Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091468

RESUMO

Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation-regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , Apoptose/genética , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , China , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias/genética
2.
J Biol Chem ; 298(12): 102670, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334628

RESUMO

I-motifs are four-strand noncanonical secondary structures formed by cytosine (C)-rich sequences in living cells. The structural dynamics of i-motifs play essential roles in many cellular processes, such as telomerase inhibition, DNA replication, and transcriptional regulation. In cells, the structural dynamics of the i-motif can be modulated by the interaction of poly(C)-binding proteins (PCBPs), and the interaction is closely related to human health, through modulating the transcription of oncogenes and telomere stability. Therefore, the mechanisms of how PCBPs interact with i-motif structures are fundamentally important. However, the underlying mechanisms remain elusive. I-motif structures in the promoter of the c-MYC oncogene can be unfolded by heterogeneous nuclear ribonucleoprotein K (hnRNP K), a PCBP, to activate its transcription. Here, we selected this system as an example to comprehensively study the unfolding mechanisms. We found that the promoter sequence containing 5 C-runs preferred folding into type-1245 to type-1234 i-motif structures based on their folding stability, which was further confirmed by single-molecule FRET. In addition, we first revealed that the c-MYC i-motif structure was discretely resolved by hnRNP K through two intermediate states, which were assigned to the opposite hairpin and neighboring hairpin, as further confirmed by site mutations. Furthermore, we found all three KH (hnRNP K homology) domains of hnRNP K could unfold the c-MYC i-motif structure, and KH2 and KH3 were more active than KH1. In conclusion, this study may deepen our understanding of the interactions between i-motifs and PCBPs and may be helpful for drug development.


Assuntos
Proteínas de Transporte , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a RNA/metabolismo , DNA/metabolismo , Estrutura Secundária de Proteína
3.
J Virol ; 96(22): e0155522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36317879

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a re-emerging enteric coronavirus currently spreading in several nations and inflicting substantial financial damages on the swine industry. The currently available coronavirus vaccines do not provide adequate protection against the newly emerging viral strains. It is essential to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. This study shows that heterogeneous nuclear ribonucleoprotein K (hnRNP K), the host protein determined by the transcription factor KLF15, inhibits the replication of PEDV by degrading the nucleocapsid (N) protein of PEDV in accordance with selective autophagy. hnRNP K was found to be capable of recruiting the E3 ubiquitin ligase, MARCH8, aiming to ubiquitinate N protein. Then, it was found that the ubiquitinated N protein could be delivered into autolysosomes for degradation by the cargo receptor NDP52, thereby inhibiting PEDV proliferation. Moreover, based on the enhanced MyD88 expression, we found that hnRNP K activated the interferon 1 (IFN-1) signaling pathway. Overall, the data obtained revealed a new mechanism of hnRNP K-mediated virus restriction wherein hnRNP K suppressed PEDV replication by degradation of viral N protein using the autophagic degradation pathway and by induction of IFN-1 production based on upregulation of MyD88 expression. IMPORTANCE The spread of the highly virulent PEDV in many countries is still leading to several epidemic and endemic outbreaks. To elucidate effective antiviral mechanisms, it is important to study the relationship between host antiviral factors and the virus and to investigate the mechanisms underlying host immune response against PEDV infection. In the work, we detected hnRNP K as a new host restriction factor which can hinder PEDV replication through degrading the nucleocapsid protein based on E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. In addition, via the upregulation of MyD88 expression, hnRNP K could also activate the interferon (IFN) signaling pathway. This study describes a previously unknown antiviral function of hnRNP K and offers a new vision toward host antiviral factors that regulate innate immune response as well as a protein degradation pathway against PEDV infection.


Assuntos
Infecções por Coronavirus , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Interferon Tipo I , Vírus da Diarreia Epidêmica Suína , Replicação Viral , Animais , Antivirais , Chlorocebus aethiops , Infecções por Coronavirus/veterinária , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Interferons , Fator 88 de Diferenciação Mieloide , Proteínas do Nucleocapsídeo/fisiologia , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Ubiquitina-Proteína Ligases , Células Vero , Interferon Tipo I/imunologia
4.
Methods ; 208: 59-65, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334888

RESUMO

RNA-binding proteins (RBPs) typically bind to RNA in a sequence-specific manner, resulting in post-transcriptional gene regulation. While the various classes of RNA-binding domains are largely structured, flexible linkers are frequently observed between them. Emerging evidence suggests that these unstructured regions may help spatially position the RNA-binding domains allowing for RNA binding and/or may contribute directly to RNA association via certain sequence motifs contained within them. The importance of these unstructured regions is widely appreciated; however, understanding their contribution to RNA binding, protein stability, and function has been difficult to ascertain. Thus, it is crucial to have a set of rapid and economical assays that do not require specialized instrumentation to study their impact on RBP function. Herein, we discuss the use of plate-based and cell-based thermal shift assays to study the impact of the intrinsically disordered region on the function of a highly conserved RBP, hnRNP K.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/química , Regulação da Expressão Gênica , Ligação Proteica
5.
Neuropathol Appl Neurobiol ; 48(4): e12793, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35064577

RESUMO

Nuclear depletion and cytoplasmic mislocalisation of the RNA-binding protein heterogeneous ribonucleoprotein K (hnRNP K) within pyramidal neurons of the frontal cortex have been shown to be a common neuropathological feature in frontotemporal lobar degeneration (FTLD) and elderly control brain. Here, we describe a second neuronal subtype vulnerable to mislocalisation within the dentate nucleus of the cerebellum. In contrast to neurons within the cerebellar cortex that typically exhibited normal, nuclear staining, many neurons of the dentate nucleus exhibited striking mislocalisation of hnRNP K to the cytoplasm within neurodegenerative disease brain. Mislocalisation frequency in this region was found to be significantly higher in both FTLD-TDP A and Alzheimer's disease (AD) brain than in age-matched controls. However, within control (but not disease) subjects, mislocalisation frequency was significantly associated with age-at-death with more elderly controls typically exhibiting greater levels of the pathology. This study provides further evidence for hnRNP K mislocalisation being a more anatomically diverse pathology than previously thought and suggests that potential dysfunction of the protein may be more broadly relevant to the fields of neurodegeneration and ageing.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Idoso , Envelhecimento , Núcleos Cerebelares/metabolismo , Núcleos Cerebelares/patologia , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/patologia
6.
FASEB J ; 35(4): e21507, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724572

RESUMO

Retinoic acid-related orphan receptor γ (RORγ) maintains the circadian rhythms of its downstream genes. However, the mechanism behind the transcriptional activation of RORγ itself remains unclear. Here, we demonstrate that transcription of RORγ is activated by heterogeneous nuclear ribonucleoprotein K (hnRNP K) via the poly(C) motif within its proximal promoter. Interestingly, we confirmed the binding of endogenous hnRNP K within RORγ1 and RORγ2 promoter along with the recruitment of RNA polymerase 2 through chromatin immunoprecipitation (ChIP). Furthermore, an assay for transposase accessible chromatin (ATAC)-qPCR showed that hnRNP K induced higher chromatin accessibility within the RORγ1 and RORγ2 promoter. Then we found that the knockdown of hnRNP K lowers RORγ mRNA oscillation amplitude in both RORγ and RORγ-dependent metabolic genes. Moreover, we demonstrated that time-dependent extracellular signal-regulated kinase (ERK) activation controls mRNA oscillation of RORγ and RORγ-dependent metabolic genes through hnRNP K. Taken together, our results provide new insight into the regulation of RORγ by hnRNP K as a transcriptional activator, along with its physiological significance in metabolism.


Assuntos
Cromatina/metabolismo , Ritmo Circadiano/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Imunoprecipitação da Cromatina/métodos , Ritmo Circadiano/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Camundongos , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia
7.
Exp Cell Res ; 409(2): 112909, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742742

RESUMO

LncRNA contribution to self-renewal of bladder cancer stem-like cells (CSLCs) remains largely unknown. We investigated the expression profile and biological function of lncRNAs in urothelial CSLCs by microarray analysis. Among these, lncRNA-AK023096 was identified as potentially playing a role in maintaining self-renewal of CSLCs. Knockdown of this transcript inhibited spheroid formation and tumor formation. We found that AK023096 mediates recruitment of hnRNP-K to SOX2 promoter and increases H3K4 trimethylation status on SOX2 promoter, leading to a robust change in SOX2 mRNA and protein levels. Moreover, AK023096 expression in primary tumors was found to be a powerful predictor of recurrence following transurethral resection in patients with nonmuscle-invasive bladder cancer, highlighting the critical role of lncRNA in the bladder cancer regulatory network.


Assuntos
Biomarcadores Tumorais/metabolismo , Autorrenovação Celular , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/metabolismo , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077109

RESUMO

A mouse model has often been used in studies of p53 gene expression. Detailed interpretation of functional studies is, however, hampered by insufficient knowledge of the impact of mouse p53 mRNA's structure and its interactions with proteins in the translation process. In particular, the 5'-terminal region of mouse p53 mRNA is an important region which takes part in the regulation of the synthesis of p53 protein and its N-truncated isoform Δ41p53. In this work, the spatial folding of the 5'-terminal region of mouse p53 mRNA and its selected sub-fragments was proposed based on the results of the SAXS method and the RNAComposer program. Subsequently, RNA-assisted affinity chromatography was used to identify proteins present in mouse fibroblast cell lysates that are able to bind the RNA oligomer, which corresponds to the 5'-terminal region of mouse p53 mRNA. Possible sites to which the selected, identified proteins can bind were proposed. Interestingly, most of these binding sites coincide with the sites determined as accessible to hybridization of complementary oligonucleotides. Finally, the high binding affinity of hnRNP K and PCBP2 to the 5'-terminal region of mouse p53 mRNA was confirmed and their possible binding sites were proposed.


Assuntos
RNA Mensageiro/química , Proteína Supressora de Tumor p53/genética , Animais , Camundongos , Hibridização de Ácido Nucleico , RNA Mensageiro/metabolismo , Espalhamento a Baixo Ângulo , Proteína Supressora de Tumor p53/metabolismo , Difração de Raios X
9.
Acta Neuropathol ; 142(4): 609-627, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274995

RESUMO

Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/patologia , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Splicing de RNA/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Estudos de Casos e Controles , Feminino , Degeneração Lobar Frontotemporal/genética , Humanos , Masculino , Pessoa de Meia-Idade
10.
Stem Cells ; 37(8): 1018-1029, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021473

RESUMO

The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.


Assuntos
Proliferação de Células , Cromatina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Cromatina/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Camundongos , Fatores de Transcrição/genética
11.
RNA Biol ; 17(10): 1402-1415, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32449427

RESUMO

The p53 protein is one of the transcription factors responsible for cell cycle regulation and prevention of cancer development. Its expression is regulated at the transcriptional, translational and post-translational levels. Recent years of research have shown that the 5' terminus of p53 mRNA plays an important role in this regulation. This region seems to be a docking platform for proteins involved in p53 expression, particularly under stress conditions. Here, we applied RNA-centric affinity chromatography to search for proteins that bind to the 5' terminus of p53 mRNA and thus may be able to regulate the p53 expression profile. We found heterogeneous nuclear ribonucleoprotein K, hnRNP K, to be one of the top candidates. Binding of hnRNP K to the 5'-terminal region of p53 mRNA was confirmed in vitro. We demonstrated that changes in the hnRNP K level in the cell strongly affected the p53 expression profile under various stress conditions. Downregulation or overexpression of hnRNP K caused a decrease or an increase in the p53 mRNA amount, respectively, pointing to the transcriptional mode of expression regulation. However, when hnRNP K was overexpressed under endoplasmic reticulum stress and the p53 amount has elevated no changes in the p53 mRNA level were detected suggesting translational regulation of p53 expression. Our findings have shown that hnRNP K is not only a mutual partner of p53 in the transcriptional activation of target genes under stress conditions but it also acts as a regulator of p53 expression at the transcriptional and potentially translational levels.


Assuntos
Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Cromatografia de Afinidade , Humanos , Espectrometria de Massas , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
12.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408494

RESUMO

Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Doença Aguda , Animais , Humanos , Leucemia/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
13.
J Cell Biochem ; 120(9): 14296-14305, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127648

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA/DNA special binding protein that participates in regulating the expression of related genes, transcription, RNA alternative splicing, translation, posttranslational modification, cell signal transduction, cell movement, interacts with ncRNAs, and induces angiogenesis. Moreover, several cellular functions forcefully indicated that hnRNP K participates in tumorigenesis. Numerous studies indicated hnRNP K is aberrantly elevated in multiple tumors. In addition, hnRNP K abnormal accumulation in cytoplasmic is also associated with poor prognosis. This suggests that hnRNP K may play a role in the development and progression of tumors. However, related studies demonstrated that hnRNP K acts as a tumor suppressor to suppress tumor formation. Therefore, this paper aims to explore the role of hnRNPK in tumors.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Processamento Alternativo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras de Tumor/metabolismo
14.
Bioorg Chem ; 85: 1-17, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30599408

RESUMO

Aberrant overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key feature in oncogenesis and progression of many human cancers. hnRNP K has been found to be a transcriptional activator to up-regulate c-myc gene transcription, a critical proto-oncogene for regulation of cell growth and differentiation. Therefore, down-regulation of c-myc transcription by inhibiting hnRNP K through disrupting its binding to c-myc gene promoter is a potential approach for cancer therapy. In the present study, we synthesized and screened a series of Quinoline derivatives and evaluated their binding affinity for hnRNP K. Among these derivatives, (E)-1-(4-methoxyphenyl)-3-(4-morpholino-6-nitroquinolin-2-yl)prop-2-en-1-one (compound 25) was determined to be the first-reported hnRNP K binding ligand with its KD values of 4.6 and 2.6 µM measured with SPR and MST, respectively. Subsequent evaluation showed that the binding of compound 25 to hnRNP K could disrupt its unfolding of c-myc promoter i-motif, resulting in down-regulation of c-myc transcription. Compound 25 showed a selective anti-proliferative effect on human cancer cell lines with IC50 values ranged from 1.36 to 3.59 µM. Compound 25 exhibited good tumor growth inhibition in a Hela xenograft tumor model, which might be related to its binding with hnRNP K. These findings illustrated that inhibition of DNA-binding protein hnRNP K by compound 25 could be a new and selective strategy of regulating oncogene transcription instead of targeting promoter DNA secondary structures such as G-quadruplexes or i-motifs.


Assuntos
Antineoplásicos/uso terapêutico , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Quinolinas/uso terapêutico , Transcrição Gênica/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Ligação Proteica , Proto-Oncogene Mas , Quinolinas/síntese química , Quinolinas/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623150

RESUMO

Peptide Nucleic Acids (PNAs) are synthetic mimics of natural oligonucleotides, which bind complementary DNA/RNA strands with high sequence specificity. They display numerous advantages, but in vivo applications are still rare. One of the main drawbacks of PNAs application is the poor cellular uptake that could be overcome by using experimental models, in which microinjection techniques allow direct delivery of molecules into eggs. Thus, in this communication, we investigated PNAs efficiency in miR-7 downregulation and compared its effects with those obtained with the commercially available antisense molecule, Antagomir (Dharmacon) in the ascidian Ciona intestinalis. Ascidians are marine invertebrates closely related to vertebrates, in which PNA techniques have not been applied yet. Our results suggested that anti-miR-7 PNAs were able to reach their specific targets in the developing ascidian embryos with high efficiency, as the same effects were obtained with both PNA and Antagomir. To the best of our knowledge, this is the first evidence that unmodified PNAs can be applied in in vivo knockdown strategies when directly injected into eggs.


Assuntos
Ciona intestinalis/genética , Técnicas de Silenciamento de Genes , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/farmacologia , Animais , Biomarcadores , Perfilação da Expressão Gênica , Inativação Gênica , Imuno-Histoquímica , MicroRNAs/química , Estrutura Molecular , Oligonucleotídeos , Ácidos Nucleicos Peptídicos/química
16.
J Biol Chem ; 292(31): 12801-12812, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28592492

RESUMO

When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys132 in hnRNP K is critical for this inhibition.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP27/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Processamento de Proteína Pós-Traducional , Elementos de Resposta , Fatores de Transcrição/antagonistas & inibidores , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Cistina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Temperatura Alta/efeitos adversos , Humanos , Camundongos , Chaperonas Moleculares , Mutação , Oxirredução , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/antagonistas & inibidores , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Cell Sci ; 129(6): 1141-54, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26823606

RESUMO

Post-transcriptional regulation is crucial for structural and functional alterations in erythropoiesis. Enucleation of erythroid progenitors precedes reticulocyte release into circulation. In enucleated cells, reticulocyte 15-lipoxygenase (r15-LOX, also known as ALOX15) initiates mitochondria degradation. Regulation of r15-LOX mRNA translation by hnRNP K determines timely r15-LOX synthesis in terminal maturation. K562 cells induced for erythroid maturation recapitulate enucleation and mitochondria degradation. HnRNP K depletion from maturing K562 cells results in enhanced enucleation, which even occurs independently of maturation. We performed RIP-Chip analysis to identify hnRNP K-interacting RNAs comprehensively. Non-muscle myosin heavy chain (NMHC) IIA (also known as MYH9) mRNA co-purified with hnRNP K from non-induced K562 cells, but not from mature cells. NMHC IIA protein increase in erythroid maturation at constant NMHC IIA mRNA levels indicates post-transcriptional regulation. We demonstrate that binding of hnRNP K KH domain 3 to a specific sequence element in the NMHC IIA mRNA 3'UTR mediates translation regulation in vitro Importantly, elevated NMHC IIA expression results in erythroid-maturation-independent enucleation as shown for hnRNP K depletion. Our data provide evidence that hnRNP-K-mediated regulation of NMHC IIA mRNA translation contributes to the control of enucleation in erythropoiesis.


Assuntos
Eritrócitos/metabolismo , Eritropoese , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Biossíntese de Proteínas , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Eritrócitos/química , Eritrócitos/citologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Células K562 , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Ligação Proteica , Domínios Proteicos , RNA Mensageiro
18.
Pol J Vet Sci ; 21(2): 343-351, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30450874

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNP K), is a multifunctional protein that participates in a variety of regulatory processes of signal transduction and gene expression. To further characterize the significance of hnRNP K in different male germ cells, we investigated the expression profiles of hnRNP K at different developmental stages in pig and rat testes, and conducted a comparative analysis of expression patterns between these two species. In porcine testis development, both the mRNA and protein level of hnRNP K were down-regulated from 3 months to 8 months. However, the expression level of hnRNP K was abundant across the embryonic period in rats, and decreased gradually from 0 day post partum (dpp) to 14 dpp, then increased with the highest level presenting at 90 dpp. Immunolocalization analysis further confirmed the differential expression and localization of hnRNP K protein during testis development in pigs and rats. The results showed that hnRNP K was widely distributed in gonocytes, spermatogonia, sertoli cells and Leydig cells. The dynamic expression profile of hnRNP K may imply its crucial and potential roles in the development of the testis, which will provide a theoretical basis for the future study of molecular mechanism regulation of spermatogenesis.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Testículo , Animais , Masculino , RNA Mensageiro , Proteínas de Ligação a RNA/metabolismo , Ratos , Ribonucleoproteínas/metabolismo , Espermatogênese , Suínos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
19.
Biochem Biophys Res Commun ; 471(1): 260-5, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26850853

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesicle in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Oogênese/fisiologia , Ovário/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos ICR , Ribonucleoproteínas Nucleares Pequenas , Distribuição Tecidual
20.
Biochem Biophys Res Commun ; 478(2): 772-6, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27501755

RESUMO

hnRNP K is a highly conserved nucleocytoplasmic shuttling protein, which associates with RNAs through synergistic binding via its three KH domains. hnRNP K is required for proper nuclear export and translational control of its mRNA targets, and these processes are controlled by hnRNP K's movement between subcellular compartments. Whereas the nuclear export and localization of hnRNP K that is associated with mRNP complexes has been well studied, the trafficking of hnRNP K that is unbound to mRNA has yet to be elucidated. To that end, we expressed an EGFP-tagged RNA binding-defective form of hnRNP K in intact Xenopus embryos, and found it was rapidly degraded in vivo. Deleting hnRNP K's nuclear localization signal (NLS), which contains two prospective ubiquitination sites, rescued the protein from degradation. These data demonstrate a novel activity for the NLS of hnRNP K in regulating the protein's stability in vivo when it is unbound to nucleic acids.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/genética , Sinais de Localização Nuclear/genética , Proteínas Recombinantes de Fusão/genética , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Sequência Conservada , Embrião não Mamífero , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Mutagênese Sítio-Dirigida , Sinais de Localização Nuclear/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ubiquitinação , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA