water (averaged at 3.56 kPa/d), implying that TMP jump could be efficiently mitigated by providing sufficient nutrients to biocake bacteria. The characterization of biocakes showed that high-nutrient solution backwash considerably increased bacterial viability and activity, while considerably reducing biomolecule accumulation on membranes. The keystone taxa (e.g., g_Aeromonas and o_Chitinophagaceae) in the network of nutrient-enriched biocake communities were involved in nitrate reduction and biomolecule degradation. Ecological null model analyses revealed that the deterministic manner mainly shaped biocake communities with high-nutrient availability. Overall, this study highlights the significance of the bacterial activity of biocakes for TMP development and provides potential alternatives for controlling membrane fouling.


Assuntos
Reatores Biológicos , Membranas Artificiais , Pressão , Filtração , Bactérias/metabolismo
12.
Environ Sci Technol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190017

RESUMO

Although hydrophilic modification of the membrane surface is widely adopted, polymeric membranes still suffer from irreversible fouling caused by hydrophilic components in surface water. Here, an ultrathin hydrogel layer (40 nm) with hydrophilic-hydrophobic textures was in situ grown onto the polysulfone ultrafiltration membrane surface using an organic-radical-initiated interfacial polymerization technique. The interfacial polymerization of hydrophilic and hydrophobic monomers ensured the molecular-scale distribution of hydrophilic and hydrophobic nanodomains on the membrane surface. These nanodomains, with their molecular lengths, facilitated dynamic repulsion interactions between the uniformly textured surface and foulant components with different degrees of hydrophilicity. Chemical force characterization confirmed that the adhesion force between the hydrophilic-hydrophobic textured membrane surface and foulants (dodecane, bovine serum albumin, and humic acid) was greatly reduced. Dynamic filtration experiments showed that a hydrophilic-hydrophobic textured membrane always possessed the largest water flux and the best antifouling performance. Furthermore, the foulant coverage ratio on the membrane surface was first evaluated by measuring changes in surface streaming potentials, which demonstrated a 69% reduction in the amount of foulant adhering to the hydrophilic-hydrophobic textured membrane surface. Therefore, the construction of hydrophilic-hydrophobic nanodomains on the membrane surface provides a promising strategy for alleviating membrane fouling caused by both hydrophobic and hydrophilic components during ultralow pressurized ultrafiltration processes.

13.
Environ Sci Technol ; 58(13): 6019-6029, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38509821

RESUMO

Recovering ammonium from swine wastewater employing a gas-permeable membrane (GM) has potential but suffers from the limitations of unattractive mass transfer and poor-tolerance antifouling properties. Turbulence is an effective approach to enhancing the release of volatile ammonia from wastewater while relying on interfacial disturbance to interfere with contaminant adhesion. Herein, we design an innovative gas-permeable membrane coupled with bubble turbulence (BT-GM) that enhances mass transfer while mitigating membrane fouling. Bubbles act as turbulence carriers to accelerate the release and migration of ammonia from the liquid phase, increasing the ammonia concentration gradient at the membrane-liquid interface. In comparison, the ammonium mass transfer rate of the BT-GM process applied to real swine wastewater is 38% higher than that of conventional GM (12 h). Through a computational fluid dynamics simulation, the turbulence kinetic energy of BT-GM system is 3 orders of magnitude higher than that of GM, and the effective mass transfer area is nearly 3 times that of GM. Seven batches of tests confirmed that the BT-GM system exhibits remarkable antifouling ability, broadens its adaptability to complex water quality, and practically promotes the development of sustainable resource recycling.


Assuntos
Compostos de Amônio , Incrustação Biológica , Suínos , Animais , Amônia/análise , Águas Residuárias , Incrustação Biológica/prevenção & controle , Reciclagem
14.
Environ Sci Technol ; 58(14): 6435-6443, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551393

RESUMO

Nanovoids within a polyamide layer play an important role in the separation performance of thin-film composite (TFC) reverse osmosis (RO) membranes. To form more extensive nanovoids for enhanced performance, one commonly used method is to incorporate sacrificial nanofillers in the polyamide layer during the exothermic interfacial polymerization (IP) reaction, followed by some post-etching processes. However, these post-treatments could harm the membrane integrity, thereby leading to reduced selectivity. In this study, we applied in situ self-etchable sacrificial nanofillers by taking advantage of the strong acid and heat generated in IP. CaCO3 nanoparticles (nCaCO3) were used as the model nanofillers, which can be in situ etched by reacting with H+ to leave void nanostructures behind. This reaction can further degas CO2 nanobubbles assisted by heat in IP to form more nanovoids in the polyamide layer. These nanovoids can facilitate water transport by enlarging the effective surface filtration area of the polyamide and reducing hydraulic resistance to significantly enhance water permeance. The correlations between the nanovoid properties and membrane performance were systematically analyzed. We further demonstrate that the nCaCO3-tailored membrane can improve membrane antifouling propensity and rejections to boron and As(III) compared with the control. This study investigated a novel strategy of applying self-etchable gas precursors to engrave the polyamide layer for enhanced membrane performance, which provides new insights into the design and synthesis of TFC membranes.


Assuntos
Incrustação Biológica , Nanopartículas , Osmose , Nylons/química , Gravuras e Gravação , Membranas Artificiais , Água/química
15.
Environ Sci Technol ; 58(26): 11213-11235, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885125

RESUMO

Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.


Assuntos
Reatores Biológicos , Membranas Artificiais , Oxirredução , Incrustação Biológica , Purificação da Água/métodos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
16.
Environ Res ; 241: 117569, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925125

RESUMO

The dissolution of silica and transparent exopolymer particles (TEP) can deposit on the membrane surface and cause serious membrane fouling in reverse osmosis (RO) technology. Coagulation, as a common pretreatment process for RO, can effectively intercept pollutants and alleviate membrane fouling. In this study, FeCl3 and AlCl3 coagulants and polyacrylamide (PAM) flocculants were used to explore the optimal coagulation conditions to reduce the concentration of silica and TEP in the RO process. The results showed that the two coagulants had the best removal effect on pollutants when the pH was 7 and the dosage was 50 mg/L. Considering the proportion of reversible fouling after coagulation, the removal rate of pollutants, and the residual amount of coagulation metal ions, the best PAM dosage was 5 mg/L for FeCl3 and 1 mg/L for AlCl3. After coagulation pretreatment, the Zeta potential decreased, and the particle size distribution increased, making pollutants tend to aggregate, thus effectively removing foulants. The removal mechanisms of pollutants by coagulation pretreatment were determined to be adsorption, electric neutralization and co-precipitation. This study determined the best removal conditions of silica and TEP by coagulation and explored the removal mechanism.


Assuntos
Poluentes Ambientais , Purificação da Água , Dióxido de Silício , Matriz Extracelular de Substâncias Poliméricas , Purificação da Água/métodos , Filtração/métodos , Osmose
17.
Environ Res ; 250: 118487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365055

RESUMO

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Assuntos
Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Incrustação Biológica/prevenção & controle
18.
Environ Res ; 252(Pt 1): 118777, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527723

RESUMO

Anaerobic digestion of phenolic wastewater by anaerobic membrane bioreactor (AnMBR) has revealed increasing attractiveness, but the application of AnMBRs for treating high-strength phenolic wastewater faces challenges related to elevated phenol stress and membrane fouling. In this study, the coupling of AnMBR and polyaluminum chloride (PAC) was developed for efficient treatment of high-strength phenolic wastewater. The system achieved robust removal efficiencies of phenol (99%) and quinoline (98%) at a gradual increase of phenol concentration from 1000 to 5000 mg/L and a constant quinoline concentration of 100 mg/L. The dosing of PAC could effectively control the membrane fouling rate with the transmembrane pressure (TMP) increasing rate as low as 0.17 kPa/d. The robust performances were mainly attributed to the favorable retention of functional microbes through membrane interception, while pulse cross flow buffered against phenol stress and facilitated cake layer removal. Meanwhile, the enriched core functional microbes, such as Syntrophorhabdus, Syntrophus, Mesotoga and Methanolinea, played a crucial role in further reduction of phenol stress. Notably, the significant presence of biomacromolecule degrader, such as Levilinea, contributed to membrane fouling mitigation through extracellular polymer degradation. Moreover, the enlargement of particle size distribution (PSD) by PAC was expected to mitigate membrane fouling. This study provided a promising avenue for sustainable treatment of high-strength phenolic wastewater.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Hidróxido de Alumínio/química , Fenóis/análise , Poluentes Químicos da Água/análise
19.
Environ Res ; 247: 118272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246292

RESUMO

Biological nutrient removal processes involving the use of activated sludge (AS) to treat municipal wastewater normally result in high aeration energy consumption and significant greenhouse gas (GHG) emissions. Therefore, developing cost-efficient and environmentally friendly processes for wastewater treatment is vital. In this work, a novel non-aerated microalgal-bacterial membrane photobioreactor (MB-MPBR) was proposed, and its feasibility for organic contaminant and nutrient removals was evaluated, for the first time. The effects of inoculation ratio (microalgae to bacteria (M/B)) on the biological performance and membrane fouling were systematically investigated. The results showed that 95.9% of the chemical oxygen demand (COD), 74.5% of total nitrogen (TN), 98.5% of NH4+-N and 42.0% of total phosphorus (TP) were removed at an inoculation M/B ratio of 3:2 at steady state, representing a significant improvement compared to the M/B inoculation ratio of 1:3. Additionally, the higher inoculation M/B ratio (3:2) significantly promoted the biomass production owing to the favorable mutual exchange of oxygen and carbon dioxide between microalgae and bacteria. Cake layer formation was the primary fouling mechanism owing to the absence of aeration scouring on the membrane surface. The membrane fouling rate was slightly higher at the higher inoculation ratio (M/B = 3:2) owing to the increased biomass and extracellular polymeric substances (EPS) productions, despite the larger particle size. These results demonstrated that the non-aerated MB-MPBR could achieve superior biological performance, of which the inoculation M/B ratio was of critical importance for the initiation and maintenance of microalgal-bacterial symbiotic system, yet possibly caused severer membrane fouling in the absence of external aeration and carbonation. This study provides a new perspective for further optimizing and applying non-aerated MB-MPBR to enhance municipal wastewater treatment.


Assuntos
Microalgas , Purificação da Água , Fotobiorreatores , Águas Residuárias , Bactérias , Biomassa , Nitrogênio
20.
Environ Res ; 260: 119662, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043355

RESUMO

Ultrafiltration (UF) is a highly efficient technique for algal-rich water purification, but it is heavily contaminated due to the complex water characteristics. To solve this problem, potassium permanganate (KMnO4) oxidation enhanced with sodium sulfite (Na2SO3) was proposed as a pretreatment means. The results showed that the end-normalized flux was elevated from 0.10 to 0.91, and the reversible fouling resistance was reduced by 99.95%. The membrane fouling mechanism also changed obviously, without the generation of cake filtration. Regarding the properties of algal-rich water, the zeta potential was decreased from -29.50 to -5.87 mV after KMnO4/Na2SO3 pretreatment, suggesting that the electrostatic repulsion was significantly reduced. Meanwhile, the fluorescent components in algal-rich water were significantly eliminated, and the removal of dissolved organic carbon was increased to 67.46%. In the KMnO4/Na2SO3 process, reactive manganese species (i.e., Mn(V), Mn(III) and MnO2) and reactive oxygen species (i.e., SO4•- and •OH) played major roles in purifying algal-rich water. Specifically, SO4•-, •OH, Mn(V) and Mn(III) could effectively oxidize algal pollutants. Simultaneously, the in-situ adsorption and coagulation of MnO2 could accelerate the formation of flocs by decreasing the electrostatic repulsion between cells, and protect the algal cells from being excessive oxidized. Overall, the KMnO4/Na2SO3 process showed significant potential for membrane fouling alleviation in purifying algal-rich water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA