RESUMO
Microbial communities enmeshed in a matrix of macromolecules, termed as biofilms, are the natural setting of bacteria. Exopolysaccharide is a critical matrix component of biofilms. Here, we focus on biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen can adapt to a wide range of environments and can form biofilms or aggregates in a variety of surfaces or environments, such as the lungs of people with cystic fibrosis, catheters, wounds, and contact lenses. The ability to synthesize multiple exopolysaccharides is one of the advantages that facilitate bacterial survival in different environments. P. aeruginosa can produce several exopolysaccharides, including alginate, Psl, Pel, and lipopolysaccharide. In this review, we highlight the roles of each exopolysaccharide in P. aeruginosa biofilm development and how bacteria coordinate the biosynthesis of multiple exopolysaccharides and bacterial motility. In addition, we present advances in antibiofilm strategies targeting matrix exopolysaccharides, with a focus on glycoside hydrolases.
Assuntos
Polissacarídeos Bacterianos , Pseudomonas aeruginosa , Biofilmes , Humanos , Pseudomonas aeruginosa/metabolismoRESUMO
In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.
Assuntos
Alcaloides , Asclepias , Besouros , Animais , Herbivoria , Adaptação Fisiológica , Besouros/fisiologia , Cardenolídeos/química , Asclepias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Drosophila/metabolismoRESUMO
Sialic acids are commonly found on the terminal ends of biologically important carbohydrates, including intestinal mucin O-linked glycans. Pathogens such as Clostridium perfringens, the causative agent of necrotic enteritis in poultry and humans, have the ability to degrade host mucins and colonize the mucus layer, which involves removal of the terminal sialic acid by carbohydrate-active enzymes (CAZymes). Here, we present the structural and biochemical characterization of the GH33 catalytic domains of the three sialidases of C. perfringens and probe their substrate specificity. The catalytically active domains, which we refer to as NanHGH33, NanJGH33, and NanIGH33, displayed differential activity on various naturally occurring forms of sialic acid. We report the X-ray crystal structures of these domains in complex with relevant sialic acid variants revealing the molecular basis of how each catalytic domain accommodates different sialic acids. NanHGH33 displays a distinct preference for α-2,3-linked sialic acid, but can process α-2,6-linked sialic acid. NanJGH33 and NanIGH33 both exhibit the ability to process α-2,3- and α-2,6-linked sialic acid without any significant apparent preference. All three enzymes were sensitive to generic and commercially available sialidase inhibitors, which impeded sialidase activity in cultures as well as the growth of C. perfringens on sialylated glycans. The knowledge gained in these studies can be applied to in vivo models for C. perfringens growth and metabolism of mucin O-glycans, with a view toward future mitigation of bacterial colonization and infection of intestinal tissues.
RESUMO
Mixed-linkage ß(1,3)/ß(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a ß(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of ß-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.
Assuntos
Grão Comestível , Microbioma Gastrointestinal , beta-Glucanas , Humanos , beta-Glucanas/metabolismo , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Prevotella/metabolismo , Prevotella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genéticaRESUMO
The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.
Assuntos
Proteínas de Bactérias , Glicosídeo Hidrolases , Imunoglobulina G , Modelos Moleculares , Streptococcus pyogenes , Humanos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Streptococcus pyogenes/enzimologia , Especificidade por Substrato , Estrutura Quaternária de ProteínaRESUMO
Glycosylation is a predominant strategy plants use to fine-tune the properties of small molecule metabolites to affect their bioactivity, transport, and storage. It is also important in biotechnology and medicine as many glycosides are utilized in human health. Small molecule glycosylation is largely carried out by family 1 glycosyltransferases. Here, we report a structural and biochemical investigation of UGT95A1, a family 1 GT enzyme from Pilosella officinarum that exhibits a strong, unusual regiospecificity for the 3'-O position of flavonoid acceptor substrate luteolin. We obtained an apo crystal structure to help drive the analyses of a series of binding site mutants, revealing that while most residues are tolerant to mutations, key residues M145 and D464 are important for overall glycosylation activity. Interestingly, E347 is crucial for maintaining the strong preference for 3'-O glycosylation, while R462 can be mutated to increase regioselectivity. The structural determinants of regioselectivity were further confirmed in homologous enzymes. Our study also suggests that the enzyme contains large, highly dynamic, disordered regions. We showed that while most disordered regions of the protein have little to no implication in catalysis, the disordered regions conserved among investigated homologs are important to both the overall efficiency and regiospecificity of the enzyme. This report represents a comprehensive in-depth analysis of a family 1 GT enzyme with a unique substrate regiospecificity and may provide a basis for enzyme functional prediction and engineering.
Assuntos
Glicosiltransferases , Glicosilação , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Especificidade por Substrato , Flavonoides/metabolismo , Flavonoides/química , Cristalografia por Raios X , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sítios de Ligação , Luteolina/química , Luteolina/metabolismo , Modelos Moleculares , Conformação ProteicaRESUMO
Purple carrot accumulates anthocyanins modified with galactose, xylose, glucose, and sinapic acid. Most of the genes associated with anthocyanin biosynthesis have been identified, except for the glucosyltransferase genes involved in the step before the acylation in purple carrot. Anthocyanins are commonly glycosylated in reactions catalyzed by UDP-sugar-dependent glycosyltransferases (UGTs). Although many studies have been conducted on UGTs, the glucosylation of carrot anthocyanins remains unknown. Acyl-glucose-dependent glucosyltransferase activity modifying cyanidin 3-xylosylgalactoside was detected in the crude protein extract prepared from purple carrot cultured cells. In addition, the corresponding enzyme was purified. The cDNA encoding this glucosyltransferase was isolated based on the partial amino acid sequence of the purified protein. The recombinant protein produced in Nicotiana benthamiana leaves via agroinfiltration exhibited anthocyanin glucosyltransferase activity. This glucosyltransferase belongs to the glycoside hydrolase family 3 (GH3). The expression pattern of the gene encoding this GH3-type anthocyanin glucosyltransferase was consistent with anthocyanin accumulation in carrot tissues and cultured cells.
Assuntos
Antocianinas , Daucus carota , Proteínas de Plantas , Daucus carota/genética , Daucus carota/metabolismo , Daucus carota/enzimologia , Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/enzimologia , Glicosilação , Regulação da Expressão Gênica de Plantas , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sequência de AminoácidosRESUMO
Hydrolyzable tannins (HTs), a class of polyphenolic compounds found in dicotyledonous plants, are widely used in food and pharmaceutical industries because of their beneficial effects on human health. Although the biosynthesis of simple HTs has been verified at the enzymatic level, relevant genes have not yet been identified. Here, based on the parent ion-fragment ion pairs in the feature fragment data obtained using UPLC-Q-TOF-/MS/MS, galloyl phenolic compounds in the leaves of Camellia sinensis and C. oleifera were analyzed qualitatively and quantitatively. Correlation analysis between the transcript abundance of serine carboxypeptidase-like acyltransferases (SCPL-ATs) and the peak area of galloyl products in Camellia species showed that SCPL3 expression was highly correlated with HT biosynthesis. Enzymatic verification of the recombinant protein showed that CoSCPL3 from C. oleifera catalyzed the four consecutive steps involved in the conversion of digalloylglucose to pentagalloylglucose. We also identified the residues affecting the enzymatic activity of CoSCPL3 and determined that SCPL-AT catalyzes the synthesis of galloyl glycosides. The findings of this study provide a target gene for germplasm innovation of important cash crops that are rich in HTs, such as C. oleifera, strawberry, and walnut.
Assuntos
Aciltransferases , Camellia , Carboxipeptidases , Taninos Hidrolisáveis , Proteínas de Plantas , Camellia/genética , Camellia/enzimologia , Camellia/metabolismo , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Taninos Hidrolisáveis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/enzimologia , Espectrometria de Massas em TandemRESUMO
The major nutrients available to the human colonic microbiota are complex glycans derived from the diet. To degrade this highly variable mix of sugar structures, gut microbes have acquired a huge array of different carbohydrate-active enzymes (CAZymes), predominantly glycoside hydrolases, many of which have specificities that can be exploited for a range of different applications. Plant N-glycans are prevalent on proteins produced by plants and thus components of the diet, but the breakdown of these complex molecules by the gut microbiota has not been explored. Plant N-glycans are also well characterized allergens in pollen and some plant-based foods, and when plants are used in heterologous protein production for medical applications, the N-glycans present can pose a risk to therapeutic function and stability. Here we use a novel genome association approach for enzyme discovery to identify a breakdown pathway for plant complex N-glycans encoded by a gut Bacteroides species and biochemically characterize five CAZymes involved, including structures of the PNGase and GH92 α-mannosidase. These enzymes provide a toolbox for the modification of plant N-glycans for a range of potential applications. Furthermore, the keystone PNGase also has activity against insect-type N-glycans, which we discuss from the perspective of insects as a nutrient source.
Assuntos
Bacteroides , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Humanos , Plantas/metabolismo , Polissacarídeos/metabolismo , Açúcares/metabolismo , alfa-Manosidase/metabolismoRESUMO
Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.
Assuntos
Doença de Gaucher , Glucosilceramidase , Doença de Parkinson , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/análise , Glucosilceramidase/genética , Humanos , Corpos de Lewy/enzimologia , Doença por Corpos de Lewy/enzimologia , Lisossomos/enzimologia , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Especificidade por Substrato , alfa-Sinucleína/metabolismoRESUMO
Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.
Assuntos
Akkermansia , Trissacarídeos , alfa-L-Fucosidase , Lactente , Humanos , Akkermansia/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Filogenia , Oligossacarídeos/metabolismo , beta-Galactosidase/genéticaRESUMO
The glycoside hydrolase family 55 (GH55) includes inverting exo-ß-1,3-glucosidases and endo-ß-1,3-glucanases, acting on laminarin, which is a ß1-3/1-6-glucan consisting of a ß1-3/1-6-linked main chain and ß1-6-linked branches. Despite their different modes of action toward laminarin, endo-ß-1,3-glucanases share with exo-ß-1,3-glucosidases conserved residues that form the dead-end structure of subsite -1. Here, we investigated the mechanism of endo-type action on laminarin by GH55 endo-ß-1,3-glucanase MnLam55A, identified from Microdochium nivale. MnLam55A, like other endo-ß-1,3-glucanases, degraded internal ß-d-glucosidic linkages of laminarin, producing more reducing sugars than the sum of d-glucose and gentiooligosaccharides detected. ß1-3-Glucans lacking ß1-6-linkages in the main chain were not hydrolyzed. NMR analysis of the initial degradation of laminarin revealed that MnLam55A preferentially cleaved the nonreducing terminal ß1-3-linkage of the laminarioligosaccharide moiety at the reducing end side of the main chain ß1-6-linkage. MnLam55A liberates d-glucose from laminaritriose and longer laminarioligosaccharides, but kcat/Km values to laminarioligosaccharides (≤4.21 s-1 mM-1) were much lower than to laminarin (5920 s-1 mM-1). These results indicate that ß-glucan binding to the minus subsites of MnLam55A, including exclusive binding of the gentiobiosyl moiety to subsites -1 and -2, is required for high hydrolytic activity. A crystal structure of MnLam55A, determined at 2.4 Å resolution, showed that MnLam55A adopts an overall structure and catalytic site similar to those of exo-ß-1,3-glucosidases. However, MnLam55A possesses an extended substrate-binding cleft that is expected to form the minus subsites. Sequence comparison suggested that other endo-type enzymes share the extended cleft. The specific hydrolysis of internal linkages in laminarin is presumably common to GH55 endo-ß-1,3-glucanases.
Assuntos
Glicosídeo Hidrolases , beta-Glucanas , Glucanos/metabolismo , Glucose , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Especificidade por SubstratoRESUMO
Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.
Assuntos
Cálcio , Celulase , Cálcio/metabolismo , Domínio Catalítico , Celulase/química , Celulase/metabolismo , Celulose/química , Celulose/metabolismo , Especificidade por Substrato , Ligantes , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Domínios ProteicosRESUMO
Sulfation is widespread in nature and plays an important role in modulating biological function. Among the strategies developed by microbes to access sulfated oligosaccharides as a nutrient source is the production of 6-sulfoGlcNAcases to selectively release 6-sulfoGlcNAc from target oligosaccharides. Thus far, all 6-sulfoGlcNAcases identified have belonged to the large GH20 family of ß-hexosaminidases. Ηere, we identify and characterize a new, highly specific non-GH20 6-sulfoGlcNAcase from Streptococcus pneumoniae TIGR4, Sp_0475 with a greater than 110,000-fold preference toward N-acetyl-ß-D-glucosamine-6-sulfate substrates over the nonsulfated version. Sp_0475 shares distant sequence homology with enzymes of GH20 and with the newly formed GH163 family. However, the sequence similarity between them is sufficiently low that Sp_0475 has been assigned as the founding member of a new glycoside hydrolase family, GH185. By combining results from site-directed mutagenesis with mechanistic studies and bioinformatics we provide insight into the substrate specificity, mechanism, and key active site residues of Sp_0475. Enzymes of the GH185 family follow a substrate-assisted mechanism, consistent with their distant homology to the GH20 family, but the catalytic residues involved are quite different. Taken together, our results highlight in more detail how microbes can degrade sulfated oligosaccharides for nutrients.
RESUMO
Intestinal mucous layers mediate symbiosis and dysbiosis of host-microbe interactions. These interactions are influenced by the mucin O-glycan degrading ability of several gut microbes. The identities and prevalence of many glycoside hydrolases (GHs) involved in microbial mucin O-glycan breakdown have been previously reported; however, the exact mechanisms and extent to which these GHs are dedicated to mucin O-glycan degradation pathways warrant further research. Here, using Bifidobacterium bifidum as a model mucinolytic bacterium, we revealed that two ß-N-acetylglucosaminidases belonging to the GH20 (BbhI) and GH84 (BbhIV) families play important roles in mucin O-glycan degradation. Using substrate specificity analysis of natural oligosaccharides and O-glycomic analysis of porcine gastric mucin (PGM) incubated with purified enzymes or B. bifidum carrying bbhI and/or bbhIV mutations, we showed that BbhI and BbhIV are highly specific for ß-(1â3)- and ß-(1â6)-GlcNAc linkages of mucin core structures, respectively. Interestingly, we found that efficient hydrolysis of the ß-(1â3)-linkage by BbhI of the mucin core 4 structure [GlcNAcß1-3(GlcNAcß1-6)GalNAcα-O-Thr] required prior removal of the ß-(1â6)-GlcNAc linkage by BbhIV. Consistent with this, inactivation of bbhIV markedly decreased the ability of B. bifidum to release GlcNAc from PGM. When combined with a bbhI mutation, we observed that the growth of the strain on PGM was reduced. Finally, phylogenetic analysis suggests that GH84 members may have gained diversified functions through microbe-microbe and host-microbe horizontal gene transfer events. Taken together, these data strongly suggest the involvement of GH84 family members in host glycan breakdown.
Assuntos
Acetilglucosaminidase , Proteínas de Bactérias , Bifidobacterium bifidum , Mucinas , Animais , Acetilglucosaminidase/química , Acetilglucosaminidase/metabolismo , Proteínas de Bactérias/metabolismo , Bifidobacterium bifidum/classificação , Bifidobacterium bifidum/enzimologia , Bifidobacterium bifidum/genética , Mucinas/metabolismo , Filogenia , SuínosRESUMO
Dextran is an α-(1â6)-glucan that is synthesized by some lactic acid bacteria, and branched dextran with α-(1â2)-, α-(1â3)-, and α-(1â4)-linkages are often produced. Although many dextranases are known to act on the α-(1â6)-linkage of dextran, few studies have functionally analyzed the proteins involved in degrading branched dextran. The mechanism by which bacteria utilize branched dextran is unknown. Earlier, we identified dextranase (FjDex31A) and kojibiose hydrolase (FjGH65A) in the dextran utilization locus (FjDexUL) of a soil Bacteroidota Flavobacterium johnsoniae and hypothesized that FjDexUL is involved in the degradation of α-(1â2)-branched dextran. In this study, we demonstrate that FjDexUL proteins recognize and degrade α-(1â2)- and α-(1â3)-branched dextrans produced by Leuconostoc citreum S-32 (S-32 α-glucan). The FjDexUL genes were significantly upregulated when S-32 α-glucan was the carbon source compared with α-glucooligosaccharides and α-glucans, such as linear dextran and branched α-glucan from L. citreum S-64. FjDexUL glycoside hydrolases synergistically degraded S-32 α-glucan. The crystal structure of FjGH66 shows that some sugar-binding subsites can accommodate α-(1â2)- and α-(1â3)-branches. The structure of FjGH65A in complex with isomaltose supports that FjGH65A acts on α-(1â2)-glucosyl isomaltooligosaccharides. Furthermore, two cell surface sugar-binding proteins (FjDusD and FjDusE) were characterized, and FjDusD showed an affinity for isomaltooligosaccharides and FjDusE for dextran, including linear and branched dextrans. Collectively, FjDexUL proteins are suggested to be involved in the degradation of α-(1â2)- and α-(1â3)-branched dextrans. Our results will be helpful in understanding the bacterial nutrient requirements and symbiotic relationships between bacteria at the molecular level.
Assuntos
Dextranos , Flavobacterium , Lactobacillales , Polissacarídeos Bacterianos , Dextranos/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Lactobacillales/metabolismo , Flavobacterium/metabolismo , Polissacarídeos Bacterianos/metabolismoRESUMO
Dihydrochalcones (DHCs) including phlorizin (phloretin 2'-O-glucoside) and its positional isomer trilobatin (phloretin 4'-O-glucoside) are the most abundant phenylpropanoids in apple (Malus spp.). Transcriptional regulation of DHC production is poorly understood despite their importance in insect- and pathogen-plant interactions in human physiology research and in pharmaceuticals. In this study, segregation in hybrid populations and bulked segregant analysis showed that the synthesis of phlorizin and trilobatin in Malus leaves are both single-gene-controlled traits. Promoter sequences of PGT1 and PGT2, two glycosyltransferase genes involved in DHC glycoside synthesis, were shown to discriminate Malus with different DHC glycoside patterns. Differential PGT1 and PGT2 promoter activities determined DHC glycoside accumulation patterns between genotypes. Two transcription factors containing MYB-like DNA-binding domains were then shown to control DHC glycoside patterns in different tissues, with PRR2L mainly expressed in leaf, fruit, flower, stem, and seed while MYB8L mainly expressed in stem and root. Further hybridizations between specific genotypes demonstrated an absolute requirement for DHC glycoside production in Malus during seed development which explains why no Malus spp. with a null DHC chemotype have been reported.
Assuntos
Malus , Humanos , Malus/genética , Florizina , Fatores de Transcrição/genética , Floretina , Sementes/genética , Glucosídeos , Regulação da Expressão Gênica de PlantasRESUMO
Bacteria possess diverse metabolic and genetic processes, resulting in the inability of certain bacteria to degrade trehalose. However, some bacteria do have the capability to degrade trehalose, utilizing it as a carbon source, and for defense against environmental stress. Trehalose, a disaccharide, serves as a carbon source for many bacteria, including some that are vital for pathogens. The degradation of trehalose is carried out by enzymes like trehalase (EC 3.2.1.28) and trehalose phosphorylase (EC 2.4.1.64/2.4.1.231), which are classified under the glycoside hydrolase families GH37, GH15, and GH65. Numerous studies and reports have explored the physiological functions, recombinant expression, enzymatic characteristics, and potential applications of these enzymes. However, further research is still being conducted to understand their roles in bacteria. This review aims to provide a comprehensive summary of the current understanding of trehalose degradation pathways in various bacteria, focusing on three key areas: (i) identifying different trehalose-degrading enzymes in Gram-positive and Gram-negative bacteria, (ii) elucidating the mechanisms employed by trehalose-degrading enzymes belonging to the glycoside hydrolases GH37, GH15, and GH65, and (iii) discussing the potential applications of these enzymes in different sectors. Notably, this review emphasizes the bacterial trehalose-degrading enzymes, specifically trehalases (GH37, GH15, and GH65) and trehalose phosphorylases (GH65), in both Gram-positive and Gram-negative bacteria, an aspect that has not been highlighted before.
Assuntos
Glucosiltransferases , Trealase , Trealose , Humanos , Trealose/metabolismo , Trealase/genética , Trealase/metabolismo , Antibacterianos , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Bactérias/metabolismo , CarbonoRESUMO
Interactions between proteins and glycans are critical to various biological processes. With databases of carbohydrate-interacting proteins and increasing amounts of structural data, the three-sided right-handed ß-helix (RHBH) has emerged as a significant structural fold for glycan interactions. In this review, we provide an overview of the sequence, mechanistic, and structural features that enable the RHBH to interact with glycans. The RHBH is a prevalent fold that exists in eukaryotes, prokaryotes, and viruses associated with adhesin and carbohydrate-active enzyme (CAZyme) functions. An evolutionary trajectory analysis on structurally characterized RHBH-containing proteins shows that they likely evolved from carbohydrate-binding proteins with their carbohydrate-degrading activities evolving later. By examining three polysaccharide lyase and three glycoside hydrolase structures, we provide a detailed view of the modes of glycan binding in RHBH proteins. The 3-dimensional shape of the RHBH creates an electrostatically and spatially favorable glycan binding surface that allows for extensive hydrogen bonding interactions, leading to favorable and stable glycan binding. The RHBH is observed to be an adaptable domain capable of being modified with loop insertions and charge inversions to accommodate heterogeneous and flexible glycans and diverse reaction mechanisms. Understanding this prevalent protein fold can advance our knowledge of glycan binding in biological systems and help guide the efficient design and utilization of RHBH-containing proteins in glycobiology research.
Assuntos
Polissacarídeos , Polissacarídeos/metabolismo , Polissacarídeos/química , Humanos , Dobramento de Proteína , Modelos MolecularesRESUMO
Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.