Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(13): 3833-3850, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37025006

RESUMO

Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Microalgas/genética , Microalgas/metabolismo , Biotecnologia , Regiões Promotoras Genéticas/genética , Biologia Sintética
2.
Macromol Rapid Commun ; 43(9): e2200020, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35182089

RESUMO

Polymer syntheses in a high throughput format are still challenging due to the tedious procedures for prior deoxygenation and catalyst removal. 2D metal-organic framework (MOF) nanosheets are advantageous for elevating the catalytic efficiency and catalyst recyclability. Polymerization of a wide variety of monomers, including hydrophilic acrylamides and hydrophobic acrylates, is attempted directly in a multi-well plate by employing Zn-ZnPPF-2D nanosheets (PPF = porphyrin paddlewheel framework) as a heterogeneous photocatalyst. Various parameters such as monomer concentration, catalyst concentration, and light wavelength are investigated with respect to their effects on polymerization rate and the degree of control over the molecular weight and molecular weight distribution. Due to the larger surface area and more accessible catalytic sites, the top-performing Zn-ZnPPF-2D exhibits fast polymerization kinetics over the Zn-ZnPPF-3D bulk crystals. In addition, the synthesis of triblock copolymers with a single loading of catalysts confirms the outstanding catalytic performance of these 2D MOF catalysts. Finally, photopolymerization is demonstrated to be achievable entirely in a microliter-scale human cell culture medium. As such, this strategy provides high levels of control and precision over macromolecular synthesis outcomes that best align with the requirements of high throughput approaches toward biological applications.


Assuntos
Estruturas Metalorgânicas , Porfirinas , Catálise , Humanos , Estruturas Metalorgânicas/química , Polimerização , Polímeros , Porfirinas/química
3.
Plant Biotechnol J ; 12(5): 534-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24891040

RESUMO

Tef, Eragrostis tef (Zucc.) Trotter, is the most important cereal in Ethiopia. Tef is cultivated by more than five million small-scale farmers annually and constitutes the staple food for more than half of the population of 80 million. The crop is preferred by both farmers and consumers due to its beneficial traits associated with its agronomy and utilization. The genetic and phenotypic diversity of tef in Ethiopia is a national treasure of potentially global importance. In order for this diversity to be effectively conserved and utilized, a better understanding at the genomic level is necessary. In the recent years, tef has become the subject of genomic research in Ethiopia and abroad. Genomic-assisted tef improvement holds tremendous potential for improving productivity, thereby benefiting the smallholder farmers who have cultivated and relied on the crop for thousands of years. It is hoped that such research endeavours will provide solutions to some of the age-old problems of tef's husbandry. In this review, we provide a brief description of the genesis and progress of tef genomic research to date, suggest ways to utilize the genomic tools developed so far, discuss the potential of genomics to enable sustainable conservation and use of tef genetic diversity and suggest opportunities for the future research.


Assuntos
Eragrostis/genética , Genômica/tendências , Pesquisa/tendências
4.
Front Phys ; 92021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34007839

RESUMO

Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.

5.
Front Microbiol ; 12: 706235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690950

RESUMO

High-throughput methods for phenotyping microalgae are in demand across a variety of research and commercial purposes. Many microalgae can be readily cultivated in multi-well plates for experimental studies which can reduce overall costs, while measuring traits from low volume samples can reduce handling. Here we develop a high-throughput quantitative phenotypic assay (QPA) that can be used to phenotype microalgae grown in multi-well plates. The QPA integrates 10 low-volume, relatively high-throughput trait measurements (growth rate, cell size, granularity, chlorophyll a, neutral lipid content, silicification, reactive oxygen species accumulation, and photophysiology parameters: ETRmax, Ik, and alpha) into one workflow. We demonstrate the utility of the QPA on Thalassiosira spp., a cosmopolitan marine diatom, phenotyping six strains in a standard nutrient rich environment (f/2 media) using the full 10-trait assay. The multivariate phenotypes of strains can be simplified into two dimensions using principal component analysis, generating a trait-scape. We determine that traits show a consistent pattern when grown in small volume compared to more typical large volumes. The QPA can thus be used for quantifying traits across different growth environments without requiring exhaustive large-scale culturing experiments, which facilitates experiments on trait plasticity. We confirm that this assay can be used to phenotype newly isolated diatom strains within 4 weeks of isolation. The QPA described here is highly amenable to customisation for other traits or unicellular taxa and provides a framework for designing high-throughput experiments. This method will have applications in experimental evolution, modelling, and for commercial applications where screening of phytoplankton traits is of high importance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA