Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38426320

RESUMO

Protein subcellular localization (PSL) is very important in order to understand its functions, and its movement between subcellular niches within cells plays fundamental roles in biological process regulation. Mass spectrometry-based spatio-temporal proteomics technologies can help provide new insights of protein translocation, but bring the challenge in identifying reliable protein translocation events due to the noise interference and insufficient data mining. We propose a semi-supervised graph convolution network (GCN)-based framework termed TransGCN that infers protein translocation events from spatio-temporal proteomics. Based on expanded multiple distance features and joint graph representations of proteins, TransGCN utilizes the semi-supervised GCN to enable effective knowledge transfer from proteins with known PSLs for predicting protein localization and translocation. Our results demonstrate that TransGCN outperforms current state-of-the-art methods in identifying protein translocations, especially in coping with batch effects. It also exhibited excellent predictive accuracy in PSL prediction. TransGCN is freely available on GitHub at https://github.com/XuejiangGuo/TransGCN.


Assuntos
Capacidades de Enfrentamento , Proteômica , Mineração de Dados , Espectrometria de Massas , Transporte Proteico
2.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494887

RESUMO

The early diagnosis of autism spectrum disorder (ASD) has been extensively facilitated through the utilization of resting-state fMRI (rs-fMRI). With rs-fMRI, the functional brain network (FBN) has gained much attention in diagnosing ASD. As a promising strategy, graph convolutional networks (GCN) provide an attractive approach to simultaneously extract FBN features and facilitate ASD identification, thus replacing the manual feature extraction from FBN. Previous GCN studies primarily emphasized the exploration of topological simultaneously connection weights of the estimated FBNs while only focusing on the single connection pattern. However, this approach fails to exploit the potential complementary information offered by different connection patterns of FBNs, thereby inherently limiting the performance. To enhance the diagnostic performance, we propose a multipattern graph convolution network (MPGCN) that integrates multiple connection patterns to improve the accuracy of ASD diagnosis. As an initial endeavor, we endeavored to integrate information from multiple connection patterns by incorporating multiple graph convolution modules. The effectiveness of the MPGCN approach is evaluated by analyzing rs-fMRI scans from a cohort of 92 subjects sourced from the publicly accessible Autism Brain Imaging Data Exchange database. Notably, the experiment demonstrates that our model achieves an accuracy of 91.1% and an area under ROC curve score of 0.9742. The implementation codes are available at https://github.com/immutableJackz/MPGCN.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Curva ROC
3.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35323894

RESUMO

While the technologies of ribonucleic acid-sequence (RNA-seq) and transcript assembly analysis have continued to improve, a novel topology of RNA transcript was uncovered in the last decade and is called circular RNA (circRNA). Recently, researchers have revealed that they compete with messenger RNA (mRNA) and long noncoding for combining with microRNA in gene regulation. Therefore, circRNA was assumed to be associated with complex disease and discovering the relationship between them would contribute to medical research. However, the work of identifying the association between circRNA and disease in vitro takes a long time and usually without direction. During these years, more and more associations were verified by experiments. Hence, we proposed a computational method named identifying circRNA-disease association based on graph representation learning (iGRLCDA) for the prediction of the potential association of circRNA and disease, which utilized a deep learning model of graph convolution network (GCN) and graph factorization (GF). In detail, iGRLCDA first derived the hidden feature of known associations between circRNA and disease using the Gaussian interaction profile (GIP) kernel combined with disease semantic information to form a numeric descriptor. After that, it further used the deep learning model of GCN and GF to extract hidden features from the descriptor. Finally, the random forest classifier is introduced to identify the potential circRNA-disease association. The five-fold cross-validation of iGRLCDA shows strong competitiveness in comparison with other excellent prediction models at the gold standard data and achieved an average area under the receiver operating characteristic curve of 0.9289 and an area under the precision-recall curve of 0.9377. On reviewing the prediction results from the relevant literature, 22 of the top 30 predicted circRNA-disease associations were noted in recent published papers. These exceptional results make us believe that iGRLCDA can provide reliable circRNA-disease associations for medical research and reduce the blindness of wet-lab experiments.


Assuntos
MicroRNAs , RNA Circular , Algoritmos , Biologia Computacional/métodos , MicroRNAs/genética , Curva ROC
4.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35907779

RESUMO

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.


Assuntos
RNA Circular , Neoplasias Gástricas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Aprendizado de Máquina , Neoplasias Gástricas/genética
5.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34849567

RESUMO

MOTIVATION: Understanding chemical-gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration. For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct predictions. RESULTS: We developed BioNet, a deep biological networkmodel with a graph encoder-decoder architecture. The graph encoder utilizes graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC) curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-19 by BioNet were verified by external curated data and published literature.


Assuntos
Biologia Computacional , Simulação por Computador , Modelos Biológicos , Redes Neurais de Computação
6.
Sensors (Basel) ; 24(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39123933

RESUMO

With the development of precision sensing instruments and data storage devices, the fusion of multi-sensor data in gearbox fault diagnosis has attracted much attention. However, existing methods have difficulty in capturing the local temporal dependencies of multi-sensor monitoring information, and the inescapable noise severely decreases the accuracy of multi-sensor information fusion diagnosis. To address these issues, this paper proposes a fault diagnosis method based on dynamic graph convolutional neural networks and hard threshold denoising. Firstly, considering that the relationships between monitoring data from different sensors change over time, a dynamic graph structure is adopted to model the temporal dependencies of multi-sensor data, and, further, a graph convolutional neural network is constructed to achieve the interaction and feature extraction of temporal information from multi-sensor data. Secondly, to avoid the influence of noise in practical engineering, a hard threshold denoising strategy is designed, and a learnable hard threshold denoising layer is embedded into the graph neural network. Experimental fault datasets from two typical gearbox fault test benches under environmental noise are used to verify the effectiveness of the proposed method in gearbox fault diagnosis. The experimental results show that the proposed DDGCN method achieves an average diagnostic accuracy of up to 99.7% under different levels of environmental noise, demonstrating good noise resistance.

7.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123903

RESUMO

The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.

8.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39066156

RESUMO

Semi-supervised graph convolutional networks (SSGCNs) have been proven to be effective in hyperspectral image classification (HSIC). However, limited training data and spectral uncertainty restrict the classification performance, and the computational demands of a graph convolution network (GCN) present challenges for real-time applications. To overcome these issues, a dual-branch fusion of a GCN and convolutional neural network (DFGCN) is proposed for HSIC tasks. The GCN branch uses an adaptive multi-scale superpixel segmentation method to build fusion adjacency matrices at various scales, which improves the graph convolution efficiency and node representations. Additionally, a spectral feature enhancement module (SFEM) enhances the transmission of crucial channel information between the two graph convolutions. Meanwhile, the CNN branch uses a convolutional network with an attention mechanism to focus on detailed features of local areas. By combining the multi-scale superpixel features from the GCN branch and the local pixel features from the CNN branch, this method leverages complementary features to fully learn rich spatial-spectral information. Our experimental results demonstrate that the proposed method outperforms existing advanced approaches in terms of classification efficiency and accuracy across three benchmark data sets.

9.
BMC Bioinformatics ; 24(1): 363, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759189

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a serious developmental disorder of the brain. Recently, various deep learning methods based on functional magnetic resonance imaging (fMRI) data have been developed for the classification of ASD. Among them, graph neural networks, which generalize deep neural network models to graph structured data, have shown great advantages. However, in graph neural methods, because the graphs constructed are homogeneous, the phenotype information of the subjects cannot be fully utilized. This affects the improvement of the classification performance. METHODS: To fully utilize the phenotype information, this paper proposes a heterogeneous graph convolutional attention network (HCAN) model to classify ASD. By combining an attention mechanism and a heterogeneous graph convolutional network, important aggregated features can be extracted in the HCAN. The model consists of a multilayer HCAN feature extractor and a multilayer perceptron (MLP) classifier. First, a heterogeneous population graph was constructed based on the fMRI and phenotypic data. Then, a multilayer HCAN is used to mine graph-based features from the heterogeneous graph. Finally, the extracted features are fed into an MLP for the final classification. RESULTS: The proposed method is assessed on the autism brain imaging data exchange (ABIDE) repository. In total, 871 subjects in the ABIDE I dataset are used for the classification task. The best classification accuracy of 82.9% is achieved. Compared to the other methods using exactly the same subjects in the literature, the proposed method achieves superior performance to the best reported result. CONCLUSIONS: The proposed method can effectively integrate heterogeneous graph convolutional networks with a semantic attention mechanism so that the phenotype features of the subjects can be fully utilized. Moreover, it shows great potential in the diagnosis of brain functional disorders with fMRI data.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Fenótipo
10.
BMC Bioinformatics ; 24(1): 476, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097930

RESUMO

The increasing body of research has consistently demonstrated the intricate correlation between the human microbiome and human well-being. Microbes can impact the efficacy and toxicity of drugs through various pathways, as well as influence the occurrence and metastasis of tumors. In clinical practice, it is crucial to elucidate the association between microbes and diseases. Although traditional biological experiments accurately identify this association, they are time-consuming, expensive, and susceptible to experimental conditions. Consequently, conducting extensive biological experiments to screen potential microbe-disease associations becomes challenging. The computational methods can solve the above problems well, but the previous computational methods still have the problems of low utilization of node features and the prediction accuracy needs to be improved. To address this issue, we propose the DAEGCNDF model predicting potential associations between microbes and diseases. Our model calculates four similar features for each microbe and disease. These features are fused to obtain a comprehensive feature matrix representing microbes and diseases. Our model first uses the graph convolutional network module to extract low-rank features with graph information of microbes and diseases, and then uses a deep sparse Auto-Encoder to extract high-rank features of microbe-disease pairs, after which the low-rank and high-rank features are spliced to improve the utilization of node features. Finally, Deep Forest was used for microbe-disease potential relationship prediction. The experimental results show that combining low-rank and high-rank features helps to improve the model performance and Deep Forest has better classification performance than the baseline model.


Assuntos
Algoritmos , Neoplasias , Humanos , Biologia Computacional/métodos
11.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33866354

RESUMO

Accurate predictions of druggability and bioactivities of compounds are desirable to reduce the high cost and time of drug discovery. After more than five decades of continuing developments, quantitative structure-activity relationship (QSAR) methods have been established as indispensable tools that facilitate fast, reliable and affordable assessments of physicochemical and biological properties of compounds in drug-discovery programs. Currently, there are mainly two types of QSAR methods, descriptor-based methods and graph-based methods. The former is developed based on predefined molecular descriptors, whereas the latter is developed based on simple atomic and bond information. In this study, we presented a simple but highly efficient modeling method by combining molecular graphs and molecular descriptors as the input of a modified graph neural network, called hyperbolic relational graph convolution network plus (HRGCN+). The evaluation results show that HRGCN+ achieves state-of-the-art performance on 11 drug-discovery-related datasets. We also explored the impact of the addition of traditional molecular descriptors on the predictions of graph-based methods, and found that the addition of molecular descriptors can indeed boost the predictive power of graph-based methods. The results also highlight the strong anti-noise capability of our method. In addition, our method provides a way to interpret models at both the atom and descriptor levels, which can help medicinal chemists extract hidden information from complex datasets. We also offer an HRGCN+'s online prediction service at https://quantum.tencent.com/hrgcn/.


Assuntos
Algoritmos , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Redes Neurais de Computação , Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Inteligência Artificial , Gráficos por Computador , Simulação por Computador , Desenho de Fármacos , Modelos Químicos , Estrutura Molecular , Compostos Orgânicos/farmacologia
12.
Sensors (Basel) ; 23(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37430892

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that causes gait abnormalities. Early and accurate recognition of PD gait is crucial for effective treatment. Recently, deep learning techniques have shown promising results in PD gait analysis. However, most existing methods focus on severity estimation and frozen gait detection, while the recognition of Parkinsonian gait and normal gait from the forward video has not been reported. In this paper, we propose a novel spatiotemporal modeling method for PD gait recognition, named WM-STGCN, which utilizes a Weighted adjacency matrix with virtual connection and Multi-scale temporal convolution in a Spatiotemporal Graph Convolution Network. The weighted matrix enables different intensities to be assigned to different spatial features, including virtual connections, while the multi-scale temporal convolution helps to effectively capture the temporal features at different scales. Moreover, we employ various approaches to augment skeleton data. Experimental results show that our proposed method achieved the best accuracy of 87.1% and an F1 score of 92.85%, outperforming Long short-term memory (LSTM), K-nearest neighbors (KNN), Decision tree, AdaBoost, and ST-GCN models. Our proposed WM-STGCN provides an effective spatiotemporal modeling method for PD gait recognition that outperforms existing methods. It has the potential for clinical application in PD diagnosis and treatment.


Assuntos
Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Análise da Marcha , Análise por Conglomerados , Memória de Longo Prazo
13.
J Environ Manage ; 342: 118283, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290307

RESUMO

Quantitative prediction by unmanned aerial vehicle (UAV) remote sensing on water quality parameters (WQPs) including phosphorus, nitrogen, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and chlorophyll a (Chl-a), total suspended solids (TSS), and turbidity provides a flexible and effective approach to monitor the variation in water quality. In this study, a deep learning-based method integrating graph convolution network (GCN), gravity model variant, and dual feedback machine involving parametric probability analysis and spatial distribution pattern analysis, named Graph Convolution Network with Superposition of Multi-point Effect (SMPE-GCN) has been developed to calculate concentrations of WQPs through UAV hyperspectral reflectance data on large scale efficiently. With an end-to-end structure, our proposed method has been applied to assisting environmental protection department to trace potential pollution sources in real time. The proposed method is trained on a real-world dataset and its effectiveness is validated on an equal amount of testing dataset with respect to three evaluation metrics including root of mean squared error (RMSE), mean absolute percent error (MAPE), and coefficient of determination (R2). The experimental results demonstrate that our proposed model achieves better performance in comparison with state-of-the-art baseline models in terms of RMSE, MAPE, and R2. The proposed method is applicable for quantifying seven various WQPs and has achieved good performance for each WQP. The resulting MAPE ranges from 7.16% to 10.96% and R2 ranges from 0.80 to 0.94 for all WQPs. This approach brings a novel and systematic insight into real-time quantitative water quality monitoring of urban rivers, and provides a unified framework for in-situ data acquisition, feature engineering, data conversion, and data modeling for further research. It provides fundamental support to assist environmental managers to efficiently monitor water quality of urban rivers.


Assuntos
Rios , Qualidade da Água , Clorofila A , Análise da Demanda Biológica de Oxigênio , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental/métodos
14.
Molecules ; 28(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375246

RESUMO

The core of large-scale drug virtual screening is to select the binders accurately and efficiently with high affinity from large libraries of small molecules in which non-binders are usually dominant. The binding affinity is significantly influenced by the protein pocket, ligand spatial information, and residue types/atom types. Here, we used the pocket residues or ligand atoms as the nodes and constructed edges with the neighboring information to comprehensively represent the protein pocket or ligand information. Moreover, the model with pre-trained molecular vectors performed better than the one-hot representation. The main advantage of DeepBindGCN is that it is independent of docking conformation, and concisely keeps the spatial information and physical-chemical features. Using TIPE3 and PD-L1 dimer as proof-of-concept examples, we proposed a screening pipeline integrating DeepBindGCN and other methods to identify strong-binding-affinity compounds. It is the first time a non-complex-dependent model has achieved a root mean square error (RMSE) value of 1.4190 and Pearson r value of 0.7584 in the PDBbind v.2016 core set, respectively, thereby showing a comparable prediction power with the state-of-the-art affinity prediction models that rely upon the 3D complex. DeepBindGCN provides a powerful tool to predict the protein-ligand interaction and can be used in many important large-scale virtual screening application scenarios.


Assuntos
Redes Neurais de Computação , Proteínas , Ligantes , Proteínas/química , Conformação Proteica , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica
15.
Entropy (Basel) ; 25(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37510043

RESUMO

Automatic modulation classification (AMC) of underwater acoustic communication signals is of great significance in national defense and marine military. Accurate modulation classification methods can make great contributions to accurately grasping the parameters and characteristics of enemy communication systems. While a poor underwater acoustic channel makes it difficult to classify the modulation types correctly. Feature extraction and deep learning methods have proven to be effective methods for the modulation classification of underwater acoustic communication signals, but their performance is still limited by the complex underwater communication environment. Graph convolution networks (GCN) can learn the graph structured information of the data, making it an effective method for processing structured data. To improve the stability and robustness of AMC in underwater channels, we combined the feature extraction and deep learning methods by fusing the multi-domain features and deep features using GCN. The proposed method takes the relationships among the different multi-domain features and deep features into account. Firstly, a feature graph was built using the properties of the features. Secondly, multi-domain features were extracted from the received signals and deep features were extracted from the signals using a deep neural network. Thirdly, we constructed the input of GCN using these features and the graph. Then, the multi-domain features and deep features were fused by the GCN. Finally, we classified the modulation types using the output of GCN by way of a softmax layer. We conducted the experiments on a simulated dataset and a real-world dataset, respectively. The results show that the AMC based on GCN can achieve a significant improvement in performance compared to the current state-of-the-art methods. Our approach is robust in underwater acoustic channels.

16.
BMC Bioinformatics ; 23(1): 257, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768792

RESUMO

BACKGROUND: Addressing the laborious nature of traditional biological experiments by using an efficient computational approach to analyze RNA-binding proteins (RBPs) binding sites has always been a challenging task. RBPs play a vital role in post-transcriptional control. Identification of RBPs binding sites is a key step for the anatomy of the essential mechanism of gene regulation by controlling splicing, stability, localization and translation. Traditional methods for detecting RBPs binding sites are time-consuming and computationally-intensive. Recently, the computational method has been incorporated in researches of RBPs. Nevertheless, lots of them not only rely on the sequence data of RNA but also need additional data, for example the secondary structural data of RNA, to improve the performance of prediction, which needs the pre-work to prepare the learnable representation of structural data. RESULTS: To reduce the dependency of those pre-work, in this paper, we introduce DeepPN, a deep parallel neural network that is constructed with a convolutional neural network (CNN) and graph convolutional network (GCN) for detecting RBPs binding sites. It includes a two-layer CNN and GCN in parallel to extract the hidden features, followed by a fully connected layer to make the prediction. DeepPN discriminates the RBP binding sites on learnable representation of RNA sequences, which only uses the sequence data without using other data, for example the secondary or tertiary structure data of RNA. DeepPN is evaluated on 24 datasets of RBPs binding sites with other state-of-the-art methods. The results show that the performance of DeepPN is comparable to the published methods. CONCLUSION: The experimental results show that DeepPN can effectively capture potential hidden features in RBPs and use these features for effective prediction of binding sites.


Assuntos
Redes Neurais de Computação , RNA , Sítios de Ligação , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
BMC Bioinformatics ; 23(1): 271, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820798

RESUMO

BACKGROUND: MircoRNAs (miRNAs) play a central role in diverse biological processes of Camellia sinensis var.assamica (CSA) through their associations with target mRNAs, including CSA growth, development and stress response. However, although the experiment methods of CSA miRNA-target identifications are costly and time-consuming, few computational methods have been developed to tackle the CSA miRNA-target association prediction problem. RESULTS: In this paper, we constructed a heterogeneous network for CSA miRNA and targets by integrating rich biological information, including a miRNA similarity network, a target similarity network, and a miRNA-target association network. We then proposed a deep learning framework of graph convolution networks with layer attention mechanism, named MTAGCN. In particular, MTAGCN uses the attention mechanism to combine embeddings of multiple graph convolution layers, employing the integrated embedding to score the unobserved CSA miRNA-target associations. DISCUSSION: Comprehensive experiment results on two tasks (balanced task and unbalanced task) demonstrated that our proposed model achieved better performance than the classic machine learning and existing graph convolution network-based methods. The analysis of these results could offer valuable information for understanding complex CSA miRNA-target association mechanisms and would make a contribution to precision plant breeding.


Assuntos
Camellia sinensis , MicroRNAs , Camellia sinensis/genética , Biologia Computacional/métodos , MicroRNAs/genética , Redes Neurais de Computação , Melhoramento Vegetal
18.
BMC Bioinformatics ; 23(Suppl 4): 560, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564705

RESUMO

BACKGROUND: Anticancer peptide (ACP) inhibits and kills tumor cells. Research on ACP is of great significance for the development of new drugs, and the prediction of ACPs and non-ACPs is the new hotspot. RESULTS: We propose a new machine learning-based method named GCNCPR-ACPs (a Graph Convolutional Neural Network Method based on collapse pooling and residual network to predict the ACPs), which automatically and accurately predicts ACPs using residual graph convolution networks, differentiable graph pooling, and features extracted using peptide sequence information extraction. The GCNCPR-ACPs method can effectively capture different levels of node attributes for amino acid node representation learning, GCNCPR-ACPs uses node2vec and one-hot embedding methods to extract initial amino acid features for ACP prediction. CONCLUSIONS: Experimental results of ten-fold cross-validation and independent validation based on different metrics showed that GCNCPR-ACPs significantly outperformed state-of-the-art methods. Specifically, the evaluation indicators of Matthews Correlation Coefficient (MCC) and AUC of our predicator were 69.5% and 90%, respectively, which were 4.3% and 2% higher than those of the other predictors, respectively, in ten-fold cross-validation. And in the independent test, the scores of MCC and SP were 69.6% and 93.9%, respectively, which were 37.6% and 5.5% higher than those of the other predictors, respectively. The overall results showed that the GCNCPR-ACPs method proposed in the current paper can effectively predict ACPs.


Assuntos
Aminoácidos , Projetos de Pesquisa , Sequência de Aminoácidos , Benchmarking , Armazenamento e Recuperação da Informação
19.
Brief Bioinform ; 21(3): 919-935, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31155636

RESUMO

Despite the fact that deep learning has achieved remarkable success in various domains over the past decade, its application in molecular informatics and drug discovery is still limited. Recent advances in adapting deep architectures to structured data have opened a new paradigm for pharmaceutical research. In this survey, we provide a systematic review on the emerging field of graph convolutional networks and their applications in drug discovery and molecular informatics. Typically we are interested in why and how graph convolution networks can help in drug-related tasks. We elaborate the existing applications through four perspectives: molecular property and activity prediction, interaction prediction, synthesis prediction and de novo drug design. We briefly introduce the theoretical foundations behind graph convolutional networks and illustrate various architectures based on different formulations. Then we summarize the representative applications in drug-related problems. We also discuss the current challenges and future possibilities of applying graph convolutional networks to drug discovery.


Assuntos
Biologia Computacional/métodos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos
20.
Anal Biochem ; 646: 114631, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227661

RESUMO

It is crucial to identify DDIs and explore their underlying mechanism (e.g., DDIs types) for polypharmacy safety. However, the detection of DDIs in assays is still time-consuming and costly, due to the need for experimental search over a large space of drug combinations. Thus, many computational methods have been developed to predict DDIs, most of them focusing on whether a drug interacts with another or not. And a few deep learning-based methods address a more realistic screening task for identifying various DDI types, but they assume a DDI only triggers one pharmacological effect, while a DDI can trigger more types of pharmacological effects. Thus, here we proposed a novel end-to-end deep learning-based method (called deepMDDI) for the Multi-label prediction of Drug-Drug Interactions. deepMDDI contains an encoder derived from relational graph convolutional networks and a tensor-like decoder to uniformly model interactions. deepMDDI is not only efficient for DDI transductive prediction, but also inductive prediction. The experimental results show that our model is superior to other state-of-the-art deep learning-based methods. We also validated the power of deepMDDI in the DDIs multi-label prediction and found several new valid DDIs in the case study. In conclusion, deepMDDI is beneficial to uncover the mechanism and regularity of DDIs.


Assuntos
Interações Medicamentosas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA