RESUMO
Picophytoplankton populations [Prochlorococcus, Synechococcus (SYN), and picoeukaryotes] are dominant primary producers in the open ocean and projected to become more important with climate change. Their fates can vary, however, with microbial food web complexities. In the California Current Ecosystem, picophytoplankton biomass and abundance peak in waters of intermediate productivity and decrease at higher production. Using experimental data from eight cruises crossing the pronounced CCE trophic gradient, we tested the hypothesis that these declines are driven by intensified grazing on heterotrophic bacteria (HBAC) passed to similarly sized picophytoplankton via shared predators. Results confirm previously observed distributions as well as significant increases in bacterial abundance, cell growth, and grazing mortality with primary production. Mortalities of picophytoplankton, however, diverge from the bacterial mortality trend such that relative grazing rates on SYN compared to HBAC decline by 12-fold between low and high productivity waters. The large shifts in mortality rate ratios for coexisting populations are not explained by size variability but rather suggest high selectivity of grazer assemblages or tightly coupled tradeoffs in microbial growth advantages and grazing vulnerabilities. These findings challenge the long-held view that protistan grazing mainly determines overall biomass of microbial communities while viruses uniquely regulate diversity by "killing the winners".
Assuntos
Ecossistema , Synechococcus , Biomassa , Cadeia Alimentar , Oceanos e Mares , Água do Mar/microbiologiaRESUMO
Diversity of feeding mechanisms is a hallmark of reef fishes, but the history of this variation is not fully understood. Here, we explore the emergence and proliferation of a biting mode of feeding, which enables fishes to feed on attached benthic prey. We find that feeding modes other than suction, including biting, ram biting, and an intermediate group that uses both biting and suction, were nearly absent among the lineages of teleost fishes inhabiting reefs prior to the end-Cretaceous mass extinction, but benthic biting has rapidly increased in frequency since then, accounting for about 40% of reef species today. Further, we measured the impact of feeding mode on body shape diversification in reef fishes. We fit a model of multivariate character evolution to a dataset comprising three-dimensional body shape of 1,530 species of teleost reef fishes across 111 families. Dedicated biters have accumulated over half of the body shape variation that suction feeders have in just 18% of the evolutionary time by evolving body shape â¼1.7 times faster than suction feeders. As a possible response to the ecological and functional diversity of attached prey, biters have dynamically evolved both into shapes that resemble suction feeders as well as novel body forms characterized by lateral compression and small jaws. The ascendance of species that use biting mechanisms to feed on attached prey reshaped modern reef fish assemblages and has been a major contributor to their ecological and phenotypic diversification.
Assuntos
Evolução Biológica , Recifes de Corais , Extinção Biológica , Comportamento Alimentar , Peixes , Somatotipos , Animais , Peixes/anatomia & histologia , Peixes/fisiologia , MasculinoRESUMO
Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.
Assuntos
Biomassa , Incêndios , Pradaria , Herbivoria , Animais , Poaceae/fisiologia , ÁfricaRESUMO
Dominant species occupy a pivotal role in plant community, influencing the structure and function of the ecosystem. The spatial distributions of dominant species can react to the effect of different grazing intensities, thereby reflecting their tolerance and adaptive strategies toward grazing. In this study, geostatistical methods were mainly used to study the spatial distribution characteristics of Stipa krylovii Roshev. and Leymus chinensis (Trin.) Tzvel. species at two interval scales (quadrat size 5 m × 5 m, 10 m × 10 m) and two treatments (free grazing, FG, 1.66 sheep·ha- 1·a- 1; control, CK, 0 sheep·ha- 1·a- 1) in typical steppe of Inner Mongolia. A systematic sampling method was used in each 100 m × 100 m representative sample plots to obtain the height, coverage, and density of all species in the community. The results showed that grazing altered the concentrated distribution of S. krylovii and the spatial mosaic distribution pattern of S. krylovii and L. chinensis while having no effect on the spatial clumped distribution of L. chinensis. It also found that the spatial distributions of dominant species are primarily affected by structural factors, and random factors such as long-term grazing led to a transition of S. krylovii from a concentrated distribution to a small patchy random pattern should not be overlooked. Our findings suggest that long-term grazing alters the spatial distribution pattern of dominant species and that adaptive strategies may be the key for maintaining the dominant role of structural factors.
Assuntos
Herbivoria , Herbivoria/fisiologia , Animais , China , Poaceae/fisiologia , Ovinos/fisiologia , Ecossistema , PradariaRESUMO
BACKGROUND: Grazing livestock emits methane through rumen intestinal activity, however, its impact on plant growth in grassland while grazing still has not been explored in detail. Therefore, the study examined the effects of methane pulse spray (MPS), according to grazing intensity, at four grazing intensities (0, 3.6, 5.0, and 6.5 sheep·hm- 2 yr- 1) on seed germination and seedling growth of common vetch (Vicia sativa), while two irrigation rates (35 and 53 ml d- 1) were employed to simulate the precipitation. RESULTS: The study revealed significant interactions between MPS and irrigation rate on seed germination and seedling growth parameters. Under moderate MPS intensities (0.74 and 1.04 mol m- 2), seed germination rate, potential, index, and vigor index improved, especially at higher irrigation rates (53 ml d- 1). Conversely, excessive MPS (1.33 mol m- 2) inhibited particularly at the germination rate and growth,. The seedling growth dynamics fitted a logistic model, with MPS advancing the rapid growth phase and increasing maximum growth rates. CONCLUSIONS: This study demonstrates that low to moderate levels of MPS from ruminants can promote seed germination and seedling growth of common vetch, while excessive MPS inhibits these processes. Irrigation enhances plant sensitivity to MPS, with wetter conditions (620 mm yr- 1) facilitating a more pronounced response. The findings introduce a new model elucidating plant responses to external perturbations, which can inform grazing management strategies in diverse ecosystems. In wetter regions, moderate grazing intensities may leverage MPS benefits, while arid regions require careful grazing regulation to maintain grassland-livestock balance.
Assuntos
Irrigação Agrícola , Germinação , Metano , Plântula , Sementes , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Metano/metabolismo , Irrigação Agrícola/métodos , Animais , Vicia sativa/crescimento & desenvolvimento , Vicia sativa/fisiologia , Ovinos/fisiologia , HerbivoriaRESUMO
Coherent X-ray imaging is an active field at synchrotron sources. The images rely on the available coherent flux over a limited field of view. At many synchrotron beamlines a double-crystal monochromator (DCM) is employed in a standard nondispersive arrangement. For coherent diffraction imaging it is advantageous to increase the available field of view by increasing the spatial coherence length (SCL) of a beam exiting such a DCM. Here, Talbot interferometry data together with ray-tracing simulations for a (+â -â -â +) four-reflection experimental arrangement are presented, wherein the first two reflections are in the DCM and the final fourth reflection is asymmetric at grazing exit. Analyses of the interferometry data combined with the simulations show that compared with the beam exiting the DCM a gain of 76% in the SCL was achieved, albeit with a factor of 20 reduction in flux density, which may not be a severe penalty at a synchrotron beamline. Previous efforts reported in the literature to increase the SCL that employed asymmetric crystal diffraction at grazing incidence are also discussed. A much reduced SCL is found presently in simulations wherein the same asymmetric crystal is set for grazing incidence instead of grazing exit. In addition, the present study is compared and contrasted with two other means of increasing the SCL. These are (i) focusing the beam onto an aperture to act as a secondary source, and (ii) allowing the beam to propagate in vacuum an additional distance along the beamline.
RESUMO
The SIRIUS beamline of Synchrotron SOLEIL is dedicated to X-ray scattering and spectroscopy of surfaces and interfaces, covering the tender to mid-hard X-ray range (1.1-13â keV). The beamline has hosted a wide range of experiments in the field of soft interfaces and beyond, providing various grazing-incidence techniques such as diffraction and wide-angle scattering (GIXD/GIWAXS), small-angle scattering (GISAXS) and X-ray fluorescence in total reflection (TXRF). SIRIUS also offers specific sample environments tailored for in situ complementary experiments on solid and liquid surfaces. Recently, the beamline has added compound refractive lenses associated with a transfocator, allowing for the X-ray beam to be focused down to 10â µm × 10â µm while maintaining a reasonable flux on the sample. This new feature opens up new possibilities for faster GIXD measurements at the liquid-air interface and for measurements on samples with narrow geometries.
RESUMO
In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14â MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented.
RESUMO
Grasslands are recognized as important reservoirs of soil biodiversity. Livestock grazing is implemented as a grassland management strategy to improve soil quality and enhance plant diversity. Soil microbial communities play a pivotal role in grassland ecosystems, so it is important to examine whether grazing practices affect the soil microbiome. Previous studies on grazing have primarily focused on bacteria and fungi, overlooking an important group-protists. Protists are vital in soil microbiomes as they drive nutrient availability and trophic interactions. Determining the impact of grazing on protists and their relationships with bacterial and fungal communities is important for understanding soil microbiome dynamics in grazed ecosystems. In this study, we investigated soil bacterial, fungal, and protist communities under four grazing levels: no grazing, moderate-use grazing, full-use grazing, and heavy-use grazing. Our results showed that heavy grazing led to a greater diversity of protists with specific groups, such as Discoba and Conosa, increasing in abundance. We also found strong associations between protist and bacterial/fungal members, indicating their intricate relationships within the soil microbiome. For example, the abundance of predatory protists increased under grazing while arbuscular mycorrhizal fungi decreased. Notably, arbuscular mycorrhizae were negatively associated with predatory groups. Furthermore, we observed that microbial network complexity increased with grazing intensity, with fungal members playing an important role in the network. Overall, our study reports the impact of temporal grazing intensity on soil microbial dynamics and highlights the importance of considering protist ecology when evaluating the effects of grazing on belowground communities in grassland ecosystems. IMPORTANCE: The significance of this study lies in its exploration of the effects of temporal grazing intensity on the dynamics of the soil microbiome, specifically focusing on the often-neglected role of protists. Our findings provide insights into the complex relationships between protists, bacteria, and fungi, emphasizing their impact on trophic interactions in the soil. Gaining a better understanding of these dynamics is essential for developing effective strategies for grassland management and conservation, underscoring the importance of incorporating protist ecology into microbiome studies in grasslands.
Assuntos
Bactérias , Fungos , Pradaria , Microbiota , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fungos/fisiologia , Fungos/classificação , Herbivoria , Eucariotos/fisiologia , Cadeia Alimentar , Gado , BiodiversidadeRESUMO
BACKGROUND: In this study, we investigated the effects of alpine meadow in different phenological periods on ruminal fermentation, serum biochemical indices, and gastrointestinal tract microbes in grazing yak on the Qinghai-Tibetan Plateau. A total of eighteen female freely grazing yaks with an average age of 3 years old and a body weight of 130 ± 19 kg were selected. According to the plant phenological periods, yaks were randomly allocated to one of three treatments: (1) regreen periods group (RP, n = 6); (2) grassy periods group (GP, n = 6); and (3) hay periods group (HP, n = 6). At the end of the experiment, the blood, rumen fluids, and rectal contents were collected to perform further analysis. RESULTS: The concentrations of total volatile fatty acid (TVFA), acetate, glucose (GLU), triglyceride (TG), cholesterol (CHO), high density lipoprotein (HDL), and low density lipoprotein (LDL) were higher in the GP group than in the HP group (P < 0.05). However, compared with the RP and GP groups, the HP group had higher concentrations of isobutyrate, isovalerate, valerate, and creatinine (CREA) (P < 0.05). The abundance of Prevotella in the rumen, and the abundances of Rikenellaceae_RC9_gut_group, Eubacterium_coprostanoligenes_group, and Prevotellaceae_UCG-004 in the gut were higher in the GP group compared with the HP group (P < 0.05). The HP had higher abundance of Eubacterium_coprostanoligenes_group in the rumen as well as the abundances of Romboutsia and Arthrobacter in the gut compared with the RP and GP groups (P < 0.05). CONCLUSIONS: Based on the results of rumen fermentation, serum biochemical, differential biomarkers, and function prediction, the carbohydrate digestion of grazing yak would be higher with the alpine meadow regreen and grassy due to the gastrointestinal tract microbes. However, the risk of microbe disorders and host inflammation in grazing yak were higher with the alpine meadow wither.
Assuntos
Pradaria , Rúmen , Animais , Bovinos , Bactérias/genética , Bacteroidetes , Fermentação , Trato Gastrointestinal , Rúmen/microbiologia , TibetRESUMO
Climate warming is severely affecting high-latitude regions. In the Arctic tundra, it may lead to enhanced soil nutrient availability and interact with simultaneous changes in grazing pressure. It is presently unknown how these concurrently occurring global change drivers affect the root-associated fungal communities, particularly mycorrhizal fungi, and whether changes coincide with shifts in plant mycorrhizal types. We investigated changes in root-associated fungal communities and mycorrhizal types of the plant community in a 10-yr factorial experiment with warming, fertilisation and grazing exclusion in a Finnish tundra grassland. The strongest determinant of the root-associated fungal community was fertilisation, which consistently increased potential plant pathogen abundance and had contrasting effects on the different mycorrhizal fungal types, contingent on other treatments. Plant mycorrhizal types went through pronounced shifts, with warming favouring ecto- and ericoid mycorrhiza but not under fertilisation and grazing exclusion. Combination of all treatments resulted in dominance by arbuscular mycorrhizal plants. However, shifts in plant mycorrhizal types vs fungi were mostly but not always aligned in their magnitude and direction. Our results show that our ability to predict shifts in symbiotic and antagonistic fungal communities depend on simultaneous consideration of multiple global change factors that jointly alter plant and fungal communities.
Assuntos
Fertilizantes , Pradaria , Herbivoria , Micorrizas , Tundra , Micorrizas/fisiologia , Herbivoria/fisiologia , Animais , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Plantas/microbiologia , Aquecimento Global , Fungos/fisiologiaRESUMO
Among options for atmospheric CO2 removal, sequestering soil organic carbon (SOC) via improved grazing management is a rare opportunity because it is scalable across millions of globally grazed acres, low cost, and has high technical potential. Decades of scientific research on grazing and SOC has failed to form a cohesive understanding of how grazing management affects SOC stocks and their distribution between particulate (POM) and mineral-associated organic matter (MAOM)-characterized by different formation and stabilization pathways-across different climatic contexts. As we increasingly look to grazing management for SOC sequestration on grazinglands to bolster our climate change mitigation efforts, we need a clear and collective understanding of grazing management's impact on pathways of SOC change to inform on-the-ground management decisions. We set out to review the effects of grazing management on SOC through a unified plant ecophysiology and soil biogeochemistry conceptual framework, where elements such as productivity, input quality, soil mineral capacity, and climate variables such as aridity co-govern SOC accumulation and distribution into POM and MAOM. To maximize applicability to grazingland managers, we discuss how common management levers that drive overall grazing pattern, including timing, intensity, duration, and frequency can be used to optimize mechanistic pathways of SOC sequestration. We discuss important research needs and measurement challenges, and highlight how our conceptual framework can inform more robust research with greater applicability for maximizing the use of grazing management to sequester SOC.
Assuntos
Carbono , Solo , Solo/química , Sequestro de Carbono , Mudança Climática , MineraisRESUMO
Many grassland ecosystems and their associated biodiversity depend on the interactions between fire and land-use, both of which are shaped by socioeconomic conditions. The Eurasian steppe biome, much of it situated in Kazakhstan, contains 10% of the world's remaining grasslands. The break-up of the Soviet Union in 1991, widespread land abandonment and massive declines in wild and domestic ungulates led to biomass accumulation over millions of hectares. This rapid fuel increase made the steppes a global fire hotspot, with major changes in vegetation structure. Yet, the response of steppe biodiversity to these changes remains unexplored. We utilized a unique bird abundance dataset covering the entire Kazakh steppe and semi-desert regions together with the MODIS burned area product. We modeled the response of bird species richness and abundance as a function of fire disturbance variables-fire extent, cumulative burned area, fire frequency-at varying grazing intensity. Bird species richness was impacted negatively by large fire extent, cumulative burned area, and high fire frequency in moderately grazed and ungrazed steppe. Similarly, overall bird abundance was impacted negatively by large fire extent, cumulative burned area and higher fire frequency in the moderately grazed steppe, ungrazed steppe, and ungrazed semi-deserts. At the species level, the effect of high fire disturbance was negative for more species than positive. There were considerable fire legacy effects, detectable for at least 8 years. We conclude that the increase in fire disturbance across the post-Soviet Eurasian steppe has led to strong declines in bird abundance and pronounced changes in community assembly. To gain back control over wildfires and prevent further biodiversity loss, restoration of wild herbivore populations and traditional domestic ungulate grazing systems seems much needed.
Assuntos
Aves , Ecossistema , Animais , Aves/fisiologia , Biodiversidade , Biomassa , Herbivoria , PradariaRESUMO
Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.
Assuntos
Ecossistema , Microbiota , Solo/química , Pradaria , Herbivoria , Nitrogênio , Microbiologia do Solo , CarbonoRESUMO
Formation of mineral-associated organic matter (MAOM) supports the accumulation and stabilization of carbon (C) in soil, and thus, is a key factor in the global C cycle. Little is known about the interplay of mineral type, land use and management intensity in MAOM formation, especially on subdecadal time scales. We exposed mineral containers with goethite or illite, the most abundant iron oxide and phyllosilicate clay in temperate soils, for 5 years in topsoils of 150 forest and 150 grassland sites in three regions across Germany. Results show that irrespective of land use and management intensity, more C accumulated on goethite than illite (on average 0.23 ± 0.10 and 0.06 ± 0.03 mg m-2 mineral surface respectively). Carbon accumulation across regions was consistently higher in coniferous forests than in deciduous forests and grasslands. Structural equation models further showed that thinning and harvesting reduced MAOM formation in forests. Formation of MAOM in grasslands was not affected by grazing. Fertilization had opposite effects on MAOM formation, with the positive effect being mediated by enhanced plant productivity and the negative effect by reduced plant species richness. This highlights the caveat of applying fertilizers as a strategy to increase soil C stocks in temperate grasslands. Overall, we demonstrate that the rate and amount of MAOM formation in soil is primarily driven by mineral type, and can be modulated by land use and management intensity even on subdecadal time scales. Our results suggest that temperate soils dominated by oxides have a higher capacity to accumulate and store C than those dominated by phyllosilicate clays, even under circumneutral pH conditions. Therefore, adopting land use and management practices that increase C inputs into oxide-rich soils that are under their capacity to store C may offer great potential to enhance near-term soil C sequestration.
Assuntos
Compostos de Ferro , Minerais , Solo , Solo/química , Florestas , Carbono/químicaRESUMO
Climate and land-use change are key drivers of global change. Full-factorial field experiments in which both drivers are manipulated are essential to understand and predict their potentially interactive effects on the structure and functioning of grassland ecosystems. Here, we present 8 years of data on grassland dynamics from the Global Change Experimental Facility in Central Germany. On large experimental plots, temperature and seasonal patterns of precipitation are manipulated by superimposing regional climate model projections onto background climate variability. Climate manipulation is factorially crossed with agricultural land-use scenarios, including intensively used meadows and extensively used (i.e., low-intensity) meadows and pastures. Inter-annual variation of background climate during our study years was high, including three of the driest years on record for our region. The effects of this temporal variability far exceeded the effects of the experimentally imposed climate change on plant species diversity and productivity, especially in the intensively used grasslands sown with only a few grass cultivars. These changes in productivity and diversity in response to alterations in climate were due to immigrant species replacing the target forage cultivars. This shift from forage cultivars to immigrant species may impose additional economic costs in terms of a decreasing forage value and the need for more frequent management measures. In contrast, the extensively used grasslands showed weaker responses to both experimentally manipulated future climate and inter-annual climate variability, suggesting that these diverse grasslands are more resistant to climate change than intensively used, species-poor grasslands. We therefore conclude that a lower management intensity of agricultural grasslands, associated with a higher plant diversity, can stabilize primary productivity under climate change.
Assuntos
Agricultura , Mudança Climática , Pradaria , Alemanha , Agricultura/métodos , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Estações do Ano , Biodiversidade , Temperatura , Modelos ClimáticosRESUMO
Genotype-phenotype associations between the bovine genome and grazing behaviours measured over time and across contexts have been reported in the past decade, with these suggesting the potential for genetic control over grazing personalities in beef cattle. From the large array of metrics used to describe grazing personality behaviours (GP-behaviours), it is still unclear which ones are linked to specific genes. Our prior observational study has reported associations and trends towards associations between genotypes of the glutamate metabotropic receptor 5 gene (GRM5) and four GP-behaviours, yet the unbalanced representation of GRM5 genotypes occurring in observational studies may have limited the ability to detect associations. Here, we applied a subsampling technique to create a genotypically-balanced dataset in a quasi-manipulative experiment with free ranging cows grazing in steep and rugged terrain of New Zealand's South Island. Using quadratic discriminant analysis, two combinations of eleven GP-behaviours (and a total of fifteen behaviours) were selected to build an exploration model and an elevation model, respectively. Both models achieved â¼ 86% accuracy in correctly discriminating cows' GRM5 genotypes with the training dataset, and the exploration model achieved 85% correct genotype prediction of cows from a testing dataset. Our study suggests a potential pleiotropic effect, with GRM5 controlling multiple grazing behaviours, and with implications for the grazing of steep and rugged grasslands. The study highlights the importance of grazing behavioural genetics in cattle and the potential use of GRM5 markers to select individuals with desired grazing personalities and built herds that collectively utilize steep and rugged rangelands sustainably.
Assuntos
Regulação da Expressão Gênica , Glutamatos , Feminino , Animais , Bovinos/genética , Humanos , GenótipoRESUMO
Dinoflagellates are an abundant and diverse group of protists representing a wealth of unique biology and ecology. While many dinoflagellates are photosynthetic or mixotrophic, many taxa are heterotrophs, often with complex feeding strategies. Compared to their photosynthetic counterparts, heterotrophic dinoflagellates remain understudied, as they are difficult to culture. One exception, a long-cultured isolate originally classified as Amphidinium but recently reclassified as Oxytoxum, has been the subject of a number of feeding, growth, and chemosensory studies. This lineage was recently determined to be closely related to Prorocentrum using phylogenetics of ribosomal RNA gene sequences, but the exact nature of this relationship remains unresolved. Using transcriptomes sequenced from culture and three single cells from the environment, we produce a robust phylogeny of 242 genes, revealing Oxytoxum is likely sister to the Prorocentrum clade, rather than nested within it. Molecular investigations uncover evidence of a reduced, nonphotosynthetic plastid and proteorhodopsin, a photoactive proton pump acquired horizontally from bacteria. We describe the ultrastructure of O. lohmannii, including densely packed trichocysts, and a new type of mucocyst. We observe that O. lohmannii feeds preferentially on cryptophytes using myzocytosis, but can also feed on various phytoflagellates using conventional phagocytosis. O. lohmannii is amenable to culture, providing an opportunity to better study heterotrophic dinoflagellate biology and feeding ecology.
RESUMO
Humans have profoundly altered phosphorus (P) cycling across scales. Agriculturally driven changes (e.g., excessive P-fertilization and manure addition), in particular, have resulted in pronounced P accumulations in soils, often known as "soil legacy P." These legacy P reserves serve as persistent and long-term nonpoint sources, inducing downstream eutrophication and ecosystem services degradation. While there is considerable scientific and policy interest in legacy P, its fine-scale spatial heterogeneity, underlying drivers, and scales of variance remain unclear. Here we present an extensive field sampling (150-m interval grid) and analysis of 1438 surface soils (0-15 cm) in 2020 for two typical subtropical grassland types managed for livestock production: Intensively managed (IM) and Semi-natural (SN) pastures. We ask the following questions: (1) What is the spatial variability, and are there hotspots of soil legacy P? (2) Does soil legacy P vary primarily within pastures, among pastures, or between pasture types? (3) How does soil legacy P relate to pasture management intensity, soil and geographic characteristics? and (4) What is the relationship between soil legacy P and aboveground plant tissue P concentration? Our results showed that three measurements of soil legacy P (total P, Mehlich-1, and Mehlich-3 extractable P representing labile P pools) varied substantially across the landscape. Spatial autoregressive models revealed that soil organic matter, pH, available Fe and Al, elevation, and pasture management intensity were crucial predictors for spatial patterns of soil P, although models were more reliable for predicting total P (68.9%) than labile P. Our analysis further demonstrated that total variance in soil legacy P was greater in IM than SN pastures, and intensified pasture management rescaled spatial patterns of soil legacy P. In particular, after controlling for sample size, soil P was extremely variable at small scales, with variance diminished as spatial scale increased. Our results suggest that broad pasture- or farm-level best management practices may be limited and less efficient, especially for more IM pastures. Rather, management to curtail soil legacy P and mitigate P loading and losses should be implemented at fine scales designed to target spatially distinct P hotspots across the landscape.
Assuntos
Pradaria , Fósforo , Solo , Fósforo/análise , Solo/química , Monitoramento AmbientalRESUMO
Exotic annual grass invasion is a widespread threat to the integrity of sagebrush ecosystems in Western North America. Although many predictors of annual grass prevalence and native perennial vegetation have been identified, there remains substantial uncertainty about how regional-scale and local-scale predictors interact to determine vegetation heterogeneity, and how associations between vegetation and cattle grazing vary with environmental context. Here, we conducted a regionally extensive, one-season field survey across burned and unburned, grazed, public lands in Oregon and Idaho, with plots stratified by aspect and distance to water within pastures to capture variation in environmental context and grazing intensity. We analyzed regional-scale and local-scale patterns of annual grass, perennial grass, and shrub cover, and examined to what extent plot-level variation was contingent on pasture-level predictions of site favorability. Annual grasses were widespread at burned and unburned sites alike, contrary to assumptions of annual grasses depending on fire, and more common at lower elevations and higher temperatures regionally, as well as on warmer slopes locally. Pasture-level grazing pressure interacted with temperature such that annual grass cover was associated positively with grazing pressure at higher temperatures but associated negatively with grazing pressure at lower temperatures. This suggests that pasture-level temperature and grazing relationships with annual grass abundance are complex and context dependent, although the causality of this relationship deserves further examination. At the plot-level within pastures, annual grass cover did not vary with grazing metrics, but perennial cover did; perennial grasses, for example, had lower cover closer to water sources, but higher cover at higher dung counts within a pasture, suggesting contrasting interpretations of these two grazing proxies. Importantly for predictions of ecosystem response to temperature change, we found that pasture-level and plot-level favorability interacted: perennial grasses had a higher plot-level cover on cooler slopes, and this difference across topography was starkest in pastures that were less favorable for perennial grasses regionally. Understanding the mechanisms behind cross-scale interactions and contingent responses of vegetation to grazing in these increasingly invaded ecosystems will be critical to land management in a changing world.