Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 108: 102871, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013336

RESUMO

A graft source for allogeneic hematopoietic stem cell transplantation is umbilical cord blood, which contains umbilical cord blood mononuclear cells (MNCs and mesenchymal stem cells, both an excellent source of extracellular microparticles (MPs). MPs act as cell communication mediators, which are implicated in reactive oxygen species formation or detoxification depending on their origin. Oxidative stress plays a crucial role in both the development of cancer and its treatment by triggering apoptotic mechanisms, in which CD34+ cells are implicated. The aim of this work is to investigate the oxidative stress status and the apoptosis of HL-60 and mononuclear cells isolated from umbilical cord blood (UCB) following a 24- and 48-hour exposure to CD34 + microparticles (CD34 + MPs). The activity of superoxide dismutase, glutathione reductase, and glutathione S-transferase, as well as lipid peroxidation in the cells, were employed as oxidative stress markers. A 24- and 48-hour exposure of leukemic and mononuclear cells to CD34 + -MPs resulted in a statistically significant increase in the antioxidant activity and lipid peroxidation in both cells types. Moreover, CD34 + MPs affect the expression of BCL2 and FAS and related proteins and downregulate the hematopoietic differentiation program in both HL-60 and mononuclear cells. Our results indicate that MPs through activation of antioxidant enzymes in both homozygous and nonhomozygous cells might serve as a means for graft optimization and enhancement.


Assuntos
Antígenos CD34 , Apoptose , Micropartículas Derivadas de Células , Sangue Fetal , Células-Tronco Hematopoéticas , Estresse Oxidativo , Humanos , Sangue Fetal/citologia , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Micropartículas Derivadas de Células/metabolismo , Células HL-60 , Peroxidação de Lipídeos , Leucócitos Mononucleares/metabolismo , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Cytotherapy ; 26(1): 63-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921725

RESUMO

INTRODUCTION: Previous studies have suggested that the tyrosine kinase receptor RET plays a significant role in the hematopoietic potential in mice and could also be used to expand cord-blood derived hematopoietic stem cells (HSCs). The role of RET in human iPSC-derived hematopoiesis has not been tested so far. METHODS: To test the implication of RET on the hematopoietic potential of iPSCs, we activated its pathway with the lentiviral overexpression of RETWT or RETC634Y mutation in normal iPSCs. An iPSC derived from a patient harboring the RETC634Y mutation (iRETC634Y) and its CRISPR-corrected isogenic control iPSC (iRETCTRL) were also used. The hematopoietic potential was tested using 2D cultures and evaluated regarding the phenotype and the clonogenic potential of generated cells. RESULTS: Hematopoietic differentiation from iPSCs with RET overexpression (WT or C634Y) led to a significant reduction in the number and in the clonogenic potential of primitive hematopoietic cells (CD34+/CD38-/CD49f+) as compared to control iPSCs. Similarly, the hematopoietic potential of iRETC634Y was reduced as compared to iRETCTRL. Transcriptomic analyses revealed a specific activated expression profile for iRETC634Y compared to its control with evidence of overexpression of genes which are part of the MAPK network with negative hematopoietic regulator activities. CONCLUSION: RET activation in iPSCs is associated with an inhibitory activity in iPSC-derived hematopoiesis, potentially related to MAPK activation.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Receptores Proteína Tirosina Quinases/metabolismo , Diferenciação Celular/genética , Hematopoese/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo
3.
BMC Biol ; 20(1): 141, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705990

RESUMO

BACKGROUND: DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs). RESULTS: We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19-/- and 23-/- lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19-/- and rather increased in exon 23-/- lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A-/- iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23-/- iHPCs in a syngeneic competitive differentiation assay. CONCLUSIONS: Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation-and exon 23-/- iHPCs even gained growth advantage-despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Animais , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Epigênese Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos
4.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163045

RESUMO

Understanding the emergence of lymphoid committed cells from multipotent progenitors (MPP) is a great challenge in hematopoiesis. To gain deeper insight into the dynamic expression changes associated with these transitions, we report the quantitative transcriptome of two MPP subsets and the common lymphoid progenitor (CLP). While the transcriptome is rather stable between MPP2 and MPP3, expression changes increase with differentiation. Among those, we found that pioneer lymphoid genes such as Rag1, Mpeg1, and Dntt are expressed continuously from MPP2. Others, such as CD93, are CLP specific, suggesting their potential use as new markers to improve purification of lymphoid populations. Notably, a six-transcription factor network orchestrates the lymphoid differentiation program. Additionally, we pinpointed 24 long intergenic-non-coding RNA (lincRNA) differentially expressed through commitment and further identified seven novel forms. Collectively, our approach provides a comprehensive landscape of coding and non-coding transcriptomes expressed during lymphoid commitment.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Hematopoese , Células Progenitoras Linfoides/citologia , RNA Longo não Codificante/genética , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Células Progenitoras Linfoides/química , Masculino , Camundongos , Análise de Sequência de RNA
5.
J Cell Physiol ; 235(3): 2080-2090, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31389001

RESUMO

In vitro generation of hematopoietic stem cells from pluripotent stem cells (PSCs) can be regarded as novel therapeutic approaches for replacing bone marrow transplantation without immune rejection or graft versus host disease. To date, many different approaches have been evaluated in terms of directing PSCs toward different hematopoietic cell types, yet, low efficiency and no function restrict the further hematopoietic differentiation study, our research aims to develop a three dimension (3D) hematopoietic differentiation approach that serves as recapitulation of embryonic development in vitro to a degree of complexity not achievable in a two dimension culture system. We first found that mouse PSCs could be efficiently induced to hematopoietic differentiation with an expression of hematopoietic makers, such as c-kit, CD41, and CD45 within self-assembling peptide hydrogel. Colony-forming cells assay results suggested mouse PSCs (mPSCs) could be differentiated into multipotential progenitor cells and 3D induction system derived hematopoietic colonies owned potential of differentiating into lymphocyte cells. In addition, in vivo animal transplantation experiment showed that mPSCs (CD45.2) could be embedded into nonobese diabetic/severe combined immunodeficiency mice (CD45.1) with about 3% engraftment efficiency after 3 weeks transplantation. This study demonstrated that we developed the 3D induction approach that could efficiently promote the hematopoietic differentiation of mPSCs in vitro and obtained the multipotential progenitors that possessed the short-term engraftment potential.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hidrogéis/administração & dosagem , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Ensaio de Unidades Formadoras de Colônias/métodos , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Pluripotentes/metabolismo
6.
J Cell Physiol ; 234(9): 16136-16147, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30740687

RESUMO

Distinct regions of the primitive streak (PS) have diverse potential to differentiate into several tissues, including the hematopoietic lineage originated from the posterior region of PS. Although various signaling pathways have been identified to promote the development of PS and its mesoderm derivatives, there is a large gap in our understanding of signaling pathways that regulate the hematopoietic fate of PS. Here, we defined the roles of Wnt, activin, and bone morphogenetic protein (BMP) signaling pathways in generating hematopoietic-fated PS from human pluripotent stem cells (hPSCs). We found that the synergistic balance of these signaling pathways was crucial for controlling the PS fate determination towards hematopoietic lineage via mesodermal progenitors. Although the induction of PS depends largely on the Wnt and activin signaling, the PS generated without BMP4 lacks the hematopoietic potential, indicating that the BMP signaling is necessary for the PS to acquire hematopoietic property. Appropriate levels of Wnt signaling is crucial for the development of PS and its specification to the hematopoietic lineage. Although the development of PS is less sensitive to activin or BMP signaling, the fate of PS to mesoderm progenitors and subsequent hematopoietic lineage is determined by appropriate levels of activin or BMP signaling. Collectively, our study demonstrates that Wnt, activin, and BMP signaling pathways play cooperative and distinct roles in regulating the fate determination of PS for hematopoietic development. Our understanding of the regulatory networks of hematopoietic-fated PS would provide important insights into early hematopoietic patterning and possible guidance for generating functional hematopoietic cells from hPSCs in vitro.

7.
Stem Cells ; 36(1): 55-64, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047185

RESUMO

Hematopoietic stem cells derived from pluripotent stem cells could be used as an alternative to bone marrow transplants. Deriving these has been a long-term goal for researchers. However, the success of these efforts has been limited with the cells produced able to engraft in the bone marrow of recipient animals only in very low numbers. There is evidence that defects in the migratory and homing capacity of the cells are due to mis-regulation of miRNA expression and are responsible for their failure to engraft. We compared the miRNA expression profile of hematopoietic progenitors derived from pluripotent stem cells to those derived from bone marrow and found that numerous miRNAs are too highly expressed in hematopoietic progenitors derived from pluripotent stem cells, and that most of these are inhibitors of epithelial-mesenchymal transition or metastasis (including miR-200b, miR-200c, miR-205, miR-148a, and miR-424). We hypothesize that the high expression of these factors, which promote an adherent phenotype, may be causing the defect in hematopoietic differentiation. However, inhibiting these miRNAs, individually or in multiplex, was insufficient to improve hematopoietic differentiation in vitro, suggesting that other miRNAs and/or genes may be involved in this process. Stem Cells 2018;36:55-64.


Assuntos
Transição Epitelial-Mesenquimal/genética , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Regulação para Baixo , Humanos
8.
Cell Biol Toxicol ; 33(3): 233-250, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28039590

RESUMO

Ten years have passed since the first publication announcing the generation of induced pluripotent stem cells (iPSCs). Issues related to ethics, immune rejection, and cell availability seemed to be solved following this breakthrough. The development of iPSC technology allows advances in in vitro cell differentiation for cell therapy purpose and other clinical applications. This review provides a perspective on the iPSC potential for cell therapies, particularly for hematological applications. We discuss the advances in in vitro hematopoietic differentiation, the possibilities to employ iPSC in hematology studies, and their potential clinical application in hematologic diseases. The generation of red blood cells and functional T cells and the genome editing technology applied to mutation correction are also covered. We highlight some of the requirements and obstacles to be overcome before translating these cells from research to the clinic, for instance, iPSC variability, genotoxicity, the differentiation process, and engraftment. Also, we evaluate the patent landscape and compile the clinical trials in the field of pluripotent stem cells. Currently, we know much more about iPSC than in 2006, but there are still challenges that must be solved. A greater understanding of molecular mechanisms underlying the generation of hematopoietic stem cells is necessary to produce suitable and transplantable hematopoietic stem progenitor cells from iPSC.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos
9.
Int J Mol Sci ; 18(1)2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098757

RESUMO

Primary Myelofibrosis (PMF) is a chronic Philadelphia-negative myeloproliferative neoplasm characterized by a skewed megakaryopoiesis and an overproduction of proinflammatory and profibrotic mediators that lead to the development of bone marrow (BM) fibrosis. Since we recently uncovered the upregulation of miR-34a-5p in PMF CD34+ hematopoietic progenitor cells (HPCs), in order to elucidate its role in PMF pathogenesis here we unravelled the effects of miR-34a-5p overexpression in HPCs. We showed that enforced expression of miR-34a-5p partially constrains proliferation and favours the megakaryocyte and monocyte/macrophage commitment of HPCs. Interestingly, we identified lymphoid enhancer-binding factor 1 (LEF1) and nuclear receptor subfamily 4, group A, member 2 (NR4A2) transcripts as miR-34a-5p-targets downregulated after miR-34a-5p overexpression in HPCs as well as in PMF CD34+ cells. Remarkably, the knockdown of NR4A2 in HPCs mimicked the antiproliferative effects of miR-34a-5p overexpression, while the silencing of LEF1 phenocopied the effects of miR-34a-5p overexpression on HPCs lineage choice, by favouring the megakaryocyte and monocyte/macrophage commitment. Collectively our data unravel the role of miR-34a-5p in HPCs fate decision and suggest that the increased expression of miR-34a-5p in PMF HPCs could be important for the skewing of megakaryopoiesis and the production of monocytes, that are key players in BM fibrosis in PMF patients.


Assuntos
Linhagem da Célula , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , MicroRNAs/metabolismo , Mielofibrose Primária/patologia , Antígenos CD34/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Células Clonais , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Megacariócitos/metabolismo , Megacariócitos/patologia , MicroRNAs/genética , Modelos Biológicos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Mielofibrose Primária/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Cell Tissue Res ; 365(1): 101-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26893154

RESUMO

The use of induced pluripotent stem cells (iPSCs) as a source of cells for cell-based therapy in regenerative medicine is hampered by the limited efficiency and safety of the reprogramming procedure and the low efficiency of iPSC differentiation to specialized cell types. Evidence suggests that iPSCs retain an epigenetic memory of their parental cells with a possible influence on their differentiation capacity in vitro. We reprogramme three cell types, namely human umbilical cord vein endothelial cells (HUVECs), endothelial progenitor cells (EPCs) and human dermal fibroblasts (HDFs), to iPSCs and compare their hematoendothelial differentiation capacity. HUVECs and EPCs were at least two-fold more efficient in iPSC reprogramming than HDFs. Both HUVEC- and EPC-derived iPSCs exhibited high potentiality toward endothelial cell differentiation compared with HDF-derived iPSCs. However, only HUVEC-derived iPSCs showed efficient differentiation to hematopoietic stem/progenitor cells. Examination of DNA methylation at promoters of hematopoietic and endothelial genes revealed evidence for the existence of epigenetic memory at the endothelial genes but not the hematopoietic genes in iPSCs derived from HUVECs and EPCs indicating that epigenetic memory involves an endothelial differentiation bias. Our findings suggest that endothelial cells and EPCs are better sources for iPSC derivation regarding their reprogramming efficiency and that the somatic cell type used for iPSC generation toward specific cell lineage differentiation is of importance.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Linhagem Celular , Separação Celular , Reprogramação Celular , Metilação de DNA/genética , Derme/citologia , Células Progenitoras Endoteliais/citologia , Fibroblastos , Humanos , Regiões Promotoras Genéticas/genética
11.
Cytotherapy ; 17(4): 344-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680303

RESUMO

The generation of hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) in vitro holds great potential for providing alternative sources of donor cells for clinical HSC transplantation. However, the low efficiency of current protocols for generating blood lineages and the dysfunction identified in hPSC-derived hematopoietic cells limit their use for full hematopoietic reconstitution in clinics. This review outlines the current understanding of in vitro hematopoietic differentiation from hPSCs, emphasizes the intrinsic and extrinsic molecular mechanisms that are attributed to the aberrant phenotype and function in hPSC-derived hematopoietic cells, pinpoints the current challenges to develop the truly functional HSCs from hPSCs for clinical applications and explores their potential solutions.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Humanos , Camundongos
12.
Blood Sci ; 6(3): e00197, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872911

RESUMO

DNA methylation plays a critical role in hematopoietic differentiation. Epimutation is a stochastic variation in DNA methylation that induces epigenetic heterogeneity. However, the effects of epimutations on normal hematopoiesis and hematopoietic diseases remain unclear. In this study, we developed a Julia package called EpiMut that enabled rapid and accurate quantification of epimutations. EpiMut was used to evaluate and provide an epimutation landscape in steady-state hematopoietic differentiation involving 13 types of blood cells ranging from hematopoietic stem/progenitor cells to mature cells. We showed that substantial genomic regions exhibited epigenetic variations rather than significant differences in DNA methylation levels between the myeloid and lymphoid lineages. Stepwise dynamics of epimutations were observed during the differentiation of each lineage. Importantly, we found that epimutation significantly enriched signals associated with lineage differentiation. Furthermore, epimutations in hematopoietic stem cells (HSCs) derived from various sources and acute myeloid leukemia were related to the function of HSCs and malignant cell disorders. Taken together, our study comprehensively documented an epimutation map and uncovered its important roles in human hematopoiesis, thereby offering insights into hematopoietic regulation.

13.
BMC Mol Cell Biol ; 25(1): 10, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523262

RESUMO

BACKGROUND: OP9 mouse stromal cell line has been widely used to induce differentiation of human embryonic stem cells (hESCs) into hematopoietic stem/progenitor cells (HSPCs). However, the whole co-culture procedure usually needs 14-18 days, including preparing OP9 cells at least 4 days. Therefore, the inefficient differentiation system is not appreciated. We aimed to optimize the culture conditions to improve differentiation efficiency. METHODS: In the experimental group, we set six different densities of OP9 cells and just cultured them for 24 h before co-culture, and in the control group, OP9 cells were cultured for 4 days to reach an overgrown state before co-culture. Then we compared the hematopoietic differentiation efficiency among them. RESULTS: OP9 cells were randomly assigned into two groups. In the experimental group, six different plated numbers of OP9 cells were cultured for 1 day before co-culture with hESCs. In contrast, in the control group, OP9 cells were cultured for 4 days at a total number of 3.1 × 104 cells/cm2 in a 6-well plate to reach an overgrown state before co-culture. Hematopoietic differentiation was evaluated with CD34 immunostaining, and compared between these two groups. We could not influence the differentiation efficiency of OP9 cells with a total number of 10.4 × 104 cells/cm2 in a 6-well plate which was cultured just for 1 day, followed by co-culture with hESCs. It reached the same differentiation efficiency 5 days earlier than the control group. CONCLUSION: The peak of CD34 + cells appeared 2 days earlier compared to the control group. A total number of 1.0 × 106 cells in a 6-well plate for OP9 cells was appropriate to have high differentiation efficiency.


Assuntos
Células-Tronco Hematopoéticas , Células Estromais , Animais , Camundongos , Humanos , Células Estromais/metabolismo , Diferenciação Celular , Técnicas de Cocultura , Células Cultivadas
14.
Cell Regen ; 13(1): 9, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630195

RESUMO

Human hematopoiesis starts at early yolk sac and undergoes site- and stage-specific changes over development. The intrinsic mechanism underlying property changes in hematopoiesis ontogeny remains poorly understood. Here, we analyzed single-cell transcriptome of human primary hematopoietic stem/progenitor cells (HSPCs) at different developmental stages, including yolk-sac (YS), AGM, fetal liver (FL), umbilical cord blood (UCB) and adult peripheral blood (PB) mobilized HSPCs. These stage-specific HSPCs display differential intrinsic properties, such as metabolism, self-renewal, differentiating potentialities etc. We then generated highly co-related gene regulatory network (GRNs) modules underlying the differential HSC key properties. Particularly, we identified GRNs and key regulators controlling lymphoid potentiality, self-renewal as well as aerobic respiration in human HSCs. Introducing selected regulators promotes key HSC functions in HSPCs derived from human pluripotent stem cells. Therefore, GRNs underlying key intrinsic properties of human HSCs provide a valuable guide to generate fully functional HSCs in vitro.

15.
Methods Mol Biol ; 2713: 463-479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639142

RESUMO

Alveolar macrophages (AMs) represent crucial immune cells in the bronchioalveolar space of the lung. Given the important role in the host defense machinery and lung tissue homeostasis, AMs have been linked to a variety of diseases and thus represent a promising target cell type for novel therapies. The emerging importance of AM underlines the necessity to isolate and/or generate proper cellular models, which facilitate basic biology and translational science. As of yet, most studies focus on the derivation of AM from the murine system. This chapter introduces the use of human-induced pluripotent stem cell (iPSC)-derived primitive macrophages, which can be further matured towards an AM-like phenotype upon intra-pulmonary transfer into mice. We will give a brief overview on the generation of primitive iPSC-derived macrophages, which is followed by a detailed, step-by-step description of the intra-pulmonary transfer of cells and the follow-up procedures needed to isolate the iPSC-derived, AM-like cells from the lungs post-transfer. The chapter provides an alternative approach to derive human AM-like cells, which can be used to study human AM biology and to investigate novel therapeutic interventions using primitive macrophages from iPSC.


Assuntos
Células-Tronco Pluripotentes Induzidas , Macrófagos Alveolares , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Macrófagos , Fenótipo
16.
Cell Regen ; 12(1): 31, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656237

RESUMO

Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.

17.
Res Sq ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461708

RESUMO

Background: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods: In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results: Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.

18.
Oncoimmunology ; 12(1): 2240670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720687

RESUMO

Background: Immunotherapeutic innovation is crucial for limited operability tumors. CAR T-cell therapy displayed reduced efficiency against glioblastoma (GBM), likely due to mutations underlying disease progression. Natural Killer cells (NKs) detect cancer cells despite said mutations - demonstrating increased tumor elimination potential. We developed an NK differentiation system using human pluripotent stem cells (hPSCs). Via this system, genetic modifications targeting cancer treatment challenges can be introduced during pluripotency - enabling unlimited production of modified "off-the-shelf" hPSC-NKs. Methods: hPSCs were differentiated into hematopoietic progenitor cells (HPCs) and NKs using our novel organoid system. These cells were characterized using flow cytometric and bioinformatic analyses. HPC engraftment potential was assessed using NSG mice. NK cytotoxicity was validated using in vitro and in vitro K562 assays and further corroborated on lymphoma, diffuse intrinsic pontine glioma (DIPG), and GBM cell lines in vitro. Results: HPCs demonstrated engraftment in peripheral blood samples, and hPSC-NKs showcased morphology and functionality akin to same donor peripheral blood NKs (PB-NKs). The hPSC-NKs also displayed potential advantages regarding checkpoint inhibitor and metabolic gene expression, and demonstrated in vitro and in vivo cytotoxicity against various cancers. Conclusions: Our organoid system, designed to replicate in vivo cellular organization (including signaling gradients and shear stress conditions), offers a suitable environment for HPC and NK generation. The engraftable nature of HPCs and potent NK cytotoxicity against leukemia, lymphoma, DIPG, and GBM highlight the potential of this innovative system to serve as a valuable tool that will benefit cancer treatment and research - improving patient survival and quality of life.


Assuntos
Glioblastoma , Qualidade de Vida , Humanos , Animais , Camundongos , Imunoterapia , Diferenciação Celular , Imunoterapia Adotiva , Glioblastoma/terapia
19.
Stem Cell Res Ther ; 14(1): 319, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936199

RESUMO

BACKGROUND: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS: In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS: Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoclastos , Leucócitos Mononucleares , Catepsina K/metabolismo , Diferenciação Celular
20.
Cells ; 11(24)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552810

RESUMO

Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years, but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells, and the lack of product standardization have limited its clinical use. The alternative use of T cells generated in vitro from human pluripotent stem cells (hPSCs) offers great advantages by providing a self-renewing source of T cells that can be readily genetically modified and facilitate the use of standardized universal off-the-shelf allogeneic cell products and rapid clinical access. However, despite their potential, a better understanding of the feasibility and functionality of T cells differentiated from hPSCs is necessary before moving into clinical settings. In this study, we generated human-induced pluripotent stem cells from T cells (T-iPSCs), allowing for the preservation of already recombined TCR, with the same properties as human embryonic stem cells (hESCs). Based on these cells, we differentiated, with high efficiency, hematopoietic progenitor stem cells (HPSCs) capable of self-renewal and differentiation into any cell blood type, in addition to DN3a thymic progenitors from several T-iPSC lines. In order to better comprehend the differentiation, we analyzed the transcriptomic profiles of the different cell types and demonstrated that HPSCs differentiated from hiPSCs had very similar profiles to cord blood hematopoietic stem cells (HSCs). Furthermore, differentiated T-cell progenitors had a similar profile to thymocytes at the DN3a stage of thymic lymphopoiesis. Therefore, utilizing this approach, we were able to regenerate precursors of therapeutic human T cells in order to potentially treat a wide range of diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Timócitos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Moléculas de Adesão Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA