Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 275, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918814

RESUMO

Transgene silencing provides a significant challenge in animal model production via gene engineering using viral vectors or transposons. Selecting an appropriate strategy, contingent upon the species is crucial to circumvent transgene silencing, necessitating long-term observation of in vivo gene expression. This study employed the PiggyBac transposon to create a GFP rat model to address transgene silencing in rats. Surprisingly, transgene silencing occurred while using the CAG promoter, contrary to conventional understanding, whereas the Ef1α promoter prevented silencing. GFP expression remained stable through over five generations, confirming efficacy of the Ef1α promoter for long-term protein expression in rats. Additionally, GFP expression was consistently maintained at the cellular level in various cellular sources produced from the GFP rats, thereby validating the in vitro GFP expression of GFP rats. Whole-genome sequencing identified a stable integration site in Akap1 between exons 1 and 2, mitigating sequence-independent mechanism-mediated transgene silencing. This study established an efficient method for producing transgenic rat models using PiggyBac transposon. Our GFP rats represent the first model to exhibit prolonged expression of foreign genes over five generations, with implications for future research in gene-engineered rat models.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Fluorescência Verde , Ratos Transgênicos , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Fluorescência Verde/genética , Ratos , Técnicas de Transferência de Genes/veterinária , Transgenes , Masculino , Inativação Gênica , Feminino , Regiões Promotoras Genéticas
2.
Hum Reprod ; 36(2): 493-505, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33289786

RESUMO

STUDY QUESTION: What are the long-term developmental, reproductive and genetic consequences of mitochondrial replacement therapy (MRT) in primates? SUMMARY ANSWER: Longitudinal investigation of MRT rhesus macaques (Macaca mulatta) generated with donor mtDNA that is exceedingly distant from the original maternal counterpart suggest that their growth, general health and fertility is unremarkable and similar to controls. WHAT IS KNOWN ALREADY: Mitochondrial gene mutations contribute to a diverse range of incurable human disorders. MRT via spindle transfer in oocytes was developed and proposed to prevent transmission of pathogenic mtDNA mutations from mothers to children. STUDY DESIGN, SIZE, DURATION: The study provides longitudinal studies on general health, fertility as well as transmission and segregation of parental mtDNA haplotypes to various tissues and organs in five adult MRT rhesus macaques and their offspring. PARTICIPANTS/MATERIALS, SETTING, METHODS: MRT was achieved by spindle transfer between metaphase II oocytes from genetically divergent rhesus macaque populations. After fertilization of oocytes with sperm, heteroplasmic zygotes contained an unequal mixture of three parental genomes, i.e. donor (≥97%), maternal (≤3%), and paternal (≤0.1%) mitochondrial (mt)DNA. MRT monkeys were grown to adulthood and their development and general health was regularly monitored. Reproductive fitness of male and female MRT macaques was evaluated by time-mated breeding and production of live offspring. The relative contribution of donor, maternal, and paternal mtDNA was measured by whole mitochondrial genome sequencing in all organs and tissues of MRT animals and their offspring. MAIN RESULTS AND THE ROLE OF CHANCE: Both male and female MRT rhesus macaques containing unequal mixture of three parental genomes, i.e. donor (≥97%), maternal (≤3%), and paternal (≤0.1%) mtDNA reached healthy adulthood, were fertile and most animals stably maintained the initial ratio of parental mtDNA heteroplasmy and donor mtDNA was transmitted from females to offspring. However, in one monkey out of four analyzed, initially negligible maternal mtDNA heteroplasmy levels increased substantially up to 17% in selected internal tissues and organs. In addition, two monkeys showed paternal mtDNA contribution up to 33% in selected internal tissues and organs. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Conclusions in this study were made on a relatively low number of MRT monkeys, and on only one F1 (first generation) female. In addition, monkey MRT involved two wildtype mtDNA haplotypes, but not disease-relevant variants. Clinical trials on children born after MRT will be required to fully determine safety and efficacy of MRT for humans. WIDER IMPLICATIONS OF THE FINDINGS: Our data show that MRT is compatible with normal postnatal development including overall health and reproductive fitness in nonhuman primates without any detected adverse effects. 'Mismatched' donor mtDNA in MRT animals even from the genetically distant mtDNA haplotypes did not cause secondary mitochondrial dysfunction. However, carry-over maternal or paternal mtDNA contributions increased substantially in selected internal tissues / organs of some MRT animals implying the possibility of mtDNA mutation recurrence. STUDY FUNDING/COMPETING INTEREST(S): This work has been funded by the grants from the Burroughs Wellcome Fund, the National Institutes of Health (RO1AG062459 and P51 OD011092), National Research Foundation of Korea (2018R1D1A1B07043216) and Oregon Health & Science University institutional funds. The authors declare no competing interests.


Assuntos
DNA Mitocondrial , Células Germinativas , Animais , DNA Mitocondrial/genética , Feminino , Macaca mulatta , Masculino , Mitocôndrias/genética , República da Coreia
3.
Transgenic Res ; 30(3): 275-281, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33844149

RESUMO

Careful selection of the host embryo is critical to the efficient production of knockout (KO) mice when injecting mouse embryonic stem (mES) cells into blastocysts. B6(Cg)-Tyrc-2j/J (B6 albino) and C57BL/6NTac (B6NTac) strains of mice are widely used to produce host blastocysts for such procedures. Here, we tested these two strains to identify an appropriate match for modified agouti C57BL/6N (JM8A3.N1) mES cells. When comparing blastocyst yield, super-ovulated B6NTac mice produced more injectable blastocysts per female than B6 albino mice (8.2 vs. 5.4). There was no significant difference in birth rate when injected embryos were transferred to the same pseudopregnant recipient strain. However, the live birth rate was significantly higher for B6NTac blastocysts than B6 albino blastocysts (62.7% vs. 50.2%). In addition, the proportion of pups exhibiting high-level and complete chimerism, as identified by coat color, was also significantly higher in the B6NTac strain. There was no obvious difference in the efficiency of germline transmission (GLT) when compared between B6NTac and B6 albino host embryos (61.5% vs. 63.3% for mES clones; 64.5% vs. 67.9% for genes, respectively), thus suggesting that an equivalent GLT rate could be obtained with only a few blastocyst injections for B6NTac embryos. In conclusion, our data indicate that B6NTac blastocysts are a better choice for the microinjection of JM8A3.N1 mES cells than B6 albino blastocysts.


Assuntos
Blastocisto/metabolismo , Transferência Embrionária , Camundongos Knockout/genética , Células-Tronco Embrionárias Murinas/transplante , Animais , Embrião de Mamíferos , Células Germinativas/crescimento & desenvolvimento , Camundongos , Camundongos Knockout/crescimento & desenvolvimento , Microinjeções , Células-Tronco Embrionárias Murinas/citologia
4.
BMC Genomics ; 19(1): 387, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792157

RESUMO

BACKGROUND: Transposon-mediated, non-viral gene delivery is a powerful tool for generating stable cell lines and transgenic animals. However, as multi-copy insertion is the preferred integration pattern, there is the potential for uncontrolled changes in endogenous gene expression and detrimental effects in cells or animals. Our group has previously reported on the generation of several transgenic cattle by using microinjection of the Sleeping Beauty (SB) and PiggyBac (PB) transposons and seeks to explore the long-term effects of this technology on cattle. RESULTS: Transgenic cattle, one female (SNU-SB-1) and one male (SNU-PB-1), reached over 36 months of age with no significant health issues and normal blood parameters. The detection of transgene integration and fluorescent signal in oocytes and sperm suggested the capacity for germline transmission in both of the founder animals. After natural breeding, the founder transgenic cow delivered a male calf and secreted milk containing fluorescent transgenic proteins. The calf expressed green fluorescent protein in primary cells from ear skin, with no significant change in overall genomic stability and blood parameters. Three sites of transgene integration were identified by next-generation sequencing of the calf's genome. CONCLUSIONS: Overall, these data demonstrate that transposon-mediated transgenesis can be applied to cattle without being detrimental to their long-term genomic stability or general health. We further suggest that this technology may be usefully applied in other fields, such as the generation of transgenic animal models.


Assuntos
Técnicas de Transferência de Genes , Saúde , Óvulo/metabolismo , Espermatozoides/metabolismo , Transposases/genética , Animais , Animais Geneticamente Modificados , Bovinos , Feminino , Masculino , Transgenes/genética , Sequenciamento Completo do Genoma
5.
BMC Biotechnol ; 18(1): 70, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30384832

RESUMO

BACKGROUND: Recombinant adeno-associated viruses (AAVs) are emerging as favoured transgene delivery vectors for both research applications and gene therapy. In this context, a thorough investigation of the potential of various AAV serotypes to transduce specific cell types is valuable. Here, we rigorously tested the infectivity of a number of AAV serotypes in murine testis by direct testicular injection. RESULTS: We report the tropism of serotypes AAV2, 5, 8, 9 and AAVrh10 in mouse testis. We reveal unique infectivity of AAV2 and AAV9, which preferentially target intertubular testosterone-producing Leydig cells. Remarkably, AAV2 TM, a mutant for capsid designed to increase transduction, displayed a dramatic alteration in tropism; it infiltrated seminiferous tubules unlike wildtype AAV2 and transduced Sertoli cells. However, none of the AAVs tested infected spermatogonial cells. CONCLUSIONS: In spite of direct testicular injection, none of the tested AAVs appeared to infect sperm progenitors as assayed by reporter expression. This lends support to the current view that AAVs are safe gene-therapy vehicles. However, testing the presence of rAAV genomic DNA in germ cells is necessary to assess the risk of individual serotypes.


Assuntos
Dependovirus/fisiologia , Terapia Genética/instrumentação , Vetores Genéticos/fisiologia , Testículo/virologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/classificação , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Células Intersticiais do Testículo/virologia , Masculino , Camundongos , Sorogrupo , Tropismo Viral
6.
Proc Biol Sci ; 285(1874)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29514964

RESUMO

The paternal transmission of environmentally induced phenotypes across generations has been reported to occur following a number of qualitatively different exposures and appear to be driven, at least in part, by epigenetic factors that are inherited via the sperm. However, previous studies of paternal germline transmission have not addressed the role of mothers in the propagation of paternal effects to offspring. We hypothesized that paternal exposure to nutritional restriction would impact male mate quality and subsequent maternal reproductive investment with consequences for the transmission of paternal germline effects. In the current report, using embryo transfer in mice, we demonstrate that sperm factors in adult food restricted males can influence growth rate, hypothalamic gene expression and behaviour in female offspring. However, under natural mating conditions females mated with food restricted males show increased pre- and postnatal care, and phenotypic outcomes observed during embryo transfer conditions are absent or reversed. We demonstrate that these compensatory changes in maternal investment are associated with a reduced mate preference for food restricted males and elevated gene expression within the maternal hypothalamus. Therefore, paternal experience can influence offspring development via germline inheritance, but mothers can serve as a modulating factor in determining the impact of paternal influences on offspring development.


Assuntos
Privação de Alimentos , Crescimento e Desenvolvimento/genética , Herança Materna/genética , Herança Paterna/genética , Fenótipo , Reprodução/genética , Animais , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Anim Genet ; 49(1): 43-51, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29446146

RESUMO

Genetic engineering in livestock has been greatly enhanced through the use of artificial programmed nucleases such as the recently emerged clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. We recently reported our successful application of the CRISPR/Cas9 system to engineer the goat genome through micro-injection of Cas9 mRNA and sgRNAs targeting MSTN and FGF5 in goat embryos. The phenotypes induced by edited loss-of-function mutations of MSTN remain to be evaluated extensively. We demonstrate the utility of this approach by disrupting MSTN, resulting in enhanced body weight and larger muscle fiber size in Cas9-mediated gene-modified goats. The effects of genome modifications were further characterized by H&E staining, quantitative PCR, Western blotting and immunofluorescence staining. Morphological and genetic analyses indicated the occurrence of phenotypic and genotypic modifications. We further provide sufficient evidence, including breeding data, to demonstrate the transmission of the knockout alleles through the germline. By phenotypic and genotypic characterization, we demonstrated the merit of using the CRISPR/Cas9 approach for establishing genetically modified livestock with an enhanced production trait.


Assuntos
Animais Geneticamente Modificados , Edição de Genes/métodos , Cabras/genética , Miostatina/genética , Bem-Estar do Animal , Animais , Sistemas CRISPR-Cas , Feminino , Masculino , Fenótipo
8.
Transgenic Res ; 25(4): 527-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852382

RESUMO

Embryonic stem (ES) cells from a C57BL/6N (B6N) background injected into B6(Cg)-Tyrc-2J/J (B6-albino) recipient blastocysts are commonly used for generating genetically modified mouse models. To understand the influence of the recipient blastocyst strain on germline transmission, BALB/cAnNTac and B6-albino germline transmission rates were compared using the C57BL6/N-derived C2 ES cell line. A total of 92 ES cell clones from 27 constructs were injected. We compared blastocyst yield, birth rate, chimera formation rate, and high-percentage (>50 %) male chimera formation rate. For germline transmission, we analyzed 24 clones from 19 constructs, which generated high-percentage male chimeras from both donor strains. B6-albino hosts resulted in higher mean blastocyst yields per donor than did BALB/c ones (3.6 vs. 2.5). However, BALB/c hosts resulted in a higher birth rate than B6-albino ones (36 vs. 27 %), a higher chimera formation rate (50 vs. 42 %), a higher high-percentage male chimera rate (10 vs. 8 %), and a higher germline transmission rate (65 vs. 49 %), respectively. Our data suggest that BALB/c is a suitable blastocyst host strain for C2 ES cells and has an advantage over the B6-albino strain for receiving the injection of C2 ES cells.


Assuntos
Blastocisto/fisiologia , Células-Tronco Embrionárias , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Feminino , Células Germinativas , Masculino , Camundongos Transgênicos , Microinjeções
9.
Anim Biotechnol ; 27(3): 157-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26980563

RESUMO

We developed nonintegrated methods to reprogram mouse embryonic fibroblast (MEF) cells into induced pluripotent stem cells (iPSCs) using pig pOct4, pSox2, and pc-Myc as well as human hKLF4, hAID, and hTDG that were carried by plasmid vectors. The 4F method employed pOct4, pSox2, pc-Myc, and hKLF4 to derive iPSC clones with naive embryonic stem cell (ESC)-like morphology. These 4F clones expressed endogenous mouse Nanog protein and could generate chimeras. In addition to the four conventional reprogramming factors used in the 4F method, hAID and hTDG were utilized in a 6F method to increase the conversion efficiency of reprogramming by approximately five-fold. One of the 6F plasmid derived iPSC (piPSC) clones was shown to be germline transmission competent.


Assuntos
Técnicas de Reprogramação Celular/métodos , Clonagem Molecular/métodos , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas , Plasmídeos/genética , Animais , DNA Complementar/genética , Humanos , Camundongos , Suínos
10.
Biol Reprod ; 90(1): 15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24337317

RESUMO

Avian cell lines derived from germinal crescent primordial germ cells and gonadal gonocytes with long-term proliferative capacity in vitro and their subsequent rates of colonization and germline transmission are described. In general, male cultures proliferate more rapidly than female cultures although both can be developed into cell lines of >2 × 10(6) cells, at which time, they can be grown indefinitely and a cell bank can be established. All the cell lines injected into embryos transmitted through the germline with the percentage of germline transmission of both male and female cell lines varying from single digits to the high 90s. The derivation of these primordial germ cell and gonadal cell lines and the subsequent robustness of germline transmission validates these cells as suitable for establishment of lines of chickens bearing novel genetic modifications.


Assuntos
Técnicas de Cultura de Células/métodos , Células Germinativas/citologia , Gônadas/citologia , Animais , Animais Geneticamente Modificados , Forma Celular , Células Cultivadas , Embrião de Galinha , Quimera/embriologia , Células-Tronco Embrionárias/citologia , Feminino , Masculino , Fatores de Tempo
11.
Stem Cell Reports ; 18(1): 394-409, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525967

RESUMO

Rats were more frequently used than mice to model human disease before mouse embryonic stem cells (mESCs) revolutionized genetic engineering in mice. Rat ESCs (rESCs) were first reported over 10 years ago, yet they are not as frequently used as mESCs. CRISPR-based gene editing in zygotes is widely used in rats but is limited by the difficulty of inserting or replacing DNA sequences larger than about 10 kb. We report here the generation of germline-competent rESC lines from several rat strains. These rESC lines maintain their potential for germline transmission after serial targeting with bacterial artificial chromosome (BAC)-based targeting vectors, and CRISPR-Cas9 cutting can increase targeting efficiency. Using these methods, we have successfully replaced entire rat genes spanning up to 101 kb with the human ortholog.


Assuntos
Células-Tronco Embrionárias , Degeneração Retiniana , Humanos , Ratos , Animais , Camundongos , Edição de Genes , Engenharia Genética , Sistemas CRISPR-Cas/genética
12.
Front Vet Sci ; 10: 1227202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964915

RESUMO

Propagation of transgenic animals by germline transmission using assisted reproductive technologies such as in vitro fertilization (IVF) is the most efficient way to produce transgenic colonies for biomedical research. The objective of this study was to generate transgenic puppies from a founder dog expressing the mutated human amyloid precursor protein (mhAPP) gene. Experiment I assessed the characteristics of the semen prepared by freshly diluted, swim-up, and Percoll gradient methods using a computer-assisted semen analyzer (CASA). Motile and progressively motile sperm counts were higher in the Percoll gradient samples (p < 0.05) than in the swim-up and freshly diluted samples. In Experiment II, a total of 59, 70, and 65 presumptive zygotes produced by fresh, Percoll gradient, and swim-up methods, respectively, were transferred to surrogates (5 for each group); the Percoll gradient (27.27%) and swim-up samples (14.29%) showed the highest blastocyst formation rates, while fresh diluted semen did not produce any blastocyst. Experiment III examined the full-term developmental ability of embryos. Among the 5 surrogates in the Percoll gradient group, one (20.0%) became pregnant; it had 4 (6.15%) sacs and delivered 4 (6.15%; 2 males and 2 females) live puppies. Among the 4 puppies, 2 (50.0%) were found to transmit the transgene on their nail and toe under GFP fluorescence. Furthermore, the integration and expression of the mhAPP transgene were examined in the umbilical cords of all the IVF-derived puppies, and the presence of the transgene was only observed in the GFP-positive puppies. Thus, semen prepared by the Percoll method could generate transgenic puppies by male germline transmission using the IVF technique. Our result will help propagate transgenic dogs efficiently, which will foster human biomedical research.

13.
Methods Mol Biol ; 2631: 53-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995664

RESUMO

Genetically engineered mice are used as avatars to understand mammalian gene function and develop therapies for human disease. During genetic modification, unintended changes can occur, and these changes may result in misassigned gene-phenotype relationships leading to incorrect or incomplete experimental interpretations. The types of unintended changes that may occur depend on the allele type being made and the genetic engineering approach used. Here we broadly categorize allele types as deletions, insertions, base changes, and transgenes derived from engineered embryonic stem (ES) cells or edited mouse embryos. However, the methods we describe can be adapted to other allele types and engineering strategies. We describe the sources and consequ ences of common unintended changes and best practices for detecting both intended and unintended changes by screening and genetic and molecular quality control (QC) of chimeras, founders, and their progeny. Employing these practices, along with careful allele design and good colony management, will increase the chance that investigations using genetically engineered mice will produce high-quality reproducible results, to enable a robust understanding of gene function, human disease etiology, and therapeutic development.


Assuntos
Edição de Genes , Engenharia Genética , Camundongos , Animais , Humanos , Edição de Genes/métodos , Células-Tronco Embrionárias , Transgenes , Controle de Qualidade , Sistemas CRISPR-Cas , Mamíferos/genética
14.
Theriogenology ; 192: 22-27, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037573

RESUMO

Although the production of several founder animals (F0) for gene editing in livestock has been reported in cattle, very few studies have assessed germline transmission to the next generation due to the long sexual maturation and gestation periods. The present study aimed to assess the germline transmission of MSTN mutations (-12bps deletion) in MSTN mutant F0 male and female cattle. For this purpose, oocytes and semen were collected after the sexual maturation of MSTN cattle, and embryos produced by in vitro fertilization were analyzed. In addition, the embryos were subjected to additional gene (PRNP) editing using electroporation. Embryos produced by in vitro fertilization with MSTN male and female cattle were transferred to a surrogate, and one calf was successfully born. MSTN heterozygous mutation was shown by sequencing of the F1 calf, which had no health issues. As a further experiment, using electroporation, additional gene-edited embryos fertilized with the MSTN male sperm showed a high mutation rate of PRNP (86.2 ± 3.4%). These data demonstrate that the cattle produced through gene editing matured without health issues and had transmitted MSTN mutation from the germ cells. Also, additional mutation of embryos fertilized with the MSTN male sperm could enable further mutagenesis using electroporation.


Assuntos
Sistemas CRISPR-Cas , Sêmen , Animais , Bovinos/genética , Eletroporação/veterinária , Feminino , Edição de Genes/veterinária , Masculino , Mutação , Miostatina/genética , Oócitos
15.
Mol Ther Nucleic Acids ; 25: 494-501, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589272

RESUMO

Prime editing enables efficient introduction of targeted transversions, insertions, and deletions in mammalian cells and several organisms. However, genetic disease models with base deletions by prime editing have not yet been reported in mice. Here, we successfully generate a mouse model with a cataract disorder through microinjection of prime editor 3 (PE3) plasmids to efficiently induce targeted single-base deletion. Notably, a generated mouse with a high G-deletion rate (38.2%) displays a nuclear cataract phenotype; the PE3-induced deletions in mutant mice achieve high rates of germline transmission to their progenies, with phenotypic inheritance of cataract. Our data propose that modeling a genetic disease with a single nucleotide deletion in mice can be achieved with prime genome editing in vivo.

16.
Poult Sci ; 100(8): 101207, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34242944

RESUMO

Primordial germ cells (PGCs) are the precursors of germline cells that generate sperm and ova in adults. Thus, they are promising tools for gene editing and genetic preservation, especially in avian species. In this study, we established stable male and female PGC lines from 6Hungarian indigenous chicken breeds with derivation rates ranging from 37.5 to 50 percent. We characterized the PGCs for expression of the germ cell-specific markers during prolonged culture in vitro. An in vivo colonization test was performed on PGCs from four Hungarian chicken breeds and the colonization rates were between 76 and 100%. Cryopreserved PGCs of the donor breed (Partridge color Hungarian) were injected into Black Transylvanian Naked Neck host embryos to form chimeric progeny that, after backcrossing, would permit reconstitution of the donor breed. For 24 presumptive chimeras 13 were male and 11 were female. In the course of backcrossing, 340 chicks were hatched and 17 of them (5%) were pure Partridge colored. Based on the backcrossing 1 hen and 3 roosters of the 24 presumptive chimeras (16.6%) have proven to be germline chimeras. Therefore, it was proven that the original breed can be recovered from primordial germ cells which are stored in the gene bank. To our knowledge, our study is a first that applied feeder free culturing conditions for both male and female cell lines successfully and used multiple indigenous chicken breeds to create a gene bank representing a region (Carpathian Basin).


Assuntos
Galinhas , Galliformes , Animais , Galinhas/genética , Criopreservação/veterinária , Feminino , Galliformes/genética , Células Germinativas , Hungria , Masculino , Regeneração
17.
Cell Prolif ; 54(8): e13090, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34197016

RESUMO

OBJECTIVES: Derivation and maintenance of pluripotent stem cells (PSCs) generally require optimized and complex culture media, which hinders the derivation of PSCs from various species. Expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) can reprogram somatic cells into induced PSCs (iPSCs), even for species possessing no optimal culture condition. Herein, we explored whether expression of OSKM could induce and maintain pluripotency without PSC-specific growth factors and signaling inhibitors. METHODS: The culture medium of Tet-On-OSKM/Oct4-GFP mouse embryonic stem cells (ESCs) was switched from N2B27 with MEK inhibitor, GSK3ß inhibitor, and leukemia inhibitory factor (LIF) (2iL) to N2B27 with doxycycline. Tet-On-OSKM mouse embryonic fibroblast (MEF) cells were reprogrammed in N2B27 with doxycycline. Cell proliferation was traced. Pluripotency was assessed by expression of ESC marker genes, teratoma, and chimera formation. RNA-Seq was conducted to analyze gene expression. RESULTS: Via continuous expression of OSKM, mouse ESCs (OSKM-ESCs) and the resulting iPSCs (OSKM-iPSCs) reprogrammed from MEF cells propagated stably, expressed pluripotency marker genes, and formed three germ layers in teratomas. Transcriptional landscapes of OSKM-iPSCs resembled those of ESCs cultured in 2iL and were more similar to those of ESCs cultured in serum/LIF. Furthermore, OSKM-iPSCs contributed to germline transmission. CONCLUSIONS: Expression of OSKM could induce and maintain mouse pluripotency without specific culturing factors. Importantly, OSKM-iPSCs could produce gene-modified animals through germline transmission, with potential applications in other species.


Assuntos
Autorrenovação Celular , Reprogramação Celular , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Edição de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fator Inibidor de Leucemia/farmacologia , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Teratoma/metabolismo , Teratoma/patologia , Fatores de Transcrição/genética , Transcriptoma/efeitos dos fármacos
18.
Cells ; 10(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673402

RESUMO

Genetic modification of non-human primates (NHP) paves the way for realistic disease models. The common marmoset is a NHP species increasingly used in biomedical research. Despite the invention of RNA-guided nucleases, one strategy for protein overexpression in NHP is still lentiviral transduction. We generated three male and one female enhanced green fluorescent protein (EGFP)-transgenic founder marmosets via lentiviral transduction of natural preimplantation embryos. All founders accomplished germline transmission of the transgene by natural mating, yielding 20 transgenic offspring together (in total, 45 pups; 44% transgenic). This demonstrates that the transgenic gametes are capable of natural fertilization even when in competition with wildtype gametes. Importantly, 90% of the transgenic offspring showed transgene silencing, which is in sharp contrast to rodents, where the identical transgene facilitated robust EGFP expression. Furthermore, we consistently discovered somatic, but so far, no germ cell chimerism in mixed wildtype/transgenic litters. Somatic cell chimerism resulted in false-positive genotyping of the respective wildtype littermates. For the discrimination of transgenic from transgene-chimeric animals by polymerase chain reaction on skin samples, a chimeric cell depletion protocol was established. In summary, it is possible to establish a cohort of genetically modified marmosets by natural mating, but specific requirements including careful promoter selection are essential.


Assuntos
Quimerismo/embriologia , Proteínas de Fluorescência Verde/metabolismo , Animais , Animais Geneticamente Modificados , Callithrix , Feminino , Masculino
19.
Genome Biol ; 22(1): 170, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082781

RESUMO

Prime editors, novel genome-editing tools consisting of a CRISPR-Cas9 nickase and an engineered reverse transcriptase, can induce targeted mutagenesis. Nevertheless, much effort is required to optimize and improve the efficiency of prime-editing. Herein, we introduce two strategies to improve the editing efficiency using proximal dead sgRNA and chromatin-modulating peptides. We used enhanced prime-editing to generate Igf2 mutant mice with editing frequencies of up to 47% and observed germline transmission, no off-target effects, and a dwarf phenotype. This improved prime-editing method can be efficiently applied to cell research and to generate mouse models.


Assuntos
Células/metabolismo , Embrião de Mamíferos/metabolismo , Edição de Genes , Mutagênese/genética , Animais , Sequência de Bases , Linhagem Celular , Cromatina/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , RNA Guia de Cinetoplastídeos/genética
20.
Front Plant Sci ; 11: 575283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072151

RESUMO

Regeneration of transgenic plants without selectable markers can facilitate the development and commercialization of trait stacking products. A wide range of strategies have been developed to eliminate selectable markers to produce marker-free transgenic plants. The most widely used marker free approach is probably the Agrobacterium-based 2 T-DNA strategy where the gene-of-interest (GOI) and selectable marker gene are delivered from independent T-DNAs (Darbani et al., 2007). The selectable marker gene is segregated away from the GOI in subsequent generations. However, the efficiency of this 2 T-DNA system is much less than the traditional 1 T-DNA system due to the inefficiency of T-DNA co-transformation and high rate of con-integration between the GOI and selectable marker gene T-DNAs. In contrast, no selection transformation utilizes a single T-DNA carrying the GOI and thus eliminates the need to remove the selectable marker insert and potentially provides a viable alternative marker-free system. In this study, we reported the successful regeneration of transgenic cotton plants through Agrobacterium inoculation of seed meristem explants without the use of selective agents. Regeneration of putative transgenic plants were identified by GUS histo-chemical assay. The germline transmission of transgene to progeny was determined by segregation of pollen grains, immature embryos and T1 plants by GUS expression. The results were further confirmed by Southern analyses. The marker-free transformation frequency in this no selection system was similar to current meristem transformation system with selection (0.2%-0.7%). The strategy for further improvement of this system and its implication in improving cotton transformation pipeline and in developing transgene-free genome editing technology is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA