RESUMO
Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translation with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication.
Assuntos
Biossíntese de Proteínas , Ribossomos , Axônios/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismoRESUMO
Diverse neuronal populations with distinct cellular morphologies coordinate the complex function of the nervous system. Establishment of distinct neuronal morphologies critically depends on signaling pathways that control axonal and dendritic development. The Sema3A-Nrp1/PlxnA4 signaling pathway promotes cortical neuron basal dendrite arborization but also repels axons. However, the downstream signaling components underlying these disparate functions of Sema3A signaling are unclear. Using the novel PlxnA4KRK-AAA knock-in male and female mice, generated by CRISPR/cas9, we show here that the KRK motif in the PlxnA4 cytoplasmic domain is required for Sema3A-mediated cortical neuron dendritic elaboration but is dispensable for inhibitory axon guidance. The RhoGEF FARP2, which binds to the KRK motif, shows identical functional specificity as the KRK motif in the PlxnA4 receptor. We find that Sema3A activates the small GTPase Rac1, and that Rac1 activity is required for dendrite elaboration but not axon growth cone collapse. This work identifies a novel Sema3A-Nrp1/PlxnA4/FARP2/Rac1 signaling pathway that specifically controls dendritic morphogenesis but is dispensable for repulsive guidance events. Overall, our results demonstrate that the divergent signaling output from multifunctional receptor complexes critically depends on distinct signaling motifs, highlighting the modular nature of guidance cue receptors and its potential to regulate diverse cellular responses.SIGNIFICANCE STATEMENT The proper formation of axonal and dendritic morphologies is crucial for the precise wiring of the nervous system that ultimately leads to the generation of complex functions in an organism. The Semaphorin3A-Neuropilin1/Plexin-A4 signaling pathway has been shown to have multiple key roles in neurodevelopment, from axon repulsion to dendrite elaboration. This study demonstrates that three specific amino acids, the KRK motif within the Plexin-A4 receptor cytoplasmic domain, are required to coordinate the downstream signaling molecules to promote Sema3A-mediated cortical neuron dendritic elaboration, but not inhibitory axon guidance. Our results unravel a novel Semaphorin3A-Plexin-A4 downstream signaling pathway and shed light on how the disparate functions of axon guidance and dendritic morphogenesis are accomplished by the same extracellular ligand in vivo.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dendritos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Semaforina-3A/metabolismoRESUMO
The degradation of the extracellular matrix plays an important role in the processes of morphogenesis, angio- and neurogenesis, wound healing, inflammation, carcinogenesis and others. The urokinase receptor uPAR is an important participant in processes that regulate extracellular proteolysis, cell adhesion to the extracellular matrix, cell migration along the chemokine gradient, proliferation and survival involving growth factor receptors. The presence of the GPI anchor and the absence of transmembrane and cytoplasmic domains in uPAR promote involvement of membrane partners for the realization of uPAR signal effects. In some studies, involvement of the fMLP chemokine receptor FPRL in the regulation of uPAR-dependent directed migration has been shown. Moreover, the migration of neural progenitors and their maturation into neurons during the formation of brain structures are regulated by chemokine receptors. Despite the data on the role of uPARin the processes of morphogenesis, little is known about the interactions between uPAR and chemokine receptors in guidance processes during nerve growth and regeneration. In the present work, it was shown for the first time that the soluble form of uPAR (suPAR) regulates the trajectory of axon outgrowth, and this effect does not depend on the presence of urokinase. It was also shown that regulation of the directed axon growth is based on the interaction of suPAR with the chemokine receptor FPRL1. These data show new mechanisms for the participation of the urokinase system in the regulation of axon guidance.
Assuntos
Crescimento Neuronal/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Orientação de Axônios/fisiologia , Movimento Celular , Matriz Extracelular/metabolismo , Humanos , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismoRESUMO
The formation of the nervous system is a multistep process that yields a mature brain. Failure in any of the steps of this process may cause brain malfunction. In the early stages of embryonic development, neural progenitors quickly proliferate and then, at a specific moment, differentiate into neurons or glia. Once they become postmitotic neurons, they migrate to their final destinations and begin to extend their axons to connect with other neurons, sometimes located in quite distant regions, to establish different neural circuits. During the last decade, it has become evident that Zic genes, in addition to playing important roles in early development (e.g., gastrulation and neural tube closure), are involved in different processes of late brain development, such as neuronal migration, axon guidance, and refinement of axon terminals. ZIC proteins are therefore essential for the proper wiring and connectivity of the brain. In this chapter, we review our current knowledge of the role of Zic genes in the late stages of neural circuit formation.
Assuntos
Família Multigênica/fisiologia , Rede Nervosa/embriologia , Neurogênese/fisiologia , Fatores de Transcrição , Dedos de Zinco/fisiologia , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Accurate perception of guidance cues is crucial for cell and axon migration. During initial navigation in the spinal cord, commissural axons are kept insensitive to midline repellents. Upon midline crossing in the floor plate, they switch on responsiveness to Slit and Semaphorin repulsive signals and are thus propelled away and prevented from crossing back. Whether and how the different midline repellents control specific aspects of this navigation remain to be elucidated. We set up a paradigm for live-imaging and super-resolution analysis of PlexinA1, Neuropilin-2, and Robo1/2 receptor dynamics during commissural growth cone navigation in chick and mouse embryos. We uncovered a remarkable program of sensitization to midline cues achieved by unique spatiotemporal sequences of receptor allocation at the growth-cone surface that orchestrates receptor-specific growth-cone behavior changes. This reveals post-translational mechanisms whereby coincident guidance signals are temporally resolved to allow the generation of specific guidance responses.