Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 289: 120540, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355076

RESUMO

INTRODUCTION: Functional brain networks (FBNs) coordinate brain functions and are studied in fMRI using blood-oxygen-level-dependent (BOLD) signal correlations. Previous research links FBN changes to aging and cognitive decline, but various physiological factors influnce BOLD signals. Few studies have investigated the intrinsic components of the BOLD signal in different timescales using signal decomposition. This study aimed to explore differences between intrinsic FBNs and traditional BOLD-FBN, examining their associations with age and cognitive performance in a healthy cohort without dementia. MATERIALS AND METHODS: A total of 396 healthy participants without dementia (men = 157; women = 239; age range = 20-85 years) were enrolled in this study. The BOLD signal was decomposed into several intrinsic signals with different timescales using ensemble empirical mode decomposition, and FBNs were constructed based on both the BOLD and intrinsic signals. Subsequently, network features-global efficiency and local efficiency values-were estimated to determine their relationship with age and cognitive performance. RESULTS: The findings revealed that the global efficiency of traditional BOLD-FBN correlated significantly with age, with specific intrinsic FBNs contributing to these correlations. Moreover, local efficiency analysis demonstrated that intrinsic FBNs were more meaningful than traditional BOLD-FBN in identifying brain regions related to age and cognitive performance. CONCLUSIONS: These results underscore the importance of exploring timescales of BOLD signals when constructing FBN and highlight the relevance of specific intrinsic FBNs to aging and cognitive performance. Consequently, this decomposition-based FBN-building approach may offer valuable insights for future fMRI studies.


Assuntos
Mapeamento Encefálico , Demência , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Envelhecimento/fisiologia , Imageamento por Ressonância Magnética/métodos , Cognição/fisiologia
2.
Psychol Sci ; 35(4): 376-389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446868

RESUMO

Inhibitory control is central to many theories of cognitive and brain development, and impairments in inhibitory control are posited to underlie developmental psychopathology. In this study, we tested the possibility of shared versus unique associations between inhibitory control and three common symptom dimensions in youth psychopathology: attention-deficit/hyperactivity disorder (ADHD), anxiety, and irritability. We quantified inhibitory control using four different experimental tasks to estimate a latent variable in 246 youth (8-18 years old) with varying symptom types and levels. Participants were recruited from the Washington, D.C., metro region. Results of structural equation modeling integrating a bifactor model of psychopathology revealed that inhibitory control predicted a shared or general psychopathology dimension, but not ADHD-specific, anxiety-specific, or irritability-specific dimensions. Inhibitory control also showed a significant, selective association with global efficiency in a frontoparietal control network delineated during resting-state functional magnetic resonance imaging. These results support performance-based inhibitory control linked to resting-state brain function as an important predictor of comorbidity in youth psychopathology.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Psicopatologia , Humanos , Adolescente , Criança , Ansiedade/psicologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Epilepsia ; 65(4): 961-973, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306118

RESUMO

OBJECTIVE: Genetic generalized epilepsy (GGE) accounts for approximately 20% of adult epilepsy cases and is considered a disorder of large brain networks, involving both hemispheres. Most studies have not shown any difference in functional whole-brain network topology when compared to healthy controls. Our objective was to examine whether this preserved global network topology could hide local reorganizations that balance out at the global network level. METHODS: We recorded high-density electroencephalograms from 20 patients and 20 controls, and reconstructed the activity of 118 regions. We computed functional connectivity in windows free of interictal epileptiform discharges in broad, delta, theta, alpha, and beta frequency bands, characterized the network topology, and used the Hub Disruption Index (HDI) to quantify the topological reorganization. We examined the generalizability of our results by reproducing a 25-electrode clinical system. RESULTS: Our study did not reveal any significant change in whole-brain network topology among GGE patients. However, the HDI was significantly different between patients and controls in all frequency bands except alpha (p < .01, false discovery rate [FDR] corrected, d < -1), and accompanied by an increase in connectivity in the prefrontal regions and default mode network. This reorganization suggests that regions that are important in transferring the information in controls were less so in patients. Inversely, the crucial regions in patients are less so in controls. These findings were also found in delta and theta frequency bands when using 25 electrodes (p < .001, FDR corrected, d < -1). SIGNIFICANCE: In GGE patients, the overall network topology is similar to that of healthy controls but presents a balanced local topological reorganization. This reorganization causes the prefrontal areas and default mode network to be more integrated and segregated, which may explain executive impairment associated with GGE. Additionally, the reorganization distinguishes patients from controls even when using 25 electrodes, suggesting its potential use as a diagnostic tool.


Assuntos
Epilepsia Generalizada , Epilepsia , Adulto , Humanos , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Mapeamento Encefálico , Epilepsia Generalizada/genética , Imageamento por Ressonância Magnética/métodos
4.
Acta Paediatr ; 113(8): 1876-1883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38773283

RESUMO

AIM: Media use in children has exploded in the past several decades, most recently fuelled by portable electronic devices. This study aims to explore differences in functional brain connectivity in children during a story-listening functional MRI (fMRI) task using data collected before (1998) and after (2013) the widespread adoption of media. METHODS: Cross-sectional data were collected from English-speaking 5- to 7-year-old children at Cincinnati Children's Hospital Medical Center, USA, of a functional MRI narrative comprehension task completed in 1998 (n = 22) or 2013 (n = 25). Imaging data were processed using a graph theory approach, focusing on executive functions, language and visual processing networks supporting reading. RESULTS: Group differences suggest more efficient processing in the fronto-parietal network in the pre-media group while listening to stories. A modulation of the visual and fronto-parietal networks for the post-media exposure group was found. CONCLUSION: Further studies are needed to assess effects over time in the more exposed group to discern a causal effect of portable devices on cognitive networks.


Assuntos
Imageamento por Ressonância Magnética , Exposição à Mídia , Lobo Parietal , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Transversais , Lobo Frontal/fisiologia , Lobo Frontal/diagnóstico por imagem , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem
5.
Alzheimers Dement ; 20(1): 316-329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37611119

RESUMO

INTRODUCTION: The retina may provide non-invasive, scalable biomarkers for monitoring cerebral neurodegeneration. METHODS: We used cross-sectional data from The Maastricht study (n = 3436; mean age 59.3 years; 48% men; and 21% with type 2 diabetes [the latter oversampled by design]). We evaluated associations of retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses with cognitive performance and magnetic resonance imaging indices (global grey and white matter volume, hippocampal volume, whole brain node degree, global efficiency, clustering coefficient, and local efficiency). RESULTS: After adjustment, lower thicknesses of most inner retinal layers were significantly associated with worse cognitive performance, lower grey and white matter volume, lower hippocampal volume, and worse brain white matter network structure assessed from lower whole brain node degree, lower global efficiency, higher clustering coefficient, and higher local efficiency. DISCUSSION: The retina may provide biomarkers that are informative of cerebral neurodegenerative changes in the pathobiology of dementia.


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Estudos Transversais , Retina/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Biomarcadores , Cognição
6.
Cerebellum ; 22(4): 588-600, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661099

RESUMO

The cerebellum (CB) and basal ganglia (BG) each have topographically distinct functional subregions that are functionally and anatomically interconnected with cortical regions through discrete thalamic loops and with each other via disynaptic connections, with previous work detailing high levels of functional connectivity between these phylogenetically ancient regions. It was posited that this CB-BG network provides support for cortical systems processing, spanning cognitive, emotional, and motor domains, implying that subcortical network measures are strongly related to cortical network measures (Bostan & Strick, 2018); however, it is currently unknown how network measures within distinct CB-BG networks relate to cortical network measures. Here, 122 regions of interest comprising cognitive and motor CB-BG networks and 7 canonical cortical resting-state were used to investigate whether the integration (quantified using global efficiency, GE) of cognitive CB-BG network (CCBN) nodes and their segregation from motor CB-BG network (MCBN) nodes is related to cortical network GE and segregation in 233 non-related, right-handed participants (Human Connectome Project-1200). CCBN GE positively correlated with GE in the default mode, motor, and auditory networks and MCBN GE positively correlated with GE in all networks, except the default mode and emotional. MCBN segregation was related to motor network segregation. These findings highlight the CB-BG network's potential role in cortical networks associated with executive function, task switching, and verbal working memory. This work has implications for understanding cortical network organization and cortical-subcortical interactions in healthy adults and may help in determining biomarkers and deciphering subcortical differences seen in disease states.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Adulto , Humanos , Vias Neurais/diagnóstico por imagem , Gânglios da Base/diagnóstico por imagem , Cerebelo/diagnóstico por imagem
7.
Neuroradiology ; 65(2): 323-336, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36219250

RESUMO

PURPOSE: To investigate the alterations of topological organization of the whole brain functional networks in hypertension patients with cognitive impairment (HTN-CI) and characterize its relationship with cognitive scores. METHODS: Fifty-seven hypertension patients with cognitive impairment and 59 hypertension patients with normal cognition (HTN-NC), and 49 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. Graph theoretical analysis was used to investigate the altered topological organization of the functional brain networks. The global topological properties and nodal metrics were compared among the three groups. Network-based statistic (NBS) analysis was used to determine the connected subnetwork. The relationships between network metrics and cognitive scores were also characterized. RESULTS: HTN-CI patients exhibited significantly decreased global efficiency, lambda, and increased shortest path length when compared with HCs. In addition, both HTN-CI and HTN-NC groups exhibited altered nodal degree centrality and nodal efficiency in the right precentral gyrus. The disruptions of global network metrics (lambda, Lp) and the nodal metrics (degree centrality and nodal efficiency) in the right precentral gyrus were positively correlated with the MoCA scores in HTN-CI. NBS analysis demonstrated that decreased subnetwork connectivity was present both in the HTN-CI and HTN-NC groups, which were mainly involved in the default mode network, frontoparietal network, and cingulo-opercular network. CONCLUSION: This study demonstrated the alterations of topographical organization and subnetwork connectivity of functional brain networks in HTN-CI. In addition, the global and nodal network properties were correlated with cognitive scores, which may provide useful insights for the understanding of neuropsychological mechanisms underlying HTN-CI.


Assuntos
Disfunção Cognitiva , Hipertensão , Humanos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Mapeamento Encefálico , Hipertensão/complicações
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1082-1088, 2022 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-36575076

RESUMO

Epilepsy is a neurological disease with disordered brain network connectivity. It is important to analyze the brain network mechanism of epileptic seizure from the perspective of directed functional connectivity. In this paper, causal brain networks were constructed for different sub-bands of epileptic electroencephalogram (EEG) signals in interictal, preictal and ictal phases by directional transfer function method, and the information transmission pathway and dynamic change process of brain network under different conditions were analyzed. Finally, the dynamic changes of characteristic attributes of brain networks with different rhythms were analyzed. The results show that the topology of brain network changes from stochastic network to rule network during the three stage and the node connections of the whole brain network show a trend of gradual decline. The number of pathway connections between internal nodes of frontal, temporal and occipital regions increase. There are a lot of hub nodes with information outflow in the lesion region. The global efficiency in ictal stage of α, ß and γ waves are significantly higher than in the interictal and the preictal stage. The clustering coefficients in preictal stage are higher than in the ictal stage and the clustering coefficients in ictal stage are higher than in the interictal stage. The clustering coefficients of frontal, temporal and parietal lobes are significantly increased. The results of this study indicate that the topological structure and characteristic properties of epileptic causal brain network can reflect the dynamic process of epileptic seizures. In the future, this study has important research value in the localization of epileptic focus and prediction of epileptic seizure.


Assuntos
Epilepsia , Humanos , Encéfalo , Convulsões , Eletroencefalografia , Lobo Occipital
9.
Neuroimage ; 245: 118688, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34758381

RESUMO

Very preterm infants (born at less than 32 weeks gestational age) are at high risk for serious motor impairments, including cerebral palsy (CP). The brain network changes that antecede the early development of CP in infants are not well characterized, and a better understanding may suggest new strategies for risk-stratification at term, which could lead to earlier access to therapies. Graph theoretical methods applied to diffusion MRI-derived brain connectomes may help quantify the organization and information transfer capacity of the preterm brain with greater nuance than overt structural or regional microstructural changes. Our aim was to shed light on the pathophysiology of early CP development, before the occurrence of early intervention therapies and other environmental confounders, to help identify the best early biomarkers of CP risk in VPT infants. In a cohort of 395 very preterm infants, we extracted cortical morphometrics and brain volumes from structural MRI and also applied graph theoretical methods to diffusion MRI connectomes, both acquired at term-equivalent age. Metrics from graph network analysis, especially global efficiency, strength values of the major sensorimotor tracts, and local efficiency of the motor nodes and novel non-motor regions were strongly inversely related to early CP diagnosis. These measures remained significantly associated with CP after correction for common risk factors of motor development, suggesting that metrics of brain network efficiency at term may be sensitive biomarkers for early CP detection. We demonstrate for the first time that in VPT infants, early CP diagnosis is anteceded by decreased brain network segregation in numerous nodes, including motor regions commonly-associated with CP and also novel regions that may partially explain the high rate of cognitive impairments concomitant with CP diagnosis. These advanced MRI biomarkers may help identify the highest risk infants by term-equivalent age, facilitating earlier interventions that are informed by early pathophysiological changes.


Assuntos
Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/fisiopatologia , Conectoma/métodos , Lactente Extremamente Prematuro , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Triagem Neonatal , Fatores de Risco
10.
Hum Brain Mapp ; 42(6): 1888-1909, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534925

RESUMO

Demanding cognitive functions like working memory (WM) depend on functional brain networks being able to communicate efficiently while also maintaining some degree of modularity. Evidence suggests that aging can disrupt this balance between integration and modularity. In this study, we examined how cognitive training affects the integration and modularity of functional networks in older and younger adults. Twenty three younger and 23 older adults participated in 10 days of verbal WM training, leading to performance gains in both age groups. Older adults exhibited lower modularity overall and a greater decrement when switching from rest to task, compared to younger adults. Interestingly, younger but not older adults showed increased task-related modularity with training. Furthermore, whereas training increased efficiency within, and decreased participation of, the default-mode network for younger adults, it enhanced efficiency within a task-specific salience/sensorimotor network for older adults. Finally, training increased segregation of the default-mode from frontoparietal/salience and visual networks in younger adults, while it diffusely increased between-network connectivity in older adults. Thus, while younger adults increase network segregation with training, suggesting more automated processing, older adults persist in, and potentially amplify, a more integrated and costly global workspace, suggesting different age-related trajectories in functional network reorganization with WM training.


Assuntos
Envelhecimento/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Prática Psicológica , Adolescente , Adulto , Fatores Etários , Idoso , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
11.
Aust N Z J Psychiatry ; 55(6): 577-587, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33322919

RESUMO

BACKGROUND: Working memory deficits are a common feature in major depressive disorder and are associated with poor functional outcomes. Intact working memory performance requires the recruitment of large-scale brain networks. However, it is unknown how the disrupted recruitment of distributed regions belonging to these large-scale networks at the whole-brain level brings about working memory impairment seen in major depressive disorder. METHODS: We used graph theory to examine the functional connectomic metrics (local and global efficiency) at the whole-brain and large-scale network levels in 38 patients with major depressive disorder and 41 healthy controls during a working memory task. Altered connectomic metrics were studied in a moderation model relating to clinical symptoms and working memory accuracy in patients, and a machine learning method was employed to assess whether these metrics carry enough illness-specific information to discriminate patients from controls. RESULTS: Global efficiency of the frontoparietal network was reduced in major depressive disorder (false discovery rate corrected, p = 0.014); this reduction predicted worse working memory performance in patients with less severe illness burden indexed by Brief Psychiatric Rating Scale (ß =-0.43, p = 0.035, t =-2.2, 95% confidence interval = [-0.043,-0.002]). We achieved a classification accuracy and area under the curve of 73.42% and 0.734, respectively, to discriminate patients from controls based on connectomic metrics, and the global efficiency of the frontoparietal network contributed most to the diagnostic classification. CONCLUSIONS: We report a putative mechanistic link between the global efficiency of the frontoparietal network and impaired n-back performance in major depressive disorder. This relationship is more pronounced at lower levels of symptom burden, indicating the possibility of multiple pathways to cognitive deficits in severe major depressive disorder.


Assuntos
Conectoma , Transtorno Depressivo Maior , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Transtornos da Memória , Memória de Curto Prazo
12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(3): 389-398, 2020 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-32597079

RESUMO

Anxiety disorder is a common emotional handicap, which seriously affects the normal life of patients and endangers their physical and mental health. The prefrontal cortex is a key brain region which is responsible for anxiety. Action potential and behavioral data of rats in the elevated plus maze (EPM) during anxiety (an innate anxiety paradigm) can be obtained simultaneously by using the in vivo and in conscious animal multi-channel microelectrode array recording technique. Based on maximum likelihood estimation (MLE), the action potential causal network was established, network connectivity strength and global efficiency were calculated, and action potential causal network connectivity pattern of the medial prefrontal cortex was quantitatively characterized. We found that the entries (44.13±6.99) and residence period (439.76±50.43) s of rats in the closed arm of the elevated plus maze were obviously higher than those in the open arm [16.50±3.25, P<0.001; (160.23±48.22) s, P<0.001], respectively. The action potential causal network connectivity strength (0.017 3±0.003 6) and the global efficiency (0.044 2±0.012 8) in the closed arm were both higher than those in the open arm (0.010 4±0.003 2, P<0.01; 0.034 8±0.011 4, P<0.001), respectively. The results suggest that the changes of action potential causal network in the medial prefrontal cortex are related to anxiety state. These data could provide support for the study of the brain network mechanism in prefrontal cortex during anxiety.


Assuntos
Ansiedade , Córtex Pré-Frontal , Potenciais de Ação , Animais , Ansiedade/fisiopatologia , Transtornos de Ansiedade , Humanos , Córtex Pré-Frontal/fisiopatologia , Ratos
13.
Neuroimage ; 199: 336-341, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31176832

RESUMO

The relationship between the topological characteristics of the white matter (WM) network have been shown to be related to neural development, intelligence, and various diseases; however, few studies have been conducted to explore the relationship between topological characteristics of the WM network and cerebral metabolism. In a recent study we investigated the relationship between WM network topological and metabolic metrics of the cerebral parenchyma in healthy volunteers using the newly developed T2-relaxation-under-spin-tagging (TRUST) magnetic resonance imaging technique and graph theory approaches. Ninety-six healthy adults (25.5 ±â€¯1.8 years of age) were recruited as volunteers in the current study. The cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction, and the global topological metrics of the WM network (global efficiency [Eglob], local efficiency, and small-worldliness) were assessed. A stepwise multiple linear regression model was estimated. CMRO2 was entered as the dependent variable. The topological and demographic parameters (age, gender, FIQ, SBP, gray matter volume, and WM volume) were entered as independent variables in the model. The final performing models were comprised of predictors of Eglob, FIQ, and age (adjusted R2 values were 0.489 [L-AAL] and 0.424 [H-1024]). Our study initially revealed a relationship between Eglob and cerebral oxygen metabolism in healthy young adults.


Assuntos
Cérebro , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Substância Branca , Adulto , Cérebro/anatomia & histologia , Cérebro/diagnóstico por imagem , Cérebro/metabolismo , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Consumo de Oxigênio/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Adulto Jovem
14.
Hum Brain Mapp ; 38(6): 3069-3080, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342260

RESUMO

Functional magnetic resonance imaging (fMRI) studies have shown that neural activity fluctuates spontaneously between different states of global synchronization over a timescale of several seconds. Such fluctuations generate transient states of high and low correlation across distributed cortical areas. It has been hypothesized that such fluctuations in global efficiency might alter patterns of activity in local neuronal populations elicited by changes in incoming sensory stimuli. To test this prediction, we used a linear decoder to discriminate patterns of neural activity elicited by face and motion stimuli presented periodically while participants underwent time-resolved fMRI. As predicted, decoding was reliably higher during states of high global efficiency than during states of low efficiency, and this difference was evident across both visual and nonvisual cortical regions. The results indicate that slow fluctuations in global network efficiency are associated with variations in the pattern of activity across widespread cortical regions responsible for representing distinct categories of visual stimulus. More broadly, the findings highlight the importance of understanding the impact of global fluctuations in functional connectivity on specialized, stimulus driven neural processes. Hum Brain Mapp 38:3069-3080, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto , Face , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Dinâmica não Linear , Oxigênio/sangue , Fatores de Tempo
15.
Hum Brain Mapp ; 36(8): 2980-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25950288

RESUMO

The aim of this study was to assess whether mild cognitive impairment (MCI) is associated with disruption in large-scale structural networks in newly diagnosed, drug-naïve patients with Parkinson's disease (PD). Graph theoretical analyses were applied to 3T MRI data from 123 PD patients and 56 controls from the Parkinson's progression markers initiative (PPMI). Thirty-three patients were classified as having Parkinson's disease with mild cognitive impairment (PD-MCI) using the Movement Disorders Society Task Force criteria, while the remaining 90 PD patients were classified as cognitively normal (PD-CN). Global measures (clustering coefficient, characteristic path length, global efficiency, small-worldness) and regional measures (regional clustering coefficient, regional efficiency, hubs) were assessed in the structural networks that were constructed based on cortical thickness and subcortical volume data. PD-MCI patients showed a marked reduction in the average correlation strength between cortical and subcortical regions compared with controls. These patients had a larger characteristic path length and reduced global efficiency in addition to a lower regional efficiency in frontal and parietal regions compared with PD-CN patients and controls. A reorganization of the highly connected regions in the network was observed in both groups of patients. This study shows that the earliest stages of cognitive decline in PD are associated with a disruption in the large-scale coordination of the brain network and with a decrease of the efficiency of parallel information processing. These changes are likely to signal further cognitive decline and provide support to the role of aberrant network topology in cognitive impairment in patients with early PD.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Mapeamento Encefálico , Disfunção Cognitiva/etiologia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Doença de Parkinson/complicações
16.
Sci Rep ; 14(1): 14573, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914649

RESUMO

The concept of functional localization within the brain and the associated risk of resecting these areas during removal of infiltrating tumors, such as diffuse gliomas, are well established in neurosurgery. Global efficiency (GE) is a graph theory concept that can be used to simulate connectome disruption following tumor resection. Structural connectivity graphs were created from diffusion tractography obtained from the brains of 80 healthy adults. These graphs were then used to simulate parcellation resection in every gross anatomical region of the cerebrum by identifying every possible combination of adjacent nodes in a graph and then measuring the drop in GE following nodal deletion. Progressive removal of brain parcellations led to patterns of GE decline that were reasonably predictable but had inter-subject differences. Additionally, as expected, there were deletion of some nodes that were worse than others. However, in each lobe examined in every subject, some deletion combinations were worse for GE than removing a greater number of nodes in a different region of the brain. Among certain patients, patterns of common nodes which exhibited worst GE upon removal were identified as "connectotypes". Given some evidence in the literature linking GE to certain aspects of neuro-cognitive abilities, investigating these connectotypes could potentially mitigate the impact of brain surgery on cognition.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Humanos , Masculino , Feminino , Adulto , Encéfalo/cirurgia , Encéfalo/diagnóstico por imagem , Conectoma , Pessoa de Meia-Idade , Neoplasias Encefálicas/cirurgia , Procedimentos Neurocirúrgicos/métodos , Adulto Jovem
17.
Biosystems ; 235: 105101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101726

RESUMO

INTRODUCTION: Despite its complexity, deciphering nodal interaction is imperative to understanding a neural network. Network interaction is an even more complicated topic that must be addressed. This study aimed to examine the relationship between the brain waves of two canonical brain structures, i.e., the frontoparietal and limbic compartments, during a resting state. METHODS: Electroencephalography (EEG) of 51 subjects in eye-closed condition was analyzed, and the eLORETA method was applied to convert the signals from the scalp to the brain. By way of community detection, representative neural nodes and the associated mean activities were retrieved. Total and lagged coherences were computed to indicate functional connectivity between those neural nodes. Two global network properties were elucidated based on the connectivity measures, i.e., global efficiency and mean functional connectivity strength. The temporal correlation of the global network indices between the two studied networks was explored. RESULTS: It was found that there was a significant trend of positive correlation across the four metrics (lagged vs. total coherence x global efficiency vs. average connectivity). In other words, when the neural interaction in the FP network was stronger, so did that in the limbic network, and vice versa. Notably, the above interaction was not spectrally specific and only existed at a finer temporal scale (under hundreds of milliseconds level). CONCLUSION: The concordant change in network properties indicates an intricate balance between FP and LM compartments. Possible mechanisms and implications for the findings are discussed.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Eletroencefalografia/métodos
18.
Front Neurosci ; 17: 1131862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937674

RESUMO

Objective: The ability of motor-inhibitory control is critical in daily life. The physiological mechanisms underlying motor inhibitory control deficits remain to be elucidated. Beta band oscillations have been suggested to be related to motor performance, but whether they relate to motor-inhibitory control remains unclear. This study is aimed at systematically investigating the relationship between beta band oscillations and motor-inhibitory control to determine whether beta band oscillations were related to the ability of motor-inhibitory control. Methods: We studied 30 healthy young adults (age: 21.6 ± 1.5 years). Stop-signal reaction time (SSRT) was derived from stop signal task, indicating the ability of motor-inhibitory control. Resting-state electroencephalography (EEG) was recorded for 12 min. Beta band power and functional connectivity (including global efficiency) were calculated. Correlations between beta band oscillations and SSRT were performed. Results: Beta band EEG power in left and right motor cortex (MC), right somatosensory cortex (SC), and right inferior frontal cortex (IFC) was positively correlated with SSRT (P's = 0.031, 0.021, 0.045, and 0.015, respectively). Beta band coherence between bilateral MC, SC, and IFC was also positively correlated with SSRT (P's < 0.05). Beta band global efficiency was positively correlated with SSRT (P = 0.01). Conclusion: This is the first study to investigate the relationship between resting-state cortical beta oscillations and response inhibition. Our findings revealed that individuals with better ability of motor inhibitory control tend to have less cortical beta band power and functional connectivity. This study has clinical significance on the underlying mechanisms of motor inhibitory control deficits.

19.
J Affect Disord ; 329: 225-234, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858265

RESUMO

BACKGROUND: A recent study revealed disrupted topological organization of whole-brain networks in patients with major depressive disorder (MDD); however, these results were mostly driven by recurrent MDD patients, rather than first-episode drug-naïve (FEDN) patients. Furthermore, few longitudinal studies have explored the effects of antidepressant therapy on the topological organization of whole-brain networks. METHODS: We collected clinical and neuroimaging data from 159 FEDN MDD patients and 152 normal controls (NCs). A total of 115 MDD patients completed an eight-week antidepressant treatment procedure. Topological features of brain networks were calculated using graph theory-based methods and compared between FEDN MDD patients and NCs, as well as before and after treatment. RESULTS: Decreased global efficiency, local efficiency, small-worldness, and modularity were found in pretreatment FEDN MDD patients compared with NCs. Nodal degrees, betweenness, and efficiency decreased in several networks compared with NCs. After antidepressant treatment, the global efficiency increased, while the local efficiency, the clustering coefficient of the network, the path length, and the normalized characteristic path length decreased. Moreover, the reduction rate of the normalized characteristic path length was positively correlated with the reduction rate of retardation factor scores. LIMITATIONS: The interaction effects of groups and time on the topological features were not explored because of absence of the eighth-week data of NC group. CONCLUSIONS: The topological architecture of functional brain networks is disrupted in FEDN MDD patients. After antidepressant therapy, the global efficiency shifted toward recovery, but the local efficiency deteriorated, suggesting a correlation between recovery of retardation symptoms and global efficiency.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Antidepressivos/uso terapêutico
20.
Clin Neurophysiol ; 151: 74-82, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216715

RESUMO

OBJECTIVE: Familial Adult Myoclonic Epilepsy (FAME) presents with action-activated myoclonus, often associated with epilepsy, sharing various features with Progressive Myoclonic Epilepsy (PMEs), but with slower course and limited motor disability. We aimed our study to identify measures suitable to explain the different severity of FAME2 compared to EPM1, the most common PME, and to detect the signature of the distinctive brain networks. METHODS: We analyzed the EEG-EMG coherence (CMC) during segmental motor activity and indexes of connectivity in the two patient groups, and in healthy subjects (HS). We also investigated the regional and global properties of the network. RESULTS: In FAME2, differently from EPM1, we found a well-localized distribution of beta-CMC and increased betweenness-centrality (BC) on the sensorimotor region contralateral to the activated hand. In both patient groups, compared to HS, there was a decline in the network connectivity indexes in the beta and gamma band, which was more obvious in FAME2. CONCLUSIONS: In FAME2, better localized CMC and increased BC in comparison with EPM1 patients could counteract the severity and the spreading of the myoclonus. Decreased indexes of cortical integration were more severe in FAME2. SIGNIFICANCE: Our measures correlated with different motor disabilities and identified distinctive brain network impairments.


Assuntos
Pessoas com Deficiência , Epilepsias Mioclônicas , Transtornos Motores , Epilepsias Mioclônicas Progressivas , Mioclonia , Síndrome de Unverricht-Lundborg , Humanos , Adulto , Eletroencefalografia , Eletromiografia , Epilepsias Mioclônicas Progressivas/genética , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA