Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.607
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Pharm ; 21(4): 1691-1704, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430187

RESUMO

In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.


Assuntos
Omalizumab , Proteínas , Temperatura , Liofilização , Estabilidade de Medicamentos
2.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38551918

RESUMO

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Assuntos
Varredura Diferencial de Calorimetria , Excipientes , Liofilização , Poloxâmero , Trealose , Liofilização/métodos , Poloxâmero/química , Excipientes/química , Trealose/química , Varredura Diferencial de Calorimetria/métodos , Sacarose/química , Difração de Raios X , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , Cristalização/métodos , Química Farmacêutica/métodos , Proteínas/química , Composição de Medicamentos/métodos , Congelamento
3.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38100838

RESUMO

The assembly of MXene materials into microcapsules has drawn great attentions due to their unique properties. However, rational design and synthesis of MXene-based microcapsules with specific nanostructures at the molecular scale remains challenging. Herein, we report a strategy to synthesize N/P co-doped MXene hollow flower-like microcapsules with adjustable permeability via dual surfactants assisted hydrothermal-freeze drying method. In contrast to anionic surfactants, cationic surfactants exhibited effective electrostatic interactions with MXene nanosheets during the hydrothermal process. Manipulation of dual surfactants in hydrothermal process realized N and P co-doping of MXene to improve flexibility and promoted the generation of abundant internal cavities in flower-like microcapsules. Based on the unique microstructure, the prepared hollow flower-like microcapsules showed excellent performance, stability and reusability in size-selective release of small organic molecules. Moreover, the release rate can be controlled by turning the oxidation state and type of MXene. The strategy delineates promising prospects for the design of MXene-based microcapsules with specific structures.

4.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294180

RESUMO

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Assuntos
Vacina BCG , Mycobacterium bovis , Animais , Camundongos , Vacina BCG/genética , Tóquio , Mycobacterium bovis/genética , Ativação Linfocitária , Engenharia Genética , Vacinas Sintéticas
5.
Appl Microbiol Biotechnol ; 108(1): 12, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157004

RESUMO

Functional microbiome development has steadily increased; with this, the viability of microbial strains must be maintained not only after the manufacturing process but also at the time of consumption. Survival is threatened by various unavoidable factors during freeze-drying and shelf storage. Here, the aim was to optimize the manufacturing process of the functional strain Lactiplantibacillus plantarum IDCC 3501 after freeze-drying and storage. Explosive growth was achieved using a medium composition with two nitrogen sources and a mineral, and growth was drastically improved by neutralizing the medium pH during the culture of L. plantarum IDCC 3501. Culture optimization involved a smaller cell size, leading to less intracellular free water. Moreover, when maltodextrin (MD) powder was directly added to the harvested cells, some intracellular free water was extracted from the bacterial cells, resulting in a dramatic increase in the viability of L. plantarum IDCC 3501 after freeze-drying and subsequent storage. Furthermore, MD enhanced survival in a dose-dependent manner. Bacterial survival was correlated with lysozyme tolerance; therefore, the positive result might have been caused by the osmotic dehydration of intracellular free water, which would potentially damage the bacterial cells via ice crystallization and/or a phase transition during freeze-drying. These critical factors of L. plantarum IDCC 3501 processing provide perspectives on survival issues for manufacturing microbiome strains. KEY POINTS: • Culture conditions for probiotic bacteria were optimized for high growth yield. • Osmotic dehydration improved bacterial survival after manufacturing and shelf storage. • Reduction in intracellular free water content is crucial for intact survival.


Assuntos
Desidratação , Lactobacillus plantarum , Humanos , Liofilização/métodos , Água
6.
Antonie Van Leeuwenhoek ; 117(1): 61, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520511

RESUMO

Yersinia pestis, the causative agent of plague, is a highly virulent bacterium that poses a significant threat to human health. Preserving this bacterium in a viable state is crucial for research and diagnostic purposes. This paper presents and evaluates a simple lyophilization protocol for the long-term storage of Y. pestis strains from Fiocruz-CYP, aiming to explore its impact on viability and long-term stability, while replacing the currently used methodologies. The lyophilization tests were conducted using the non-virulent Y. pestis strain EV76, subjected to the lyophilization process under vacuum conditions. Viability assessment was performed to evaluate the effects of lyophilization and storage conditions on Y. pestis under multiple temperature conditions (- 80 °C, - 20 °C, 4-8 °C and room temperature). The lyophilization protocol employed in this study consistently demonstrated its efficacy in maintaining high viability rates for Y. pestis samples in a up to one year follow-up. The storage temperature that consistently exhibited the highest recovery rates was - 80 °C, followed by - 20 °C and 4-8 °C. Microscopic analysis of the post-lyophilized cultures revealed preserved morphological features, consistent with viable bacteria. The high viability rates observed in the preserved samples indicate the successful preservation of Y. pestis using this protocol. Overall, the presented lyophilization protocol provides a valuable tool for the long-term storage of Y. pestis, offering stability, viability, and functionality. By refining the currently used methods of lyophilization, this protocol can improve long-term preservation for Y. pestis strains collections, facilitating research efforts, diagnostic procedures, and the development of preventive and therapeutic strategies against plague.


Assuntos
Peste , Yersinia pestis , Humanos , Peste/microbiologia , Brasil , Liofilização , Temperatura
7.
Cryobiology ; 116: 104938, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38960349

RESUMO

It is thought that surface melting and puffing of freeze-dried amorphous materials are related to the difference between the surface temperature (Tsur) and freeze-concentrated glass transition temperature (Tg') of the materials. Although Tg' is a material-specific parameter, Tsur is affected by the type and amount of solute and freeze-drying conditions. Therefore, it will be practically useful for preventing surface melting and puffing if Tsur can be calculated using only the minimum necessary parameters. This study aimed to establish a predictive model for the surface melting and puffing of freeze-dried amorphous materials according to the calculated Tsur. First, a Tsur-predictive model was proposed under the thermodynamic equilibrium assumptions. Second, solutions with various solute mass fractions of sucrose, maltodextrin, and sucrose-maltodextrin mixture were prepared, and three material-specific parameters (Tg', unfrozen water content, and true density) were experimentally determined. According to the proposed model with the parameters, the Tsur of the samples was calculated at chamber pressures of 13, 38, and 103 Pa. The samples were freeze-dried at the chamber pressures, and their appearance was observed. As expected, surface melting and puffing occurred at calculated Tsur > Tg' with some exceptions. The water activity (aw) of the freeze-dried samples increased as the Tsur - Tg' increased. This will have resulted from surface melting and puffing, which created a covering film, thereby preventing subsequent dehydration. The observations suggest that the proposed model is also useful for predetermining the drying efficiency and storage stability of freeze-dried amorphous materials.

8.
Cell Tissue Bank ; 25(1): 305-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37840108

RESUMO

Amniotic membrane (AM), the innermost layer of the placenta, is an exceptionally effective biomaterial with divers applications in clinical medicine. It possesses various biological functions, including scar reduction, anti-inflammatory properties, support for epithelialization, as well as anti-microbial, anti-fibrotic and angio-modulatory effects. Furthermore, its abundant availability, cost-effectiveness, and ethical acceptability make it a compelling biomaterial in the field of medicine. Given the potential unavailability of fresh tissue when needed, the preservation of AM is crucial to ensure a readily accessible and continuous supply for clinical use. However, preserving the properties of AM presents a significant challenge. Therefore, the establishment of standardized protocols for the collection and preservation of AM is vital to ensure optimal tissue quality and enhance patient safety. Various preservation methods, such as cryopreservation, lyophilization, and air-drying, have been employed over the years. However, identifying a preservation method that effectively safeguards AM properties remains an ongoing endeavor. This article aims to review and discuss different sterilization and preservation procedures for AM, as well as their impacts on its histological, physical, and biochemical characteristics.


Assuntos
Âmnio , Criopreservação , Gravidez , Feminino , Humanos , Âmnio/química , Criopreservação/métodos , Liofilização/métodos , Placenta , Materiais Biocompatíveis/farmacologia
9.
Cell Tissue Bank ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780817

RESUMO

Decellularization is regarded as a xenogenic antigen-reduction technique because it effectively eliminates all cellular and nuclear components while mitigating any negative impact on the composition, biological functionality, and structural integrity of the remaining extracellular matrix. This study aimed to histologically evaluate native, freeze dried and chemically decellularized bovine pericardium membrane. Also, this study focused on preservation of extracellular matrix after decellularization. Bovine pericardium membrane was decellularized by freeze thaw cycle followed by freeze drying and 1% sodium dodecyl sulphate. Unprocessed pericardium was used as control. The effectiveness of Decellularization was assessed based on the reduction of histologically visible nuclei. Decellularization by freeze thaw cycle followed by freeze drying resulted in 17.84% reduction in nuclei content and decellularization by sodium dodecyl sulphate results in 92% reduction in nuclei content compare to control group. Picrosirius red staining for freeze dried group displayed loosely organised, thin collagen bundles that exhibit reddish-yellow birefringence and sodium dodecyl sulfate group revealed dense collagen bundles that are parallelly organised and compact, exhibiting reddish-yellow birefringence and showed good structural integrity. These results suggested that the sodium do decyl sulfate showed optimal decellularization results with better extracellular matrix preservation. It may be a suitable protocol for producing a suitable scaffold for periodontal tissue regeneration.

10.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791401

RESUMO

Porous ß-tricalcium phosphate (Ca3(PO4)2; ß-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing ß-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the ß-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.


Assuntos
Fosfatos de Cálcio , Cerâmica , Liofilização , Liofilização/métodos , Fosfatos de Cálcio/química , Porosidade , Cerâmica/química , Tensoativos/química , Teste de Materiais , Difração de Raios X
11.
Prep Biochem Biotechnol ; : 1-11, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028537

RESUMO

Recombinant human acidic fibroblast growth factor (rh-aFGF) is a widely used biological product, but it is unstable and its biological activity is easy to decrease. In order to maintain the long-term stability and biological activity of rh-aFGF, based on the response surface method, the freeze-drying characterization and cell proliferation rate of rh-aFGF freeze-dried powder were evaluated by scoring and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay in this study. The optimal concentrations of trehalose, glycine and BSA were optimized, and the optimal formulation was verified by regression experiment. The results showed that trehalose, glycine and BSA had significant effects on the characterization of lyophilized rh-aFGF and cell proliferation. The optimal formulation of 5.7% trehalose, 2.04% glycine and 1.98%BSA combined with rh-aFGF could achieve the optimal freeze-dried characterization and biological activity. Using the best formulation to verify, the freeze-dried formability index of the freeze-dried powder was 23.35, and the rate of cell proliferation was 43.59%, which was close to the expected 23 and 41.69%. This study determined a freeze-dried formulation of rh-aFGF that meets the requirements of freeze-dried formalization integrity and maintains biological activity, providing reliable support for the subsequent development of related drugs.

12.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257290

RESUMO

Lemon balm (Melissa officinalis) is an aromatic and medicinal plant, rich in bioactive ingredients and with superior antioxidant activity. The essential oil of this plant is an expensive product, so the use of the by-products of the essential oil industry is particularly useful. The aim of this research was to process Melissa officinalis distillation by-products to develop a series of polyphenol-rich formulations. In the present research, lemon balm was distilled in a laboratory-scale distiller, and the recovered by-product was used for further successive extractions with acetone and water, using a fixed-bed semi-batch extractor. Acetone extract exhibited relatively poor results as far as yield, phenolic composition and antiradical activity are concerned. However, the aqueous extract presented high yield in both total phenolic content (i.e., 111 mg gallic acid equivalents (GAE)/g, on a dry herb basis (dw)), and anti-radical capacity (205 mg trolox equivalents (TE)/g dw). On a dried extract basis, the results were also impressive, with total phenols reaching 322 mg GAE/g dry extract and antiradical capacity at 593 mg TE/g dry extract. The phenolic components of the extract were identified and quantified by HPLC-DAD. Rosmarinic acid was the major component and amounted to 73.5 mg/g dry extract, while the total identified compounds were quantified at 165.9 mg/g dry extract. Finally, formulations with two different wall materials (gum arabic-maltodextrin and maltodextrin) and two different drying methods (spray-drying and freeze-drying) were applied and evaluated to assess their performance, yield, efficiency and shelf-life of total phenolic content and rosmarinic acid concentration. From the present investigation, it is concluded that after one year of storage, rosmarinic acid does not decrease significantly, while total phenolic content shows a similar decrease for all powders. According to the yield and efficiency of microencapsulation, maltodextrin alone was chosen as the wall material and freeze-drying as the preferred drying method.


Assuntos
Melissa , Óleos Voláteis , Polifenóis , Acetona , Destilação , Fenóis , Ácido Gálico
13.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338485

RESUMO

Pear pomace, a byproduct of juice production, represents a valuable reservoir of bioactive compounds with potential health benefits for humans. This study aimed to evaluate the influence of drying method and temperature on pear pomace, specifically focusing on the drying kinetics, grinding characteristics, color, phenolic profile (LC-MS/MS), and antioxidant activities of the powder. Drying using the contact method at 40 °C with microwave assistance demonstrated the shortest duration, whereas freeze-drying was briefer compared to contact-drying without microwave assistance. Freeze-drying resulted in brighter and more easily comminuted pomace. Lyophilized samples also exhibited higher total phenolic compound levels compared to contact-dried ones, correlating with enhanced antioxidant activity. Twenty-one phenolic compounds were identified, with dominant acids being quinic, chlorogenic, and protocatechuic. Flavonoids, primarily isoquercitrin, and rutin, were also presented. Pear pomace dried via contact at 60 °C contained more quinic and protocatechuic acids, while freeze-dried pomace at the same temperature exhibited higher levels of chlorogenic acid, epicatechin, and catechin. The content of certain phenolic components, such as gallic acid and epicatechin, also varied depending on the applied drying temperature.


Assuntos
Catequina , Pyrus , Humanos , Catequina/análise , Cromatografia Líquida , Frutas/química , Espectrometria de Massas em Tandem , Antioxidantes/química , Fenóis/química
14.
J Sci Food Agric ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984980

RESUMO

BACKGROUND: Human serum albumin (HSA) is the most abundant protein in plasma, playing crucial roles in regulating osmotic pressure and maintaining protein homeostasis. It is widely applied in the clinical treatment of various diseases. HSA can be purified from plasma or produced using recombinant DNA technology. Due to the improved efficiency and reduced costs, a growing body of research has focused on enhancing albumin production through bacterial strain overexpression. However, there have been few studies on the effect of albumin on the characteristics of the overexpressing-strain itself, particularly stress resistance. In this study, we utilized Lactiplantibacillus plantarum (L. plantarum) AR113 as the expression host and successfully constructed the albumin overexpression strain AR113-pLLY01 through gene editing technology. The successful expression of albumin was achieved and subsequently compared with the wild-type strain AR113-pIB184. RESULTS: The results demonstrated that the survival rate of AR113-pLLY01 was also significantly better than that of AR113-pIB184 after lyophilization. In addition, AR113-pLLY01 exhibited a significantly better protective effect than AR113-pIB184 at pH 3, indicating that albumin possesses a certain tolerance to acidic stress. At bile salt concentrations higher than 0.03%, both strains showed limited growth, but at a concentration of 0.02%, AR113-pLLY01 had a significant protective effect. CONCLUSION: This study suggest that albumin can improve strain tolerance, which has significant implications for future applications. © 2024 Society of Chemical Industry.

15.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877297

RESUMO

BACKGROUND: Goji berries, renowned for their nutritional benefits, are traditionally dried to extend shelf life and preserve quality. However, conventional drying methods often result in uneven drying, color loss and reduced rehydration capacity. This study investigates an innovative hybrid strategy combining ultrasonic-ethyl oleate (US+AEEO) pretreatment with heat pump drying (HPD) to enhance the drying process of Goji berries. RESULTS: Fresh Goji berries underwent US+AEEO pretreatment, which significantly disrupted the waxy layer, enhancing drying efficiency and water infiltration during rehydration. Compared to freeze drying (FD), HPD combined with US+AEEO pretreatment resulted in higher retention of total polyphenol content (TPC) and total flavonoid content (TFC) in the Goji soaking soup. Specifically, the HPD-US+AEEO samples exhibited the highest TPC and TFC levels, significantly outperforming FD samples. Additionally, the DPPH and ABTS antioxidant assays demonstrated higher scavenging activities in HPD-US+AEEO samples. The rehydration kinetics revealed that HPD samples had a superior rehydration rate and final moisture content compared to FD samples. Low-field nuclear magnetic resonance and magnetic resonance imaging analyses confirmed enhanced water distribution and higher mobility in HPD-US+AEEO samples. Scanning electron microscopy indicated a more porous structure in US+AEEO-treated samples, facilitating better water absorption and functional component retention. CONCLUSION: The combination of US+AEEO pretreatment with HPD significantly improves the drying process of Goji berries, enhancing nutrient retention, color preservation and rehydration properties. This innovative drying method offers a promising solution for producing high-quality dried Goji berries, benefiting both the food industry and health-conscious consumers. © 2024 Society of Chemical Industry.

16.
J Sci Food Agric ; 104(10): 6139-6148, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442084

RESUMO

BACKGROUND: Roasting is an important process in the formation of coffee flavor characteristics, which determines the quality of coffee and consumer acceptance. However, the influence of roasting degree on the flavor characteristics of cold brew coffee has not been fully described. RESULTS: In the present study, the flavor characteristics of cold brew coffee with different roasting degrees were compared in detail by using chromatographic and electronic sensory approaches, and the flavor changes induced by freeze-drying were investigated. Pyrazine and heterocyclic compounds were the main aroma compounds in coffee, and gradually dominated with the increase of roasting. Pyridine was consistently present in cold brew coffees of different roasting degrees and showed significant gradient of quantity accumulation. Aroma compounds such as pyrazine, linalool and furfuryl acetate were the main contributors to coffee roasting, floral and fruity flavor. Freeze-drying preserved the fruity and floral aromas of medium-roasted cold brew coffee, whereas reducing the bitterness, astringency and acidity properties that are off-putting to consumers. CONCLUSION: The higher consumer acceptance and enjoyment in medium roast cold brew coffee may be related to its stronger floral and fruity aroma. The aroma profile qualities of freeze-drying processed medium roasted cold brewed coffee were more dominant and more suitable for freeze-drying processing than medium dark roasting. Application of freeze-drying for cold brew coffee will promote the convenience of drinking. The present study provides valuable technical guidance in improving the flavor and quality of cold brew coffee, and also promotes its commercialization process. © 2024 Society of Chemical Industry.


Assuntos
Coffea , Café , Nariz Eletrônico , Aromatizantes , Liofilização , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Paladar , Odorantes/análise , Humanos , Coffea/química , Café/química , Aromatizantes/química , Aromatizantes/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Língua/química , Culinária/métodos , Manipulação de Alimentos/métodos , Temperatura Alta , Sementes/química , Masculino , Feminino , Adulto
17.
Pharm Dev Technol ; 29(4): 371-382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613468

RESUMO

Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.


Assuntos
Sobrevivência Celular , Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Liofilização , Solubilidade , Comprimidos , Animais , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Flavonoides/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ratos , Células Hep G2 , Liofilização/métodos , Masculino , Administração Sublingual , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos Wistar
18.
AAPS PharmSciTech ; 25(6): 143, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918304

RESUMO

The topology and surface characteristics of lyophilisates significantly impact the stability and reconstitutability of freeze-dried pharmaceuticals. Consequently, visual quality control of the product is imperative. However, this procedure is not only time-consuming and labor-intensive but also expensive and prone to errors. In this paper, we present an approach for fully automated, non-destructive inspection of freeze-dried pharmaceuticals, leveraging robotics, computed tomography, and machine learning.


Assuntos
Liofilização , Aprendizado de Máquina , Liofilização/métodos , Preparações Farmacêuticas/química , Controle de Qualidade , Química Farmacêutica/métodos , Tomografia Computadorizada por Raios X/métodos , Robótica/métodos , Tecnologia Farmacêutica/métodos , Automação/métodos
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 368-375, 2024 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-38686419

RESUMO

The freeze-drying is a technology that preserves biological samples in a dry state, which is beneficial for storage, transportation, and cost saving. In this study, the bovine pericardium was treated with a freeze-drying protectant composed of polyethylene glycol (PEG) and trehalose (Tre), and then freeze-dried. The results demonstrated that the mechanical properties of the pericardium treated with PEG + 10% w/v Tre were superior to those of the pericardium fixed with glutaraldehyde (GA). The wet state water content of the rehydrated pericardium, determined using the Karl Fischer method, was (74.81 ± 1.44)%, which was comparable to that of the GA-fixed pericardium. The dry state water content was significantly reduced to (8.64 ± 1.52)%, indicating effective dehydration during the freeze-drying process. Differential scanning calorimetry (DSC) testing revealed that the thermal shrinkage temperature of the pericardium was (84.96 ± 0.49) ℃, higher than that of the GA-fixed pericardium (83.14 ± 0.11) ℃, indicating greater thermal stability. Fourier transform infrared spectroscopy (FTIR) results showed no damage to the protein structure during freeze-drying. Hematoxylin and eosin (HE) staining demonstrated that the freeze-drying process reduced pore formation, prevented ice crystal growth, and resulted in a tighter arrangement of tissue fibers. The frozen-dried bovine pericardium was subjected to tests for cell viability and hemolysis rate. The results revealed a cell proliferation rate of (77.87 ± 0.49)%, corresponding to a toxicity grade of 1. Additionally, the hemolysis rate was (0.17 ± 0.02)%, which is below the standard of 5%. These findings indicated that the frozen-dried bovine pericardium exhibited satisfactory performance in terms of cytotoxicity and hemolysis, thus meeting the relevant standards. In summary, the performance of the bovine pericardium treated with PEG + 10% w/v Tre and subjected to freeze-drying could meet the required standards.


Assuntos
Liofilização , Pericárdio , Polietilenoglicóis , Trealose , Animais , Pericárdio/química , Trealose/química , Trealose/farmacologia , Bovinos , Polietilenoglicóis/química , Glutaral/química , Varredura Diferencial de Calorimetria
20.
Small ; 19(14): e2205630, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634975

RESUMO

Intravesical instillation is an effective treatment for bladder cancer. However, clinical anticancer agents always suffer rapid excretion by periodic urination, leading to low therapeutic efficacy. Prolonging the retention time of drugs in the bladder is the key challenge for intravesical instillation treatment. Herein, a facile and powerful surface cross-linking-freeze drying strategy is proposed to generate ultra-stable albumin bovine air microbubbles (BSA-MBs) that can float and adhere to the bladder wall to overcome the excretion of urination and exhibit a remarkable property of long-term retention in the bladder. More noteworthy, BSA-MBs are endowed with a specific three-layer structure, namely, the outer membrane, middle drug loading layer and inner air core, which makes them have a low density to easily float and possess a high drug loading capacity. Based on their unique superiorities, the therapeutic potential of doxorubicin (DOX)-loaded BSA-MBs (DOX-MBs) is exemplified by intravesical instillation for bladder cancer. After injection into the bladder, DOX-MBs can remain in the bladder for a long time and sustain the release of DOX in urine, exhibiting potent anticancer efficacy. Consequently, the prolonged retention of BSA-MBs in the bladder renders them as an effective floating drug delivery system for intravesical instillation therapy.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Animais , Bovinos , Administração Intravesical , Microbolhas , Antineoplásicos/uso terapêutico , Doxorrubicina/química , Neoplasias da Bexiga Urinária/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA