RESUMO
Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.
Assuntos
Proteínas da Matriz Extracelular , Trombospondinas , Camundongos , Animais , Trombospondinas/genética , Trombospondinas/metabolismo , Esqueleto/metabolismo , Fenômenos Fisiológicos CelularesRESUMO
Wnt signaling is an important target for anabolic therapies in osteoporosis. A sclerostin-neutralizing antibody (Scl-Ab), that blocks the Wnt signaling inhibitor (sclerostin), has been shown to promote bone mass in animal models and clinical studies. However, the cellular mechanisms by which Wnt signaling promotes osteogenesis remain to be further investigated. O-GlcNAcylation, a dynamic post-translational modification of proteins, controls multiple critical biological processes including transcription, translation, and cell fate determination. Here, we report that Wnt3a either induces O-GlcNAcylation rapidly via the Ca2+-PKA-Gfat1 axis, or increases it in a Wnt-ß-catenin-dependent manner following prolonged stimulation. Importantly, we find O-GlcNAcylation indispensable for osteoblastogenesis both in vivo and in vitro. Genetic ablation of O-GlcNAcylation in the osteoblast-lineage diminishes bone formation and delays bone fracture healing in response to Wnt stimulation in vivo. Mechanistically, Wnt3a induces O-GlcNAcylation at Serine 174 of PDK1 to stabilize the protein, resulting in increased glycolysis and osteogenesis. These findings highlight O-GlcNAcylation as an important mechanism regulating Wnt-induced glucose metabolism and bone anabolism.
Assuntos
Glicólise , Osteoblastos , Osteogênese , Via de Sinalização Wnt , Proteína Wnt3A , Animais , Osteoblastos/metabolismo , Camundongos , Proteína Wnt3A/metabolismo , Humanos , Acilação , Processamento de Proteína Pós-Traducional , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , beta Catenina/metabolismo , GlicosilaçãoRESUMO
Loss or damage to the mandible caused by trauma, treatment of oral malignancies, and other diseases is treated using bone-grafting techniques that suffer from numerous shortcomings and contraindications. Zebrafish naturally heal large injuries to mandibular bone, offering an opportunity to understand how to boost intrinsic healing potential. Using a novel her6:mCherry Notch reporter, we show that canonical Notch signaling is induced during the initial stages of cartilage callus formation in both mesenchymal cells and chondrocytes following surgical mandibulectomy. We also show that modulation of Notch signaling during the initial post-operative period results in lasting changes to regenerate bone quantity one month later. Pharmacological inhibition of Notch signaling reduces the size of the cartilage callus and delays its conversion into bone, resulting in non-union. Conversely, conditional transgenic activation of Notch signaling accelerates conversion of the cartilage callus into bone, improving bone healing. Given the conserved functions of this pathway in bone repair across vertebrates, we propose that targeted activation of Notch signaling during the early phases of bone healing in mammals may both augment the size of the initial callus and boost its ossification into reparative bone.
Assuntos
Consolidação da Fratura , Peixe-Zebra , Animais , Regeneração Óssea , Calo Ósseo/metabolismo , Consolidação da Fratura/fisiologia , Mamíferos , MandíbulaRESUMO
Postmenopausal osteoporosis is a systemic disease characterized by the loss of bone mass and increased bone fracture risk largely resulting from significantly reduced levels of the hormone estrogen after menopause. Besides the direct negative effects of estrogen-deficiency on bone, indirect effects of altered immune status in postmenopausal women might contribute to ongoing bone destruction, as postmenopausal women often display a chronic low-grade inflammatory phenotype with altered cytokine expression and immune cell profile. In this context, it was previously shown that various immune cells interact with osteoblasts and osteoclasts either via direct cell-cell contact, or more likely via paracrine mechanisms. For example, specific subtypes of T lymphocytes express TNFα, which was shown to increase osteoblast apoptosis and to indirectly stimulate osteoclastogenesis via B cell-produced receptor-activator of NF-κB ligand (RANKL), thereby triggering bone loss during postmenopausal osteoporosis. Th17 cells release interleukin-17 (IL-17), which directs mesenchymal stem cell differentiation towards the osteogenic lineage, but also indirectly increases osteoclast differentiation. B lymphocytes are a major regulator of osteoclast formation via granulocyte colony-stimulating factor secretion and the RANKL/osteoprotegerin system under estrogen-deficient conditions. Macrophages might act differently on bone cells dependent on their polarization profile and their secreted paracrine factors, which might have implications for the development of postmenopausal osteoporosis, because macrophage polarization is altered during disease progression. Likewise, neutrophils play an important role during bone homeostasis, but their over-activation under estrogen-deficient conditions contributes to osteoblast apoptosis via the release of reactive oxygen species and increased osteoclastogenesis via RANKL signaling. Furthermore, mast cells might be involved in the development of postmenopausal osteoporosis, because they store high levels of osteoclastic mediators, including IL-6 and RANKL, in their granules and their numbers are greatly increased in osteoporotic bone. Additionally, bone fracture healing is altered under estrogen-deficient conditions with the increased presence of pro-inflammatory cytokines, including IL-6 and Midkine, which might contribute to healing disturbances. Consequently, in addition to the direct negative influence of estrogen-deficiency on bone, immune cell alterations contribute to the pathogenesis of postmenopausal osteoporosis.
Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Diferenciação Celular , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologiaRESUMO
Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating ß-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and ß-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, ß-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with ß-catenin/TCF4 to enhance ß-catenin/TCF4's function and activate LRP5-activated ß-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.
Assuntos
Fraturas Ósseas , Osteogênese , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Diferenciação Celular/genética , Colágeno/metabolismo , Consolidação da Fratura , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Osteoblastos/metabolismo , Via de Sinalização Wnt , Masculino , Camundongos Endogâmicos C57BL , Linhagem CelularRESUMO
This study aimed to explore the effects of peroxisome proliferator-activated receptor γ (PPARγ) inhibition on fracture healing of nonunion and the underlying mechanisms. Bone marrow mesenchymal stem cells (BMSCs) were treated with PPARγ antagonist GW9662 (5 µM, 10 µM). Alkaline phosphatase (ALP) staining and Alizarin Red S was used to assess early stage of osteogenesis and osteogenic differentiation. GW9662 (1 mg/kg/day) were administered intraperitoneally into the rats with bone fracture. Bone healing processes in the rat femur fracture model were recorded and assessed by radiographic methods on Weeks 8, 14, and 20 postoperation. Osteogenesis and angiogenesis at the fracture sites were evaluated by radiographic and histological methods on postoperative Week 20. GW9662 treatment increased ALP activity and Alp mRNA expression in rat BMSCs. Moreover, GW9662 administration increased matrix mineralization and mRNA and protein levels of Bmp2 and Runx2 in the BMSCs. In addition, GW9662 treatment improved radiographic score in the fracture rats and increased osteogenesis-related proteins, including type I collagen, osteopontin, and osteoglycin, in the bone tissues of the fracture sites. In conclusion, PPARγ inhibition promotes osteogenic differentiation of rat BMSCs, as well as improves the fracture healing of rats through Bmp2/Runx2 signaling pathway in the rat model of bone fracture.
Assuntos
Anilidas , Diferenciação Celular , Consolidação da Fratura , Células-Tronco Mesenquimais , Osteogênese , PPAR gama , Animais , Masculino , Ratos , Anilidas/farmacologia , Proteína Morfogenética Óssea 2 , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Consolidação da Fratura/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Ratos Sprague-DawleyRESUMO
Fractures are frequent and severe musculoskeletal injuries. This study aimed to investigate the function of tenascin-C (TNC) in regulating chondrogenic during fracture healing and elucidate the underlying molecular mechanisms. A well-established femur fracture model in male C57BL/6J mice was used to transect the middle diaphysis of the femur. To identify the essential role of TNC, shTNC lentiviruses or TNC protein were administered in the animal model. Micro-CT analysis, histologic analysis, immunostaining assays, and gene expression analysis were employed to investigate the effect of TNC during fracture healing. An in vitro mesenchymal stem cell culture system was developed to investigate the role and molecular mechanism of TNC in regulating chondrogenesis. TNC expression was induced at the inflammatory phase and peaked at the cartilaginous callus phase during fracture healing. Knockdown of TNC expression in callus results in decreased callus formation and impaired fracture healing. Conversely, administration of exogenous TNC promoted chondrogenic differentiation, cartilage template formation and ultimately improved fracture healing. Both the Hedgehog and Hippo signaling pathways were found to be involved in the pro-chondrogenic function of TNC. Our observations demonstrate that TNC is a crucial factor responsible for endochondral ossification in fracture healing and provide a potential therapeutic strategy for promoting fracture healing.
Assuntos
Fraturas do Fêmur , Consolidação da Fratura , Osteogênese , Tenascina , Animais , Masculino , Camundongos , Calo Ósseo/patologia , Fraturas do Fêmur/patologia , Ouriços , Via de Sinalização Hippo , Camundongos Endogâmicos C57BL , Tenascina/genética , Tenascina/metabolismoRESUMO
Combustible cigarette and heated tobacco products (HTPs), the two most frequently used tobacco products, negatively affect bone healing. However, whether smoking cessation following fracture benefits bone healing is unclear. Therefore, this study investigated the effect of smoking cessation immediately after surgery on reduced fracture healing induced by smoking. Smoking combustible cigarettes and heated tobacco products generates cigarette smoking extracts (CSE) (extracts from combustible cigarettes [cCSE] and from HTPs [hCSE], respectively). In vivo, CSEs were injected intraperitoneally into rat models for 3 weeks before femoral midshaft osteotomy and fixation. The rats were then divided into CSE continuation and cessation groups postoperatively. Micro-computed tomography (µCT) and biomechanical analyses were performed 6 weeks postoperatively to assess bone union at the fracture site. In vivo study showed µCT assessment also revealed significantly higher cortical bone mineral density (p = 0.013) and content (p = 0.013), and a higher bone union score (p = 0.046) at the fracture site in the cCSE cessation group than in the cCSE continuation group. Biomechanical assessment revealed that elasticity at the fracture site was significantly higher in the cCSE cessation group than in the cCSE continuation group (p = 0.041). These findings provide that smoking cessation, particularly of combustible cigarette, immediately after a fracture accelerates bone fracture healing and increases mechanical strength at the fracture site.
RESUMO
Despite decades of progress, developing minimally invasive bone-specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) functionalized with a peptide that targets tartrate-resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase-3 beta (GSK3ß) inhibitor, via the TRAP binding peptide-NP (TBP-NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture-associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP-NP is comprehensively investigated herein. TBP-NPAR28 promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast-macrophage co-cultures in vitro. Longitudinal analysis of TBP-NPAR28 -mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti-inflammatory and downregulated pro-inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone-targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone-associated diseases.
Assuntos
Consolidação da Fratura , Sistemas de Liberação de Fármacos por Nanopartículas , Consolidação da Fratura/fisiologia , Macrófagos/metabolismo , Osso e Ossos , Peptídeos/metabolismoRESUMO
Bone fractures are the most common form of musculoskeletal trauma worldwide. Numerous microRNAs (miRNAs) have been suggested to be participants in regulating bone-related diseases. Recent studies revealed the regulatory role of miR-22-3p in osteogenic differentiation, but its role in fracture healing has not been investigated previously. Here, a rat femoral fracture model was established, Bone marrow mesenchymal stem cells (BMSCs) were isolated to detect the specific function and underlying mechanisms of miR-22-3p. MiR-22-3p and sclerostin domain-containing 1 (SOSTDC1) expression was determined by RT-qPCR and immunohistochemistry staining. The levels of proteins associated with osteogenic differentiation were assessed by western blotting. Flow cytometry was conducted to identify the isolated rat BMSCs. Alizarin red staining, alkaline phosphatase staining and Oil Red O staining were used to evaluate the osteogenic and adipogenic differentiation of rat BMSCs. The interaction between miR-22-3p and SOSTDC1 was verified using a luciferase reporter assay. Haematoxylin and Eosin (H&E) staining of the bone tissues was performed to analyse the effect of miR-22-3p on histopathological changes in vivo. MiR-22-3p was downregulated in the callus tissues of rat femoral fracture, while the expression of SOSTDC1 was upregulated. The isolated rat BMSCs had the capacity for both osteogenic and adipogenic differentiation. The differentiation capacity of BMSCs into osteoblasts was increased by miR-22-3p overexpression. MiR-22-3p activated the PI3K/AKT pathway by targeting SOSTDC1. SOSTDC1 overexpression and PI3K/AKT signalling inhibitor LY294002 abolished the enhancing effect of miR-22-3p overexpression on the osteogenesis of BMSCs. Thus MiR-22-3p facilitated the femoral fracture healing in rats. MiR-22-3p overexpression promoted fracture healing via the activation of PI3K/AKT pathway by targeting SOSTDC1.
Assuntos
Fraturas do Fêmur , Células-Tronco Mesenquimais , MicroRNAs , Animais , Humanos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular , Células Cultivadas , Fraturas do Fêmur/genética , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Consolidação da Fratura , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND: Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS: Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS: Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION: Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved.
Assuntos
Conservadores da Densidade Óssea , Consolidação da Fratura , Osteoporose , Fraturas por Osteoporose , Humanos , Consolidação da Fratura/efeitos dos fármacos , Consolidação da Fratura/fisiologia , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia , Fraturas por Osteoporose/prevenção & controle , Fraturas por Osteoporose/fisiopatologia , Osteoporose/tratamento farmacológico , Osteoporose/fisiopatologia , Teriparatida/uso terapêutico , Teriparatida/farmacologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologiaRESUMO
Teriparatide and denosumab, anti-osteoporosis medications with different mechanisms, have been widely used in the patients with osteoporotic vertebral fracture (OVF) considered as advanced osteoporosis. Teriparatide has been shown to enhance bone formation and fracture healing in OVF, but there are still no sufficient evidences discussing about the role of denosumab in newly developed OVF. In this study, we found the similar radiological deformation and functional outcomes of conservative treatment with teriparatide and denosumab in thoracolumbar (TL) OVF, and teriparatide showed a more frequent incidence of fracture union with paravertebral bone bridge formation compared to denosumab. INTRODUCTION: Teriparatide and denosumab have been widely used to treat advanced osteoporosis and prevent subsequent fractures in patients with OVCF. Unlike teriparatide, which is considered to be effective in fracture healing, there is still no clear role and evidence for the effect of denosumab in acute OVCF. This study compared the radiological and functional outcomes of conservative treatment with teriparatide and denosumab in TL-OVF. METHODS: This retrospective study enrolled 78 women with mean age of 74.69 ± 7.66 (60-92) years diagnosed as a TL-OVF with no neurological deficits. All patients were treated conservatively with teriparatide (34 of group T, once-daily 20 µg) or denosumab (44 of group D, once-6 months 60 mg) for 6 months. We evaluated the radiological deformation (kyphotic angle, segmental vertebral kyphotic angle, and compression ratio) and the incidence of fracture union with paravertebral bone bridge formation (FUPB) and functional outcomes using the visual analog scale (VAS) and Oswestry Disability Index (ODI) at 0, 3, and 6 months. RESULTS: In the radiological deformation and functional outcomes, there were no significant differences at 0, 3, and 6 months between the two groups (P > 0.05). However, the incidence of FUPB at 6 months was higher in group T (20/34, 58.8%) compared to group D (11/44, 25.0%) (P = 0.004), and teriparatide was the most statistically significant factor for achieving FUPB (OR 4.486, P = 0.012) in multivariable logistic analysis. CONCLUSIONS: Teriparatide and denosumab, despite of their different pharmacological mechanisms, showed similar radiological deformation and functional outcomes in the conservative treatment of TL-OVF. However, teriparatide showed a significantly higher incidence of fracture union with paravertebral bone bridge formation.
Assuntos
Conservadores da Densidade Óssea , Osteoporose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Teriparatida/uso terapêutico , Denosumab/uso terapêutico , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/etiologia , Fraturas da Coluna Vertebral/tratamento farmacológico , Conservadores da Densidade Óssea/uso terapêutico , Estudos Retrospectivos , Tratamento Conservador/efeitos adversos , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/prevenção & controle , Fraturas por Osteoporose/tratamento farmacológico , Osteoporose/tratamento farmacológicoRESUMO
PURPOSE: The purpose of this research is to demonstrate echinacoside promotes osteogenesis and angiogenesis and inhibits osteoclast formation. METHODS: We conducted a cell experiment in vitro to study how echinacoside affects angiogenesis, osteogenesis and osteoclast formation. We used polymerase chain reaction and Western blotting to detect the expression levels of proteins and genes related to angiogenesis, osteogenesis and osteoclast formation. We established a bone fracture model with rats to test angiogenesis, osteogenesis and osteoclast formation of echinacoside. We labelled osteogenic markers, blood vessels and osteoclastic markers in fracture sections of rats. RESULTS: The in vitro cell experiments showed echinacoside improved the osteogenic activity of mouse embryo osteoblast precursor cells and promoted the migration and tube formation of human umbilical vein endothelial cells. In addition, it inhibited differentiation of mouse leukaemia cells of monocyte macrophage. Echinacoside increased the expression of related proteins and genes and improved angiogenesis and osteogenesis while inhibiting osteoclast formation by repressing the expression of related proteins and genes. From in vivo experiments, the results of IHC and HE experiments demonstrated echinacoside significantly decreased the content of MMP-9 and improved the content of VEGF and OCN. The fluorescence immunoassay showed echinacoside promoted the activities of RUNX2 and VEGF and inhibited CTSK. Echinacoside reduced the content of TNF-α, IL-1ß and IL-6, thus demonstrating its anti-inflammatory activity. CONCLUSION: Echinacoside improved angiogenesis and osteogenesis and inhibited osteoclast formation to promote fracture healing.
Assuntos
Glicosídeos , Células Endoteliais da Veia Umbilical Humana , Metaloproteinase 9 da Matriz , Neovascularização Fisiológica , Osteoclastos , Osteogênese , Animais , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ratos , Glicosídeos/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Masculino , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ratos Sprague-Dawley , Movimento Celular/efeitos dos fármacos , Osteocalcina/metabolismo , Osteocalcina/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , AngiogêneseRESUMO
Hu'po Anshen decoction (HPASD), a traditional Chinese medicine used to treat concussion and fracture, could regulate the expression of bone morphogenetic protein 2 (BMP2). However, whether HPASD affects the fracture healing of traumatic brain injury (TBI) combined with a fracture through BMP2 and its downstream signals remains obscure. The chondrocyte-specific BMP2 conditional knockout mice and chondrocyte-specific cyclooxygenase-2 (COX2) overexpression mice were generated. BMP2 conditional knockout mice were treated with fracture surgery, fracture combined with TBI, or fracture combined with TBI followed by different doses of HPASD (2.4, 4.8, and 9.6 g/kg), respectively. TBI was induced by Feeney's weight-drop technique. The fracture callus formation and fracture sites were determined by X-ray, micro-CT, and histological analyses. The expressions of chondrocyte-, osteoblast-, and BMP2/COX2 signal-related targets were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays. The specific absence of BMP2 in chondrocytes led to the prolonged formation of cartilage callus, a delay in the osteogenesis initiation and the downregulation of RUNX2, Smad1/5/9, EP4, ERK1/2, RSK2, ATF4. Overexpression of COX2 partially reverses the effects of chondrocyte-specific BMP2 knockout mice. HPASD promoted cartilage callus formation and osteogenesis initiation, as accompanied by upregulated expression levels of RUNX2, Smad1/5/9, EP4, ERK1/2, RSK2, and ATF4 in a time-dependent and concentration-dependent manner in chondrocyte-specific BMP2 knockout mice. Overall, our findings demonstrated that HPASD induced COX2 transcription through the BMP2-Smad1/5/9-RUNX2 axis, and then affected fracture healing through the COX2-mediated EP4-ERK1/2-RSK2-ATF4 axis.
Assuntos
Lesões Encefálicas Traumáticas , Fraturas Ósseas , Animais , Camundongos , Consolidação da Fratura , Subunidade alfa 1 de Fator de Ligação ao Core , Ciclo-Oxigenase 2/genética , Proteína Morfogenética Óssea 2/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Transdução de Sinais , Camundongos KnockoutRESUMO
PURPOSE OF REVIEW: The purpose of this review is to highlight the evidence of microvascular dysfunction in bone and marrow and its relation to poor skeletal outcomes in diabetes mellitus. RECENT FINDINGS: Diabetes mellitus is characterized by chronic hyperglycemia, which may lead to microangiopathy and macroangiopathy. Micro- and macroangiopathy have been diagnosed in Type 1 and Type 2 diabetes, coinciding with osteopenia, osteoporosis, enhanced fracture risk and delayed fracture healing. Microangiopathy has been reported in the skeleton, correlating with reduced blood flow and perfusion, vasomotor dysfunction, microvascular rarefaction, reduced angiogenic capabilities, and augmented vascular permeability. Microangiopathy within the skeleton may be detrimental to bone and manifest as, among other clinical abnormalities, reduced mass, enhanced fracture risk, and delayed fracture healing. More investigations are required to elucidate the various mechanisms by which diabetic microvascular dysfunction impacts the skeleton.
Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Humanos , Diabetes Mellitus Tipo 2/complicações , Medula Óssea/irrigação sanguínea , Osso e Ossos , MicrovasosRESUMO
PURPOSE OF REVIEW: This comprehensive review discusses the complex relationship between Alzheimer's disease (AD) and osteoporosis, two conditions that are prevalent in the aging population and result in adverse complications on quality of life. The purpose of this review is to succinctly elucidate the many commonalities between the two conditions, including shared pathways, inflammatory and oxidative mechanisms, and hormonal deficiencies. RECENT FINDINGS: AD and osteoporosis share many aspects of their respective disease-defining pathophysiology. These commonalities include amyloid beta deposition, the Wnt/ß-catenin signaling pathway, and estrogen deficiency. The shared mechanisms and risk factors associated with AD and osteoporosis result in a large percentage of patients that develop both diseases. Previous literature has established that the progression of AD increases the risk of sustaining a fracture. Recent findings demonstrate that the reverse may also be true, suggesting that a fracture early in the life course can predispose one to developing AD due to the activation of these shared mechanisms. The discovery of these commonalities further guides the development of novel therapeutics in which both conditions are targeted. This detailed review delves into the commonalities between AD and osteoporosis to uncover the shared players that bring these two seemingly unrelated conditions together. The discussion throughout this review ultimately posits that the occurrence of fractures and the mechanism behind fracture healing can predispose one to developing AD later on in life, similar to how AD patients are at an increased risk of developing fractures. By focusing on the shared mechanisms between AD and osteoporosis, one can better understand the conditions individually and as a unit, thus informing therapeutic approaches and further research. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Assuntos
Doença de Alzheimer , Osteoporose , Humanos , Osteoporose/etiologia , Fatores de Risco , Fraturas por Osteoporose/etiologia , Via de Sinalização Wnt , Peptídeos beta-Amiloides/metabolismo , Estrogênios/metabolismoRESUMO
PURPOSE OF REVIEW: Three review articles have been written that discuss the roles of the central and peripheral nervous systems in fracture healing. While content among the articles is overlapping, there is a key difference between them: the use of artificial intelligence (AI). In one paper, the first draft was written solely by humans. In the second paper, the first draft was written solely by AI using ChatGPT 4.0 (AI-only or AIO). In the third paper, the first draft was written using ChatGPT 4.0 but the literature references were supplied from the human-written paper (AI-assisted or AIA). This project was done to evaluate the capacity of AI to conduct scientific writing. Importantly, all manuscripts were fact checked and extensively edited by all co-authors rendering the final manuscript drafts significantly different from the first drafts. RECENT FINDINGS: Unsurprisingly, the use of AI decreased the time spent to write a review. The two AI-written reviews took less time to write than the human-written paper; however, the changes and editing required in all three manuscripts were extensive. The human-written paper was edited the most. On the other hand, the AI-only paper was the most inaccurate with inappropriate reference usage and the AI-assisted paper had the greatest incidence of plagiarism. These findings show that each style of writing presents its own unique set of challenges and advantages. While AI can theoretically write scientific reviews, from these findings, the extent of editing done subsequently, the inaccuracy of the claims it makes, and the plagiarism by AI are all factors to be considered and a primary reason why it may be several years into the future before AI can present itself as a viable alternative for traditional scientific writing.
Assuntos
Inteligência Artificial , Consolidação da Fratura , Humanos , Sistema Nervoso Periférico , Homeostase , RedaçãoRESUMO
PURPOSE OF REVIEW: The traditionally understated role of neural regulation in fracture healing is gaining prominence, as recent findings underscore the peripheral nervous system's critical contribution to bone repair. Indeed, it is becoming more evident that the nervous system modulates every stage of fracture healing, from the onset of inflammation to repair and eventual remodeling. RECENT FINDINGS: Essential to this process are neurotrophins and neuropeptides, such as substance P, calcitonin gene-related peptide, and neuropeptide Y. These molecules fulfill key roles in promoting osteogenesis, influencing inflammation, and mediating pain. The sympathetic nervous system also plays an important role in the healing process: while local sympathectomies may improve fracture healing, systemic sympathetic denervation impairs fracture healing. Furthermore, chronic activation of the sympathetic nervous system, often triggered by stress, is a potential impediment to effective fracture healing, marking an important area for further investigation. The potential to manipulate aspects of the nervous system offers promising therapeutic possibilities for improving outcomes in fracture healing. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
Assuntos
Inteligência Artificial , Fraturas Ósseas , Humanos , Osteogênese , Consolidação da Fratura/fisiologia , Sistema Nervoso Periférico , InflamaçãoRESUMO
PURPOSE OF REVIEW: With the recent explosion in the use of artificial intelligence (AI) and specifically ChatGPT, we sought to determine whether ChatGPT could be used to assist in writing credible, peer-reviewed, scientific review articles. We also sought to assess, in a scientific study, the advantages and limitations of using ChatGPT for this purpose. To accomplish this, 3 topics of importance in musculoskeletal research were selected: (1) the intersection of Alzheimer's disease and bone; (2) the neural regulation of fracture healing; and (3) COVID-19 and musculoskeletal health. For each of these topics, 3 approaches to write manuscript drafts were undertaken: (1) human only; (2) ChatGPT only (AI-only); and (3) combination approach of #1 and #2 (AI-assisted). Articles were extensively fact checked and edited to ensure scientific quality, resulting in final manuscripts that were significantly different from the original drafts. Numerous parameters were measured throughout the process to quantitate advantages and disadvantages of approaches. RECENT FINDINGS: Overall, use of AI decreased the time spent to write the review article, but required more extensive fact checking. With the AI-only approach, up to 70% of the references cited were found to be inaccurate. Interestingly, the AI-assisted approach resulted in the highest similarity indices suggesting a higher likelihood of plagiarism. Finally, although the technology is rapidly changing, at the time of study, ChatGPT 4.0 had a cutoff date of September 2021 rendering identification of recent articles impossible. Therefore, all literature published past the cutoff date was manually provided to ChatGPT, rendering approaches #2 and #3 identical for contemporary citations. As a result, for the COVID-19 and musculoskeletal health topic, approach #2 was abandoned midstream due to the extensive overlap with approach #3. The main objective of this scientific study was to see whether AI could be used in a scientifically appropriate manner to improve the scientific writing process. Indeed, AI reduced the time for writing but had significant inaccuracies. The latter necessitates that AI cannot currently be used alone but could be used with careful oversight by humans to assist in writing scientific review articles.
Assuntos
Inteligência Artificial , COVID-19 , Humanos , Consolidação da Fratura , RedaçãoRESUMO
PURPOSE OF REVIEW: Despite advances in orthopedics, there remains a need for therapeutics to hasten fracture healing. However, little focus is given to the role the nervous system plays in regulating fracture healing. This paucity of information has led to an incomplete understanding of fracture healing and has limited the development of fracture therapies that integrate the importance of the nervous system. This review seeks to illuminate the integral roles that the nervous system plays in fracture healing. RECENT FINDINGS: Preclinical studies explored several methodologies for ablating peripheral nerves to demonstrate ablation-induced deficits in fracture healing. Conversely, activation of peripheral nerves via the use of dorsal root ganglion electrical stimulation enhanced fracture healing via calcitonin gene related peptide (CGRP). Investigations into TLR-4, TrkB agonists, and nerve growth factor (NGF) expression provide valuable insights into molecular pathways influencing bone mesenchymal stem cells and fracture repair. Finally, there is continued research into the connections between pain and fracture healing with findings suggesting that anti-NGF may be able to block pain without affecting healing. This review underscores the critical roles of the central nervous system (CNS), peripheral nervous system (PNS), and autonomic nervous system (ANS) in fracture healing, emphasizing their influence on bone cells, neuropeptide release, and endochondral ossification. The use of TBI models contributes to understanding neural regulation, though the complex influence of TBI on fracture healing requires further exploration. The review concludes by addressing the neural connection to fracture pain. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.